
1

EE 457 Unit 5

Single-Cycle CPU

Datapath and Control

2

CPU Organization Scope

• We will build a CPU to implement our subset of the MIPS ISA
– Memory Reference Instructions:

• Load Word (LW)

• Store Word (SW)

– Arithmetic and Logic Instructions:

• ADD, SUB, AND, OR, SLT

– Branch and Jump Instructions:

• Branch if equal (BEQ)

• Jump unconditional (J)

• These basic instructions exercise a majority of the necessary
datapath and control logic for a more complete
implementation

3

CPU Implementations

• We will go through two implementations
– Single-cycle CPU (CPI = 1)

• All instructions execute in a single, long clock cycle

– Multi-cycle CPU (CPI = n)

• Instructions can take a different number of short clock cycles to execute

• Recall that a program execution time is:
(Instruction count) x (CPI) x (Clock cycle time)
– In single-cycle implementation cycle time must be set for longest

instruction thus requiring shorter instructions to wait

– Multi-cycle implementation breaks logic into sub-operations each
taking one short clock cycle; then each instruction takes only the
number of clocks (i.e. CPI) it needs

4

Single-Cycle Datapath

• To start, let us think about what operations need to be
performed for the basic instructions

• All instructions go through the following steps:
– Fetch: Use PC address to fetch instruction

– Decode & Register/Operand Fetch: Determine instruction type and
fetch any register operands needed

• Once decoded, different instructions require different
operations
– ALU instructions: Perform Add, Sub, etc. and write result back to

register

– LW / SW: Calculate address and perform memory access

– BEQ / J: Update PC (possible based on comparison)

• Let us start with fetching an instruction and work our way
through the necessary components

5

Instruction Ordering

• Identify which components each instruction type would use
and in what order: ALU-Type, LW, SW, BEQ

ALU-Type

(ADD $5,$6,$7)

1. PC

2. I-Memory

3. Registers

4. ALU

5. WB to Reg.

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral

Purpose

Registers

A
L

U Res.

Zero

LW

(LW $5,40($7)

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Read Mem.

6. WB to Reg.

SW

(SW $5,40($7)

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Write Mem.

BEQ

(BEQ $2,$3,disp)

1. PC

2. I-Memory

3. Register Access

4. Compare

5. If Zero,

Update PC=PC+d

6

Modified Fetch Datapath

• Below is the fetch datapath modified to support branch
instructions

I-Cache / I-MEM

Addr. Data

Instruction Word
PC

+
A

B

CLK

PCSrc

S

4

Current PC /

Read Address

“Next” PC = PC + 4

0

1

Branch PC

7

Fetch

• Address in PC is used to fetch instruction while it is also
incremented by 4 to point to the next instruction

• Remember, the PC doesn’t update until the end of the clock
cycle / beginning of next cycle

• Mux provides a path for branch target addresses

Fetch

0

1

0
x

0
0

4
0
0
0

1
8

+

I-Cache

Addr.

Instruc.

A

B

4 0x0040001c

PC

0x00400018

0x012a8020

PC+4

branch target

000000 01001 01010 0000010000 100000

opcode rs rt shamtrd func

time

clk

PC 0x400018400014

Adder

0x40001c

0x40001c400018 0x400020

ADD $16,$9,$10

8

Decode
• Opcode and func. field are decoded to produce other control signals

• Execution of an ALU instruction (ADD $3,$1,$2) requires reading 2 register
values and writing the result to a third

• REGWrite is an enable signal indicating the write data should be written to
the specified register

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

5

5

5

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
0

0
0

0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c

Result from add

Control

Logic Control Signals

Instruction Word

Register File is the collection of GPR’s. Our register
file has 3 “ports” (port = ability to concurrently
read or write a register). To see why we need 3,
consider an “ADD $3,$1,$2”. We need 2 read ports
to read two operands (i.e. $1 + $2) and 1 write port
for the result ($3)

Register File

CLK REGWrite

ADD $3,$1,$2

1
Value of $1

Value of $2
2

3

9

Datapath for ALU instruction

• ALU takes inputs from register file and
performs the add, sub, and, or, slt, operations

• Result is written back to dest. register

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

A
L

U Res.

ZeroADD $3,$1,$2

$1 value

$2 value
Sum

1

2

3

Instruc. word

ALUop

10

Memory Access Datapath

• Operands are read from register file while offset is sign extended

• ALU calculates effective address

• Memory access is performed

• If LW, read data is written back to register

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read

Data

Write

Data

32

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read

Data

Write

Data

32

LW $4,0xfff8($1)

$1 value

0xffff fff8

Sum
Read

Data

SW $3,0x1a($1)

0x0000001a

$1 value

Sum

$3 value

ADD

1

4

1

3

Write Data

11

Branch Datapath

• BEQ requires…
– ALU for comparison (examine ‘zero’ output)

– Sign extension unit for branch offset

– Adder to add PC and offset
• Need a separate adder since ALU is used to perform comparison

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

A
L

U Res.

ZeroBEQ $1,$2,offset

$1 value

$2 value
Sum

Instruc. word

ALUop

Sign

Extend

extended word offset

A
d

d
e
r

Sum

PC+4 (incremented PC)

Shift

Left 2

Branch Target

Address to PC

word offset

ZERO

byte offset

1

2

12

Combining Datapaths

• Now we will take the datapaths for each instruction
type and try to combine them into one

• Anywhere we have multiple options for a certain
input we can use a mux to select the appropriate
value for the given instruction

• Select bits must be generated to control the mux

13

ALUSrc Mux

• Mux controlling second input to ALU
– ALU instruction provides Read Register 2 data to the 2nd input of ALU

– LW/SW uses 2nd input of ALU as an offset to form effective address

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read
Data

Write
Data

32

$1 value

0xffff fff8

Sum
Read

Data

ADD

1

4

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
L

U Res.

Zero

$1 value

$2 value
Sum

1

2

3

Instruc. word

ALUop

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

32

Mem. InstructionALU Instruction

ALUSrc

14

MemtoReg Mux

• Mux controlling writeback value to register file

– ALU instructions use the result of the ALU

– LW uses the read data from data memory

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

D-Cache

Addr.

Read

Data

Write

Data

0

1

16 32

5

5

5

MemtoReg

15

PCSrc Mux

• Next instruction can either be at the next sequential address (PC+4) or the
branch target address (PC+offset)

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

5

PCSrc

Branch Target

Address

16

RegDst Mux

• Different destination register ID fields for ALU and LW instructions

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

rt

rs

rd

RegDst

35 or 43I-Type (LW) rs rt address offset

31-26 25-21 20-16 15-0

0R-Type (ALU) rs rt rd shamt func

31-26 25-21 20-16 15-11 10-6 5-0 Destination

Register Number

17

Single-Cycle CPU Datapath

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

18

Single-Cycle CPU Datapath

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc
Control

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

ALUOp[1:0]

19

Jump Instruc. Implementation

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.

Left 2
[2

5
:0

]

26 28

Jump
Jump

32

Jump Address = {NewPC[31:28], INST[25:0],00}

Branch Address

Next Instruc. Address

Control

20

SINGLE CYCLE CONTROL

21

Control Unit Design for Single-Cycle CPU

• Control Unit: Maps instruction to
control signals

• Traditional Control Unit
– FSM: Produces control signals asserted at

different times

– Design NSL, SM, OFL

• Single-Cycle Control Unit
– Every cycle we perform the same steps:

Fetch, Decode, Execute

– Signals are not necessarily time based but
instruction based => only combinational
logic

SMNSL
OFL

Inputs (Instruction/Opcode)

Outputs

Traditional Control Unit

of FF’s in tightly-encoded state assignment:

5-8 states: _____, 9-16 states: _____

Single-Cycle Control Unit

Only 1 state => _____ FF’s

State

0

SMNSL
OFL

Inputs (Instruction/Opcode)

Outputs

22

Control Unit

• Most control signals are a
function of the opcode
(i.e. LW/SW, R-Type,
Branch, Jump)

• ALU Control is a function
of opcode AND function
bits.

Control

Unit

Jump

MemRead

MemWrite

MemtoReg

ALUControl[2:0]

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

Func.

(Instruc.[5:0])

Control

Unit

Func. (Instruc.[5:0])

Jump

MemRead

MemWrite

MemtoReg

ALUOp[1:0]

ALUSrc

RegDst

RegWrite

Branch

ALU

Control

to ALU

OpCode

(Instruc.[31:26])

23

ALU Control

• ALU Control needs to know what
instruction type it is:

– R-Type (op. depends on func. code)

– LW/SW (op. = ADD)

– BEQ (op. = SUB)

• Let main control unit produce ALUOp[1:0]
to indicate instruction type, then use
function bits if necessary to tell the ALU
what to do

Control

Unit

Func. (Instruc.[5:0])

ALUOp[1:0]

ALU

Control to
 A

L
U

OpCode

(Instruc.[31:26])

Instruction ALUOp[1:0]

LW/SW 00

Branch 01

R-Type 10

Control unit maps instruction opcode to

ALUOp[1:0] encoding

24

ALU Control Truth Table

• ALUControl[2:0] is a function of: ALUOp[1:0] and Func.[5:0]

Instruc. ALUOp[1:0] Instruction
Operation

Func.[5:0] Desired ALU
Action

LW 00 Load word X Add

SW 00 Store word X Add

Branch 01 BEQ X Subtract

R-Type 10 AND 100100 And

R-Type 10 OR 100101 Or

R-Type 10 Add 100000 Add

R-Type 10 Sub 100010 Subtract

R-Type 10 SLT 101010 Set on less
than

Produce each ALUControl[2:0] bit from the ALUOp and Func. inputs

25

Control Signal Generation

• Other control signals are a function of the opcode

• We could write a full truth table or (because we are only
implementing a small subset of instructions) simply
decode the opcodes of the specific instructions we are
implementing and use those intermediate signals to
generate the actual control signals

Control

Unit

Jump

MemRead

MemWrite

MemtoReg

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

ALUOp[1:0]

Control

Unit

Jump

MemRead

MemWrite

MemtoReg

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

ALUOp[1:0]

Decoder

R-Type

LW

SW

BEQ

Jump

Could generate each control

signal by writing a full truth table

of the 6-bit opcode

Simpler for human to design if we decode the

opcode and then use individual “instruction”

signals to generate desired control signals

26

Control Signal Truth Table
R-

Type
LW SW BEQ J Jump Branch Reg

Dst
ALU
Src

Memto-
Reg

Reg
Write

Mem
Read

Mem
Write

ALU
Op[1]

ALU
Op[0]

1 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 1 0 0 0 0 X 1 X 0 0 1 0 0

0 0 0 1 0 0 1 X 0 X 0 0 0 0 1

0 0 0 0 1 1 X X X X 0 0 0 X X

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Lef t

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.

Lef t 2

[2
5
:0

]

26 28

Jump

Jump

32

Jump Address

Branch Address

Next Instruc. Address

Control

27

Control Signal Logic

Op[5]

Op[4]

Op[3]

Op[2]

Op[1]

Op[0]

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Jump

Branch

ALUOp1

ALUOp0

R-Type LW SW BEQ J

Decoder

28

DATAPATH QUESTIONS

29

Fetch Datapath Question 1

• Can the adder used to increment the PC be an ALU and be
used/shared for ALU instructions like ADD/SUB/etc.
– In a single-cycle CPU, resources cannot be shared thus we need a

separate adder and separate ALU

I-Cache / I-MEM

Addr. Data

Instruction Word
PC

+
A

B

CLK

Write

S

4

Current PC /

Read Address

“Next” PC = PC + 4

30

Fetch Datapath Question 2

• Do we need the “Write” enable signal on the PC register for
our single-cycle CPU?
– In the single-cycle CPU, the PC is updated EVERY clock cycle (since we

execute a new instruction each cycle). Thus we are writing the PC
every cycle and don’t need the write signal.

I-Cache / I-MEM

Addr. Data

Instruction Word
PC

+
A

B

CLK

Write

S

4

Current PC /

Read Address

“Next” PC = PC + 4

31

RegFile Question 1

• Why do we need the write enable signal, REGWrite?
– We have certain instructions like BEQ or SW that do not cause a register to be

updated. Thus we need the ability to NOT change a register.

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

5

5

5

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
0

0
0

0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c

Result from add

Control

Logic Control Signals

Instruction Word

ex. ALU instruc.

Register File

CLK REGWrite

Value of $1

Value of $2

32

RegFile Question 2

• Can write to registers be level sensitive or does it have to be
edge-sensitive?
– It must be edge-sensitive since a register may be source and destination (i.e.

add $1,$1,$2). If it was level sensitive we would have an uncontrolled
feedback loop.

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

5

5

5

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c

Result from add

Control

Logic Control Signals

Instruction Word

ex. ALU instruc.

Register File

CLK REGWrite

Value of $1

Value of $2

0
0

0
0

1
0

0
0

1
0

0
0

0
1
1

33

RegFile Question 3

• Since we need a write enable, do we need read enables (i.e.
RE1, RE2)
– We do not need read enables because reading a value does not change the state

of the processor. It may be unnecessary even if no source registers are needed
(e.g. Jmp), reading data out of the register file should not cause harm.

Read Reg. 1 #

Read Reg. 2 #

Write Reg. #

Write Data

Read data 1

Read data 2

5

5

5

Operand A

value

Result from add

Operand B

value

Register File

CLK REGWrite

RE1

RE2

34

Sign Extension Unit

• In a ‘LW’ or ‘SW’ instructions with
their base register + offset format,
the instruction only contains the
offset as a 16-bit value

– Example: LW $4,-8($1)

– Machine Code: 0x8c24fff8
• -8 = 0xfff8

• The 16-bit offset must be extended
to 32-bits before being added to base
register

100011 00001 00100 1111 1111 1111 1000

opcode rs rt offset

LW $4,0xfff8($1)

Sign

Extend16 32

offset =

0xfff8 0xfffffff8

35

Sign Extension Question

• What logic is inside a sign-extension unit?

– How do we sign extend a number?

– Do you need a shift register?

b15 b14 b13 b0…b15b15 …

b15 b14 b13 b0…

Sign Extension Unit

16-bit offset

32-bit sign-extended

output

36

Data Memory Questions

• Do we need separate instruction and data
memory or can we just use one (i.e. most
personal computers only have one large set
of RAM)?

• Do we need separate read/write address
inputs or can we have just one address input
used for both operations?

• Do we need separate read/write data
input/output or a bidirectional input (for
write) / output (for read)?

• Can we do away with the “read” control
signal (similar to how we did away with read
enables for register file)?

Read Addr.

Read Data

Write Addr.

Read

Write Data

Write

MemRead

MemWrite

37

Data Memory Answers

• We do need separate memories for instruction and data
memories since we want to fetch an instruction and
read/write data in the same clock (i.e. can’t share the
memory)

• In the case of a single cycle CPU, we only perform one
read/write at a time thus we can share address inputs and,
if we want, make the data input/output bidirectional,
however we can also have separate data input/outputs

• Without a read control signal the memory would always be
reading based on the address input (which will be arbitrary
values for non-memory instructions). This can have serious
side effects such as invalid address and, since this memory
is likely a cache, cache misses, etc.

Addr.

Read Data

Read

Write Data

Write

MemRead

MemWrite

38

Branch Datapath Question

• Is it okay to start adding branch offset even before
determining whether the branch is taken or not?
– Yes, it does not hurt because the ZERO signal will control whether that Branch

Target is used to update the PC or not

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

A
L

U Res.

ZeroBEQ $1,$2,offset

$1 value

$2 value
Sum

1

2

Instruc. word

ALUop

Sign

Extend

extended word offset

A
d

d
e
r

Sum

PC+4 (incremented PC)

Shift

Left 2

Branch Target

Address to PC

word offset

ZERO (To control logic)

39

Credits

• These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

	Slide 1: EE 457 Unit 5
	Slide 2: CPU Organization Scope
	Slide 3: CPU Implementations
	Slide 4: Single-Cycle Datapath
	Slide 5: Instruction Ordering
	Slide 6: Modified Fetch Datapath
	Slide 7: Fetch
	Slide 8: Decode
	Slide 9: Datapath for ALU instruction
	Slide 10: Memory Access Datapath
	Slide 11: Branch Datapath
	Slide 12: Combining Datapaths
	Slide 13: ALUSrc Mux
	Slide 14: MemtoReg Mux
	Slide 15: PCSrc Mux
	Slide 16: RegDst Mux
	Slide 17: Single-Cycle CPU Datapath
	Slide 18: Single-Cycle CPU Datapath
	Slide 19: Jump Instruc. Implementation
	Slide 20: Single cycle Control
	Slide 21: Control Unit Design for Single-Cycle CPU
	Slide 22: Control Unit
	Slide 23: ALU Control
	Slide 24: ALU Control Truth Table
	Slide 25: Control Signal Generation
	Slide 26: Control Signal Truth Table
	Slide 27: Control Signal Logic
	Slide 28: Datapath Questions
	Slide 29: Fetch Datapath Question 1
	Slide 30: Fetch Datapath Question 2
	Slide 31: RegFile Question 1
	Slide 32: RegFile Question 2
	Slide 33: RegFile Question 3
	Slide 34: Sign Extension Unit
	Slide 35: Sign Extension Question
	Slide 36: Data Memory Questions
	Slide 37: Data Memory Answers
	Slide 38: Branch Datapath Question
	Slide 39: Credits

