EE 457 Unit 2b

Fast Adders
(Carry-Lookahead Adder)

Carry-Lookahead Adders

FAST ADDERS

* Critical Path = Longest possible delay path

Assume tg,,, = 5 ns,

1:carry: 4 ns
| | | | | | | |
X Y X Y X Y X Y
16 ns | 12ns | 8ns | 4ns _
«— Co FA ClI |e-meennesd CO FA Ci lgeereesennss CO FA Ci lgreseenneesd Co FA Ci l<

S_ S S S
l l l

17 ns 13 ns 9ns 5ns

D REELE Critical Path

Ripple Carry Adders

* Ripple-carry adders (RCA) are slow due to
carry propagation
— At least 2 levels of logic per full adder
— Total delay for n-bit adder =n * T,

@ 6. ; L @

I~ - .____ [-0 T
| : : -
4mrepnst e L
= SR W S
i o

Fast Adders

* Recall that any logic function can be implemented as a
2-level implementation
— SOP (AND-OR / NAND-NAND) implementation
— POS (OR-AND / NOR-NOR) implementation

* Rather than waiting for the previous carry,
[C.,, =f(X,Y,,C)] can we compute the carry as a
function of just the inputs
— Coy = F(X, X g0 X0 Yo YY)
— This requires gates with many inputs which is infeasible in
modern technologies above 4 or 5 inputs

— But, we can try to use this idea of generating multiple carries
at once by looking at many inputs

i, TS(“Viterbi -

Fast Adders

* To produce multiple carries in parallel, let us define some new
signals for each column of addition that indicate information
about the carry-out regardless of carry-in:

— g, = Generate: This column will generate a carry-out whether or not
the carry-inis ‘1’
g istrue when A,and B,is1=>g = A, ¢ B,

— p, = Propagate: This column will propagate a carry-in (if there is one)
to the carry-out.

p, is true when A, or B.is 1 =>p, = A, + B,
* Using these signals, we can define the carry-out (c,,,) as:

Cir1 = 8 T PG

* Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

* The carry-out of the diagram below will be true if g1
is true or plis true and g0 is true, or p1, pO and cl is
true

e — 5 iterbi
Carry Lookahead Logic

* Define each carry in terms of p,, g, and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

* ¢l =gy + PpyCo

* C2=g,+pPiC; =81+ P18y + P1PuCo
* C3=..

° c4=..

i, TS(“Viterbi -

School of Engineering

* At this point we should probably stop as we have a 5-input gate in our
equation

e Let’s take our logic and build a 4-bit carry lookahead adder (CLA)

a3 b3 a2 b2 al b1l a0 b0 c0

Delay to produce s2 v v vy vy

e Delay for pi,gi=1

e Delay to produce c2 =2 " " " "

e Delay to produce s2 =2 <3 o 1 <0

=3 gates \l/_ c4 p3 g3 c3 p2 g2 c2plogl cl p0 g0

(Compare to 8 gate delays for o4 b G c0
RCA) J/ J/

Is S3 produced later than S27?
Is C3 the last signal produced?

i, TS(“Viterbi

School of Engineer

Carry Lookahead Adder

e Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

 Example 4-bit CLA shown
below

T

B3

A3
3

A[3:0]

B[3:.0]

AD BO

g3 p3

AEE!E

g2

PG
p2 gl

A1 E!1

pl g0 p0

AD BO

co

ing

g3 p3

g2

p2 gl

pl g0 p0 Cco

Carry-Lookahead
Logic (CLL)

Cc3

cz c1

A3 B3

AZB2

AlB1

S1

AOQ BO

Carry Lookahead Adder

e Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

 Example 4-bit CLA shown
below

A[3:0] B[3:0] co

|ﬁ4__+_—4__“_1
A3 B3 AZ BZ AD BO
A3 B3 AZ E!Z A1 E!1 AD BO
PG
g3 p3 92 p2 gt p! g0 pO

g3 p3 g2 p2 gl p1 g0 p0 €O

Logic (CLL)
A3 B3 A2 B2 A1B1 AD BO

|
|
|
|
|
| Carry-Lookahead
|
|
|
|
|

|
|
|
|
|
|
HOBOPFORFC) :
:
|
|

52 B[2:0] %

L______
c4 @S[.’ED]

N (S Viterbi (2
16-Bit CLA

* At this point we should probably stop as we have a 5-input gate in our
equation

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0] Co

b R A A A Ay

C12

< ?’_\
5 3
L T@ @ T Tl
C16 S[15:12] S[11:8] S[7:4] S[3:0]
16-bit RCA Delay = 16*2 = 32 gate delays
Delay of the above adder design = 3+2+2+4 = 11 gates

Let us improve by looking ahead at a higher level to
produce C16, C12, C8, C4 in parallel

Define P and G as the overall Propagate and Generate
— signals for a set of 4 bits
What's the difference

between the equation P = p3 ° p2 ° pl ° pO
for G here and C4 on

the previous slides G= 93 + p3.g2 + p3.p2.gl + p30p20plogO

S — (5 Viterbi
16-bit CLA Closer Look

e Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
— PO =p3ep2epl epl
— Pl =p7e pb6ep5ep4d
— P2=plle pl0 ep9 ep8
— P3 =pl5epl4depl3 epl2
* Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate
— GO =g3+(p3 eg2) + (p3 ep2 egl)+(p3 ep2 epl eg0)
— G3=g15+ (p15 egl14) + (p15 epl4 eg13)+(pl5 epl4 epl3 egl2)
* The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:
— (C4) =>C1 =GO + (PO ec0)
— (C16) =>C4 = G3 + (P3 ©G2) + (P3 eP2 ¢G1) +(P3 @ P2 @ P1 @ GO)+ (P3 eP2 eP1 eP0 ec0)
* These equations are exactly the same CLL logic we derived earlier

i, TS(“Viterbi

School of Engineering

16-Bit CLA

CO

* Understanding 16-bit CLA hierarchy...
é
é‘(:15
ps CLL ps CLL pg CLL <1 | pg CLL
C12 C8 C4
p3 g3 c3 p2 g2 c2 pl gl cl p0 g0
F c4 CLL cO
P* G*

C16

Delay =

= 3 = Delay in producing Pi,Gi

=5 = Delay in producing Pi*,Gi*

=5 = Delay in producing C4,C8,C12,C16
=7 = Delay in producing c15

=9 = Delay in producing S15

i, TS(“Viterbi 9

6 4_ B |t C I_ A School of Enginceing

 We can reuse the same CLL logic to build a 64-bit CLA CO
0 Q00 000 D000+ (0000 0000 (00 QUDD (000 (000 (000 (000 (000 000 000 (00g
c63 s35
Pi,Gi .
C60 |C56 [C52 C4a4 |C40 [C36 c28 [C24 [C20 c12 |[cs |c4
pi*Gi* | ps CLL e CLL pg CLL <{| pg CLL
L\L_\L C48 J/J\E C32 \:LL\L C16 l/JlJ/
PiI** GI**| p3 g3 c3 p2 g2 c2 pl g1l cl p0 g0
\1/7 c4 5 o CLL cO
= 13 = Delay in producing S63 = 3 = Delay in producing Pi,Gi

=5 = Delay in producing Pj* Gj*
=7 = Delay in producing C48
=9 = Delay in producing C60
=11 = Delay in producing C63
= 13 = Delay in producing S63
= 13 Total Delay

Is the delay in producing s63 the same as in s35?
=5 = Delay in producing S2
= 4 = Delay in producing SO

i, TS(“Viterbi

School of Engineering

Extrapolating CLA Logic Levels

* In the above designs we’ve assumed 5-input AND

and OR gates are reasonable allowing us to group in
blocks of 4

— Define b = blocking factor = number of carries produced in
parallel

* The greater the blocking factor the smaller the depth
of logic (and vice-versa)

* This leads us to reason that the delay of a CLA is
O(log,n)

* If we could only use 3-input gates we’d need a
blocking factor of 2

- 00000000 USCViterbi@
Blocking factor of 2

Each A box
generates

— pi=a+b
— g =a,* b,
— 5. = a,Db,
Each B box
generates

— P,=p*pi4
— G =g+p;® 8,
— C;;1=G; + (P;ec)

School of Engineering

s
2,90,

fis S
Al- A 'A]“A%- i.TA‘;>A‘] [VA‘J- lr
?ﬁr%lyﬂ guuyjjihe

| |
3] | B
— | S =
. W— SRR—— o
Y . 1 e, " B T
: [

FIGURE A.13 Complete carry-lookahead tree adder. This is the combination ol Figures
A.11 and A.12. The numbers to be added enter at the top, llow 1o the bottom to combine

with ¢q. and then llow back up to compute the sum bits.
A “.A M . 1 Nt o ’.

2M a

- USCViterbi ‘
Credits

* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

