EE 457 Unit 2

Fixed Point Systems and Arithmetic

Unsigned

2’s Complement

Sign and Zero Extension
Hexadecimal Representation

SIGNED AND UNSIGNED SYSTEMS

Signed Systems

e Several systems have been used
— 2’s complement system
— 1’'s complement system
— Sign and magnitude

i, TS(“Viterbi ®

School of Engineering

Unsigned and Signed Variables

e Unsigned variables use unsigned binary (normal
power-of-2 place values) to represent numbers

1 0 0 1 0 0 1 1 = +147
128 64 32 16 38 4 2 1

e Signed variables use the 2’s complement system
(Neg. MSB weight) to represent numbers

1 0 0 1 0 0 1 1 =-109
-128 64 32 16 8 4 2 1

2’s Complement System

 MSB has negative weight

 MSB determines sign of the number
— 1 = negative
— 0 = positive
* To take the negative of a number
(e.g. -7 =>+7 or +2 => -2), requires taking the
complement

— 2’s complement of a # is found by flipping bits and adding
1

1001 x=-7

0110 Bitflip (1's comp.)
+ 1 Addl1l

0111 -x=-(-7) = +7

Zero and Sign Extension

e Extension is the process of increasing the number of bits used
to represent a number without changing its value

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

| Increase a 6-bit number to 8-bit
number by zero extending

2’s complement = Sign Extension (Replicate sign bit):

pos. 011010 = 00011010

Sign bit is just repeated as
many times as necessary

neg. 110011 = 11110011

Zero and Sign Truncation

* Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

Unsigned = Zero Truncation (Remove leading 0’s):

Decrease an 8-bit number to 6-bit

DC{]_]_]_O]_]_ = 111011 number by truncating 0’s. Can't

remove a ‘1’ because value is changed

2’s complement = Sign Truncation (Remove copies of sign bit):

pos. ©0011010 = 011010

Any copies of the MSB can be
removed without changing the

_ numbers value. Be careful not to
neg' mlooll - 10011 change the sign by cutting off

ALL the sign bits.

Arithmetic & Sign

* You learned the addition (carry-method) and

subtraction (borrow-method) algorithms in grade
school

* Consider A + B...do you definitely use the addition

algorithm?

— Not if A=5, B=(-2)..5+(-2)=5-2=3

— What if A=(2), B=(-5)?

— Can’t perform 2-5

— Flip operands and keep sign of larger

e 5—-2=3=>Applysign of larger mag. operand => -3

 Human add/sub algorithm depends on sign!!

» Addition/subtraction process is the same for
both unsighed and sighed numbers

— Add columns right to left
— Drop any final carry out

* This is the KEY reason we use 2’s complement
system to represent sighed numbers

 Examples:

11 If unsigned If signhed
1001 (9) (-7)

+ 0011 (3) (3)
1100 (12) (-4)

e Subtraction process is the same for both
unsigned and signed numbers
— Convert A—B to A+ Comp.ofB
— Drop any final carry out

 Examples:

If unsigned If signed 11 1
1100 (12) (-4) — 1100 A
- 0010 (2) (2) 1101 171'scomp.ofB
+ 1 Add1
1010 (10) (-6)

If unsigned If signed

Overflow

* Overflow occurs when the result of an
arithmetic operation is too large to be
represented with the given number of bits

— Unsigned overflow (C) occurs when adding or
subtracting unsigned numbers

— Signed (2’s complement overflow) overflow (V)
occurs when adding or subtracting 2’s
complement numbers

— 5 Viterbi
Unsigned Overflow

Overflow occurs when you cross
this discontinuity

+15

10+7 =17 i
4-6=14

With 4-bit unsigned numbers we
can only represent 0 — 15. Thus,
we say overflow has occurred.

i, TS(“Viterbi 3

School of Engineering

2’s Complement Overflow

5+7=+12
6 + -4 =-10

With 4-bit 2’s complement
numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

Overflow occurs when you cross this
discontinuity

Testing for Overflow

e Most fundamental test

— Check if answer is wrong (i.e. Positive + Positive yields a
negative)
e Unsigned overflow (C) test
— If carry-out of final position equals ‘1’

* Signed (2’s complement) overflow (V) test

— Only occurs if two positives are added and result is
negative or two negatives are added and result is positive

— Alternate test: See following slides

i, TS(“Viterbi 9

School of Engineering

Alternate Signed Overflow Test

A&B A3 B3 S3 Cc3 Cc4 Vv
0 0 0 0
Both Positive 0 0
1 1 0 1
0 1 1 0
0 1
One Positive & 1 0 0 0
One Negative 0 1 1 0
1 0
1 0 0 0
0 0 1 1
Both Negative 1 1
1 1 1 0

e Check if Cin & Cout of MSB column are different

Overflow in Addition

* Overflow occurs when the result of the
addition cannot be represented with the given

number of bits.

e Tests for overflow:
— Unsigned: if Cout=1
—Signed:ifp+p=n or n+n=p

11 If unsigned If signed 01 If unsigned If signed
1101 (13) (-3) 0110 (6) (6)

+ 0100 (4) (4) + 0101 (5) (5)
0001 (17) (+1) 1011 (11) (-5)
Overflow No Overflow No Overflow Overflow

Cout=1 n+p Cout=0 p+p=n

Overflow in Subtraction

* Overflow occurs when the result of the subtraction
cannot be represented with the given number of
bits.

* Tests for overflow:
— Unsigned: if Cout =0
— Signed: if additionisp+p=n or n+n=p
If unsigned If signed 0111

0111 (7) (7) :D 0111 A
- 1000 (8) (-8) 0111 7?scomp.ofB

(-1) (15) + 1 Add1
Desired 1111 (15) (-1)
Results If unsigned If signed

Overflow Overflow
Cout=0 p+p=n

Addition — Full Adders

e Use 1 Full Adder for each column of addition

0110
+ 0111
L b L L
1 Cauy a1 Cin [Cou, bt Cin [Caun {1 Cin [Cou, i Cin

Addition — Full Adders

* Connect bits of top number to X inputs

0110
+ 0111
N b b b
1 Cauy a1 Cin [Cou, bt Cin [Caun {1 Cin [Cou, i Cin

Addition — Full Adders

* Connect bits of bottom number to Y inputs

0110 = X
+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
D CoutAquC:Ie Cln (-"outAqud“er Cin COUtAquC:Ie Cln CoutAqudlé Cln
S S S S

Addition — Full Adders

* Be sure to connect first C;, to O

0110 = X
+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
D CoutAquC:Ie Cln (-"outAqud“er Cin COUtAquC:Ie Cln COUtAqudlér Cln — 0
S S S S

Addition — Full Adders

e Use 1 Full Adder for each column of addition

01100
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0 1
| | | | | | | |
X Y X Y X Y X Y
«E—CMFM'Cm - Gon P @, - Gan "W ’ Cou FUl c l—0
Add Adder Add Add
S S S S
v v v v

i, TS(“Viterbi)

School of Engineering

Performing Subtraction w/ Adders

e To subtract

0101 = X 0101
— Flip bits of Y - 0011 = Y) 4+ 1100
—Add 1 1101 1
0010
| | | | | | | |
X Y X Y X Y X Y
— ([e Gon P @, Gan "W Cou Ul -
Add Adder Add Add
S S S S

i, TS(“Viterbi

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X 0101
o - 0011 =y ™ + 1100
—Fllp bits of Y 1101 1
—Add 1 0010
0 0 1 1
0 1 0 1
! ?1 ! X ! % ! %
X Y X Y X Y X Y
—C Full C C Full C. | C Full C C Full C. |le—
OUtAdd N OUtAdder N OUtAdd N OUtAdd n
S S S S

i, TS(“Viterbi -«

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X
o - 0011 = Y
— F|Ip bits of Y 1101
—Add 1
0 0 1
0 1 0
| ?1 | % | ?0
X Y X Y X Y
—C Full C C Full C C Full C
OUtAdder In OUtAdd In OUtAdde In
S S S
! ! !

0101
=)+ 1100
1
0010
l ?
| 0
X

i, TS(“Viterbi

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X o) 0101
. - 0011 = Y + 1100
— Fllp bltS OfY 1101 1
—Add 1 0010
0 0 1 1
0 1 0 1
| Sgl | Sgl | ng | SK’

X Y X Y X Y X Y
<1—Cout e - Gon P @, - Gan "W - Cou Ul C 1= 1
Add Adder Add Add
S S S S
v v v v

XOR Gate Review

R P OO
R O O
OHHO|N

True if an odd # of inputs are true
2 input case: True if inputs are different

USC Viterbi <2

School of Engineering

XOR Conditional Inverter

* If one input to an XOR gate is O,
the other input is passed

* If one input to an XOR gate is 1,
the other input is inverted

 Use one input as a control input
which can conditionally pass or
invert the other input

|
O Pk O|N
<

<

— Ol O

(ko O

Control

Data yﬁa

0

Data yﬁa

1

Adder/Subtractor

* Using XOR gates
before one set of
adder inputs we can

— Selectively pass or

invert'Y
— Add an extra ‘1’ via ‘o ——D—L
the Carry-in v
e |f SUB/~ADD=0, Y2
— Z=X+Y v3
e |f SUB/~ADD=1, SUB/~ADD

— Z=X-Y

SUB/~ADD

K0 —
X1 —
K2 —
x3—

Al
Al
A2
A3

BO
B1
B
B3

4-bit Binary Adder

S0

83 52 51

—Z0

— 21

—Z3

—i Cd

Adder/Subtractor

e Exercise: Add appropriate
logic to produce

— C (unsigned overflow) SUB/~ADD
— V (signed overflow) flags 2
(assume we add a C3 %0 —IA0
output to the adder) X1—p1 5
X2—pz & @
X3—A3 -
= o
i}
£
YO _D— 0 & O
Y1 B1 3 ¥

Y2

B2
B3

Y3

C3

—Z0)

—Z1

22

—Z3

sSUB/~ADD

—iC4

i, TS(“Viterbi s

Complete the ALU
design given the
function table

OP[2:0]

000
001
011

100
110
Others

below

Z
X+Y
X-Y

SLT:
Z=1, if X<Y
Z=0, other

AND
OR
Z = und.

ALU Design

YO

Y1

Y2
Y3

X0 —
K1 —
X2 —

A[3:0]
co

4-bit Binary Adder

B[3:0]

5[3:0]

—{C4

ol
nl
X2
Y2

D
Y3
X0
Y0

1>
¥1
X2 D_
Y2

X3
Y3

—12(3.0 130

School of Engineering

10[3:0]
11[3:0]

Z[3:0]

13[3:0]
$150

NON-REQUIRED MATERIAL

* Since values in modern computers are many
bits, we use hexadecimal as a shorthand
notation (4 bits = 1 hex digit)

— 11010010 = D2 hex
—0111011011001011 = 76CB hex
* To interpret the value of a hex number, you

must know what underlying binary system is
assumed (unsigned, 2’s comp. etc.)

Translating Hexadecimal

* Hex place values (162, 161, 16°) can ONLY be used if
the number is positive.

* If hex represents unsigned binary simply apply hex
place values

— B2 hex = 11*16 + 2*16° = 178,
* If hex represents signed value (2’s comp.)

— First determine the sign to be pos. or neg.

e Convert the MS-hex digit to binary to determine the MSB (e.g. for
B2 hex, B=1011 so since the MSB=1, B2 is neg.)

* In general, hex values starting 0-7 = pos. / 8-F = neg.
— If pos., apply hex place values (as if it were unsigned)

— If neg., take the 16’s complement and apply hex place
values to find the neg. number’s magnitude

i, TS(“Viterbi 2

School of Engineering

Taking the 16’s Complement

* Taking the 2's complement of a binary number yields
its negative and is accomplished by finding the 1’s
complement (bit flip) and adding 1

* Taking the 16’s complement of a hex number yields
its negative and is accomplished by finding the 15’s
complement and adding 1

— 15’s complement is found by subtracting each digit of the
hex number from F

Original value B2: FF
- B2 Subtract each digit from F
4D 15’s comp. of B2

+ 1 Add1l
16’s comp. of B2: 4E 16’s comp. of B2

Translating Hexadecimal

e Given 6C hex

— If it is unsigned, apply hex place values
* 6C hex = 6*16% + 12*16° = 108,

—If it is signed...

* Determine the sign by looking at MSD
—0-7 hex has a 0 in the MSB [i.e. positive]
—8-F hex hasa 1in the MSB [i.e. negative]
— Thus, 6C (start with 6 which has a 0 in the MSB is
positive)
 Since it is positive, apply hex place values
—6Chex =6*16% + 12*16° = 108,

Translating Hexadecimal

e Given FE hex

— If it is unsigned, apply hex place values
* FE hex = 15*161 + 14*16° = 254,

—If it is signed...
* Determine sign => Negative

* Since it is negative, take 16’s complement and then
apply place values

— 16’s complement of FE =01 + 1 = 02 and apply place
values = 2

— Add in sign => -2 = FE hex

i, TS(“Viterbi

School of Engineering

Finding the Value of Hex Numbers

* B2 hex representing a signed (2’s comp.) value
— Step 1: Determine the sign: Neg.
— Step 2: Take the 16’s comp. to find magnitude
FF-B2 + 1 =4E hex
— Step 3: Apply hex place values (4E,, = +78,,)
— Step 4: Final value: B2 hex =-78,,
e 7C hex representing a signed (2’s comp.) value
— Step 1: Determine the sign: Pos.
— Step 2: Apply hex place values (7C,, = +124)
* 82 hex representing an unsigned value
— Step 1: Apply hex place values (82, = +130,,)

Hex Addition and Overflow

 Same rules as in binary
— Add left to right

— Drop any carry (carry occurs when sum > F ()

 Same addition overflow rules
— Unsigned: Check if final Cout =1
— Signed: Check signs of inputs and result

1 1 01 1

7TACS 6C12
+ C18A + 549F

3C4F Ifunsigned Ifsigned COBR1

Overflow No Overflow
Cout=1 p+n

If unsigned If signed

No Overflow Overflow
Cout=0 p+p=n

i, TS(“Viterbi

School of Engineering

Hex Subtraction and Overflow

 Same rules as in binary
— ConvertA—B to A+ Comp.ofB
— Drop any final carry out
 Same subtraction overflow rules
— Unsigned: Check if final Cout =0
— Signed: Check signs of addition inputs and result

1 0
If unsigned If unsigned
BLED |:> B1ED No_Overflow 0001 |:> 0001 Overflow
- 7T6FE 8901 Cout =1 - 0002 FEFFD Cout=0
+ 1 + 1
3AEF If signed FFFF If signed
Overflow No Overflow

n+n=p p+n

- USCViterbi ‘
Credits

e These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

	Slide 1: EE 457 Unit 2
	Slide 2: Signed and Unsigned Systems
	Slide 3: Signed Systems
	Slide 4: Unsigned and Signed Variables
	Slide 5: 2’s Complement System
	Slide 6: Zero and Sign Extension
	Slide 7: Zero and Sign Truncation
	Slide 8: Arithmetic & Sign
	Slide 9: Unsigned and Signed Arithmetic
	Slide 10: Unsigned and Signed Subtraction
	Slide 11: Overflow
	Slide 12: Unsigned Overflow
	Slide 13: 2’s Complement Overflow
	Slide 14: Testing for Overflow
	Slide 15: Alternate Signed Overflow Test
	Slide 16: Overflow in Addition
	Slide 17: Overflow in Subtraction
	Slide 18: Addition – Full Adders
	Slide 19: Addition – Full Adders
	Slide 20: Addition – Full Adders
	Slide 21: Addition – Full Adders
	Slide 22: Addition – Full Adders
	Slide 23: Performing Subtraction w/ Adders
	Slide 24: Performing Subtraction w/ Adders
	Slide 25: Performing Subtraction w/ Adders
	Slide 26: Performing Subtraction w/ Adders
	Slide 27: XOR Gate Review
	Slide 28: XOR Conditional Inverter
	Slide 29: Adder/Subtractor
	Slide 30: Adder/Subtractor
	Slide 31: ALU Design
	Slide 32: NON-REQUIRED Material
	Slide 33: Hexadecimal Representation
	Slide 34: Translating Hexadecimal
	Slide 35: Taking the 16’s Complement
	Slide 36: Translating Hexadecimal
	Slide 37: Translating Hexadecimal
	Slide 38: Finding the Value of Hex Numbers
	Slide 39: Hex Addition and Overflow
	Slide 40: Hex Subtraction and Overflow
	Slide 41: Credits

