

EE 457 Unit 2

Fixed Point Systems and Arithmetic

Unsigned 2's Complement

Sign and Zero Extension

Hexadecimal Representation

SIGNED AND UNSIGNED SYSTEMS

Signed Systems

3

- Several systems have been used
 - 2's complement system
 - 1's complement system
 - Sign and magnitude

Unsigned and Signed Variables

 Unsigned variables use unsigned binary (normal power-of-2 place values) to represent numbers

1	0	0	1	0	0	1	1	= +147
128	64	32	16	8	4	2	1	

School of Engineering

 Signed variables use the 2's complement system (Neg. MSB weight) to represent numbers

$$\frac{1}{-128} \quad \frac{0}{64} \quad \frac{0}{32} \quad \frac{1}{16} \quad \frac{0}{8} \quad \frac{0}{4} \quad \frac{1}{2} \quad \frac{1}{1} \quad = -109$$

2's Complement System

5

- MSB has negative weight
- MSB determines sign of the number
 - -1 = negative
 - 0 = positive
- To take the negative of a number (e.g. -7 => +7 or +2 => -2), requires *taking the complement*
 - 2's complement of a # is found by flipping bits and adding
 1

1001
$$x = -7$$

0110 Bit flip (1's comp.)
+ 1 Add 1
0111 $-x = -(-7) = +7$

 Extension is the process of increasing the number of bits used to represent a number without changing its value

Unsigned = Zero Extension (Always add leading 0's):

111011 = 00111011

Increase a 6-bit number to 8-bit number by zero extending

2's complement = Sign Extension (Replicate sign bit):

pos. 011010 = 00011010neg. 110011 = 1110011

Sign bit is just repeated as many times as necessary

Zero and Sign Truncation

 Truncation is the process of decreasing the number of bits used to represent a number without changing its value

Unsigned = Zero Truncation (Remove leading 0's):

QQ111011 = 111011

Decrease an 8-bit number to 6-bit number by truncating 0's. Can't remove a '1' because value is changed

School of Engineering

2's complement = Sign Truncation (Remove copies of sign bit):

pos. **200**11010 = 011010

neg. 1110011 = 10011

Any copies of the MSB can be removed without changing the numbers value. Be careful not to change the sign by cutting off ALL the sign bits.

Arithmetic & Sign

- You learned the addition (carry-method) and subtraction (borrow-method) algorithms in grade school
- Consider A + B...do you definitely use the addition algorithm?
 - Not if A=5, B=(-2)...5 + (-2) = 5 2 = 3
 - What if A=(2), B=(-5)?
 - Can't perform 2-5
 - Flip operands and keep sign of larger
 - 5 − 2 = 3 => Apply sign of larger mag. operand => -3
- Human add/sub algorithm depends on sign!!

Unsigned and Signed Arithmetic

- Addition/subtraction process <u>is the same</u> for both unsigned and signed numbers
 - Add columns right to left
 - Drop any final carry out
- This is the KEY reason we use 2's complement system to represent signed numbers
- Examples:

	1 1	If unsigned	If signed
	1001	(9)	(-7)
+	0011	(3)	(3)
	1100	(12)	(-4)

Unsigned and Signed Subtraction

- Subtraction process is the same for both unsigned and signed numbers
 - Convert A B to A + Comp. of B
 - Drop any final carry out
- Examples:

	<u>lf</u>	unsigned	<u>If signed</u>	11 1		
11	00	(12)	(-4)	1100	, A	
- 00	10	(2)	(2)	1101	1's comp.	of B
				+ 1	Add 1	
				1010	(10)	(-6)
					<u>If unsigned</u>	<u>If signed</u>

Overflow

11

- Overflow occurs when the result of an arithmetic operation is too large to be represented with the given number of bits
 - Unsigned overflow (C) occurs when adding or subtracting unsigned numbers
 - Signed (2's complement overflow) overflow (V)
 occurs when adding or subtracting 2's
 complement numbers

Unsigned Overflow

School of Engineering

2's Complement Overflow

Overflow occurs when you cross this discontinuity

Testing for Overflow

- Most fundamental test
 - Check if answer is wrong (i.e. Positive + Positive yields a negative)
- Unsigned overflow (C) test
 - If carry-out of final position equals '1'
- Signed (2's complement) overflow (V) test
 - Only occurs if two positives are added and result is negative or two negatives are added and result is positive
 - Alternate test: See following slides

School of Engineering

15

Alternate Signed Overflow Test

A & B	A3	B3	S3	C3	C4	V
Both Positive	0	0	0	0	0	0
			1	1	0	1
	0	1	0	1	1	0
One Positive &			1	0	0	0
One Negative	1	0	0	1	1	0
			1	0	0	0
Doth Negative		1	0	0	1	1
Both Negative	1		1	1	1	0

• Check if Cin & Cout of MSB column are different

Overflow in Addition

16

- Overflow occurs when the result of the addition cannot be represented with the given number of bits.
- Tests for overflow:
 - Unsigned: if Cout = 1
 - Signed: if p + p = n or n + n = p

	1 1	<u>If unsigned</u>	If signed	<mark>0</mark> 1	<u>If unsigned</u>	If signed
	1 101	(13)	(-3)	<mark>0</mark> 110	(6)	(6)
+	0100	(4)	(4)	<u>+ 0101</u>	(5)	(5)
	0001	(17)	(+1)	1 011	(11)	(-5)
		Overflow Cout = 1	No Overflow n + p		No Overflow Cout = 0	<u>Overflow</u> p + p = n

Overflow in Subtraction

17

- Overflow occurs when the result of the subtraction cannot be represented with the given number of bits.
- Tests for overflow:
 - Unsigned: if Cout = 0
 - Signed: if addition is p + p = n or n + n = p

	<u>lf unsigned</u>	<u>If signed</u>	011	.1		
0111	(7)	(7)	01	.11	Α	
- 1000	(8)	(-8)	01	.11	1's comp.	of B
	(-1)	(15)	+	1	Add 1	
	De	<u>esired</u>	11	.11	(15)	(-1)
	<u>Re</u>	<u>esults</u>		<u>I</u> 1	f unsigned	<u>If signed</u>
					Overflow Cout = 0	Overflow p + p = n

0110

• Use 1 Full Adder for each column of addition

0110

• Connect bits of top number to X inputs

• Connect bits of bottom number to Y inputs

0110 = X+ 0111 = Y

School of Engineering

Addition – Full Adders

• Be sure to connect first C_{in} to 0

0110 = X+ 0111 = Y

 Use 1 Full Adder for each column of addition 01100

0110 = X

+ 0111 = Y

1101

School of Engineering

• To subtract - Flip bits of Y - Add 1 0101 = X 0101 = X 0101 = Y

24

School of Engineering

• To subtract - Flip bits of Y - Add 1 0101 = X 1101 = Y 0101 + 100 0101 = Y 0101 + 1000010

- To subtract - Flip bits of Y - Add 1 0101 = X 1101 = Y 0101 + 1100
 - Х Х Х Х Y Y Y Y Full C_{in} Cout Adder Full Cout Adder Full C_{in} Cout Adder Full Cin Cout Adder Cin S S S S

• To subtract - Flip bits of Y - Add 1 0101 = X - 0011 = Y 1101 = Y 0101 + 1100

XOR Gate Review

XOR

 $Z = X \oplus Y$

Х	Y	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

True if an odd # of inputs are true <u>2 input case</u>: True if inputs are different

XOR Conditional Inverter

- If one input to an XOR gate is 0, the other input is passed
- If one input to an XOR gate is 1, the other input is inverted
- Use one input as a control input which can conditionally pass or invert the other input

Adder/Subtractor

- Using XOR gates before one set of adder inputs we can
 - Selectively pass or invert Y
 - Add an extra '1' via the Carry-in
- If SUB/~ADD=0,
 Z = X+Y
- If SUB/~ADD=1,
 Z = X-Y

29

Adder/Subtractor

30

- Exercise: Add appropriate logic to produce
 - C (unsigned overflow)
 - V (signed overflow) flags
 (assume we add a C3
 output to the adder)

ALU Design

31

/iterl

School of Engineering

NON-REQUIRED MATERIAL

Hexadecimal Representation

33

- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
 - 11010010 = D2 hex
 - 0111011011001011 = 76CB hex
- To interpret the value of a hex number, you must know what underlying binary system is assumed (unsigned, 2's comp. etc.)

Translating Hexadecimal

34

School of Engineering

- Hex place values (16², 16¹, 16⁰) can ONLY be used if the number is positive.
- If hex represents unsigned binary simply apply hex place values

- B2 hex = 11*16¹ + 2*16⁰ = 178₁₀

- If hex represents signed value (2's comp.)
 - First determine the sign to be pos. or neg.
 - Convert the MS-hex digit to binary to determine the MSB (e.g. for B2 hex, B=1011 so since the MSB=1, B2 is neg.)
 - In general, hex values starting 0-7 = pos. / 8-F = neg.
 - If pos., apply hex place values (as if it were unsigned)
 - If neg., take the 16's complement and apply hex place values to find the neg. number's magnitude

Taking the 16's Complement

35

- Taking the 2's complement of a binary number yields its negative and is accomplished by finding the 1's complement (bit flip) and adding 1
- Taking the 16's complement of a hex number yields its negative and is accomplished by finding the 15's complement and adding 1
 - 15's complement is found by subtracting each digit of the hex number from $\rm F_{16}$

Original value B2:	FF	
	<u>- B2</u>	Subtract each digit from F
	4D	15's comp. of B2
	<u>+ 1</u>	Add 1
16's comp. of B2:	4E	16's comp. of B2

Translating Hexadecimal

- Given 6C hex
 - If it is unsigned, apply hex place values
 - 6C hex = $6*16^1 + 12*16^0 = 108_{10}$
 - -If it is signed...
 - Determine the sign by looking at MSD
 - -0-7 hex has a 0 in the MSB [i.e. positive]
 - -8-F hex has a 1 in the MSB [i.e. negative]
 - Thus, 6C (start with 6 which has a 0 in the MSB is positive)
 - Since it is positive, apply hex place values

 $-6C hex = 6*16^{1} + 12*16^{0} = 108_{10}$

36

Translating Hexadecimal

- Given FE hex
 - If it is unsigned, apply hex place values
 - FE hex = $15*16^1 + 14*16^0 = 254_{10}$
 - -If it is signed...
 - Determine sign => Negative
 - Since it is negative, take 16's complement and then apply place values
 - 16's complement of FE = 01 + 1 = 02 and apply place values = 2

- Add in sign => -2 = FE hex

37

Finding the Value of Hex Numbers

38

School of Engineering

- B2 hex representing a signed (2's comp.) value
 - Step 1: Determine the sign: Neg.
 - Step 2: Take the 16's comp. to find magnitude
 FF B2 + 1 = 4E hex
 - Step 3: Apply hex place values ($4E_{16} = +78_{10}$)
 - Step 4: Final value: B2 hex = -78_{10}
- 7C hex representing a signed (2's comp.) value
 Step 1: Determine the sign: Pos.
 - Step 2: Apply hex place values ($7C_{16} = +124_{10}$)
- 82 hex representing an unsigned value

- Step 1: Apply hex place values ($82_{16} = +130_{10}$)

Hex Addition and Overflow

39

- Same rules as in binary
 - Add left to right
 - Drop any carry (carry occurs when sum > F_{16})
- Same addition overflow rules
 - Unsigned: Check if final Cout = 1
 - Signed: Check signs of inputs and result

<mark>1</mark> 1		011		
7 AC5		6C12		
+ <u>C</u> 18A		<u>+ 5</u> 49F		
3C4F	If unsigned If signed Overflow No Overflow	C 0B1	<u>lf unsigned</u> No Overflow	<u>lf signed</u> Overflow
	$Cout = 1 \qquad p + n$		Cout = 0	

Hex Subtraction and Overflow

40

- Same rules as in binary
 - Convert A B to A + Comp. of B
 - Drop any final carry out
- Same subtraction overflow rules
 - Unsigned: Check if final Cout = 0
 - Signed: Check signs of addition inputs and result

41

School of Engineering

 These slides were derived from Gandhi Puvvada's EE 457 Class Notes