
1

EE 457 Unit 2

Fixed Point Systems and Arithmetic

2

SIGNED AND UNSIGNED SYSTEMS

Unsigned

2’s Complement

Sign and Zero Extension

Hexadecimal Representation

3

Signed Systems

• Several systems have been used

– 2’s complement system

– 1’s complement system

– Sign and magnitude

4

Unsigned and Signed Variables

• Unsigned variables use unsigned binary (normal
power-of-2 place values) to represent numbers

• Signed variables use the 2’s complement system
(Neg. MSB weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = +147

-128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = -109

5

2’s Complement System

• MSB has negative weight

• MSB determines sign of the number
– 1 = negative

– 0 = positive

• To take the negative of a number
(e.g. -7 => +7 or +2 => -2), requires taking the
complement
– 2’s complement of a # is found by flipping bits and adding

1

1001

0110

+ 1
0111

x = -7

Bit flip (1’s comp.)

Add 1

-x = -(-7) = +7

6

Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit

number by zero extending

Sign bit is just repeated as

many times as necessary

• Extension is the process of increasing the number of bits used
to represent a number without changing its value

7

Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit

number by truncating 0’s. Can’t

remove a ‘1’ because value is changed

Any copies of the MSB can be

removed without changing the

numbers value. Be careful not to

change the sign by cutting off

ALL the sign bits.

8

Arithmetic & Sign

• You learned the addition (carry-method) and
subtraction (borrow-method) algorithms in grade
school

• Consider A + B…do you definitely use the addition
algorithm?

– Not if A=5, B=(-2)…5 + (-2) = 5 – 2 = 3

– What if A=(2), B=(-5)?

– Can’t perform 2-5

– Flip operands and keep sign of larger
• 5 – 2 = 3 => Apply sign of larger mag. operand => -3

• Human add/sub algorithm depends on sign!!

9

Unsigned and Signed Arithmetic

• Addition/subtraction process is the same for
both unsigned and signed numbers
– Add columns right to left

– Drop any final carry out

• This is the KEY reason we use 2’s complement
system to represent signed numbers

• Examples:

1001

+ 0011

1100

11

(9)

(3)

(12)

(-7)

(3)

(-4)

If unsigned If signed

10

Unsigned and Signed Subtraction

• Subtraction process is the same for both
unsigned and signed numbers
– Convert A – B to A + Comp. of B

– Drop any final carry out

• Examples:

(12)

(2)

(-4)

(2)

If unsigned If signed

1100

- 0010

11_1_

1100

1101

+ 1

1010

1’s comp. of B

Add 1

A

If unsigned If signed

(10) (-6)

11

Overflow

• Overflow occurs when the result of an
arithmetic operation is too large to be
represented with the given number of bits

– Unsigned overflow (C) occurs when adding or
subtracting unsigned numbers

– Signed (2’s complement overflow) overflow (V)
occurs when adding or subtracting 2’s
complement numbers

12

Unsigned Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8
+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross

this discontinuity

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we

can only represent 0 – 15. Thus,

we say overflow has occurred.

4 - 6 = 14

13

2’s Complement Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8
-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this

discontinuity

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent

-8 to +7. Thus, we say overflow

has occurred.

5 + 7 = +12

14

Testing for Overflow

• Most fundamental test
– Check if answer is wrong (i.e. Positive + Positive yields a

negative)

• Unsigned overflow (C) test
– If carry-out of final position equals ‘1’

• Signed (2’s complement) overflow (V) test
– Only occurs if two positives are added and result is

negative or two negatives are added and result is positive

– Alternate test: See following slides

15

Alternate Signed Overflow Test

• Check if Cin & Cout of MSB column are different

A & B A3 B3 S3 C3 C4 V

Both Positive 0 0
0 0 0 0

1 1 0 1

One Positive &
One Negative

0 1
0 1 1 0

1 0 0 0

1 0
0 1 1 0

1 0 0 0

Both Negative 1 1
0 0 1 1

1 1 1 0

16

Overflow in Addition

• Overflow occurs when the result of the
addition cannot be represented with the given
number of bits.

• Tests for overflow:
– Unsigned: if Cout = 1

– Signed: if p + p = n or n + n = p

1101

+ 0100

0001

11

(13)

(4)

(17)

(-3)

(4)

(+1)

If unsigned If signed

Overflow

Cout = 1

No Overflow

n + p

0110

+ 0101

1011

10

(6)

(5)

(11)

(6)

(5)

(-5)

If unsigned If signed

No Overflow

Cout = 0

Overflow

p + p = n

17

Overflow in Subtraction

• Overflow occurs when the result of the subtraction
cannot be represented with the given number of
bits.

• Tests for overflow:
– Unsigned: if Cout = 0

– Signed: if addition is p + p = n or n + n = p

(7)

(8)

(-1)

(7)

(-8)

(15)

If unsigned If signed

0111

- 1000

0111_

0111

0111

+ 1

1111

1’s comp. of B

Add 1

A

If unsigned

Overflow

Cout = 0

If signed

Overflow

p + p = n

(15) (-1)Desired

Results

18

Addition – Full Adders

• Use 1 Full Adder for each column of addition

0110

+ 0111

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

19

Addition – Full Adders

• Connect bits of top number to X inputs

0110

+ 0111

Full

Adder

X Y

Cin

S

Cout

0

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

110

20

Addition – Full Adders

• Connect bits of bottom number to Y inputs

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

21

Addition – Full Adders

• Be sure to connect first Cin to 0

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

0

22

Addition – Full Adders

• Use 1 Full Adder for each column of addition

0110

+ 0111

1101

= X

= Y

01100

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

23

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

24

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

25

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

1

26

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

1

0100

1 101

27

XOR Gate Review

XOR

Z
X

Y

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

YXZ =

True if an odd # of inputs are true

2 input case: True if inputs are different

28

XOR Conditional Inverter

• If one input to an XOR gate is 0,
the other input is passed

• If one input to an XOR gate is 1,
the other input is inverted

• Use one input as a control input
which can conditionally pass or
invert the other input

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

Y

Y

29

Adder/Subtractor

• Using XOR gates
before one set of
adder inputs we can

– Selectively pass or
invert Y

– Add an extra ‘1’ via
the Carry-in

• If SUB/~ADD=0,

– Z = X+Y

• If SUB/~ADD=1,

– Z = X-Y

30

Adder/Subtractor

• Exercise: Add appropriate
logic to produce

– C (unsigned overflow)

– V (signed overflow) flags
(assume we add a C3
output to the adder)

C3

31

ALU Design

Complete the ALU
design given the

function table
below

OP[2:0] Z

000 X+Y

001 X-Y

011 SLT:
Z=1, if X<Y
Z=0, other

100 AND

110 OR

Others Z = und.

V

32

NON-REQUIRED MATERIAL

33

Hexadecimal Representation

• Since values in modern computers are many
bits, we use hexadecimal as a shorthand
notation (4 bits = 1 hex digit)
– 11010010 = D2 hex

– 0111011011001011 = 76CB hex

• To interpret the value of a hex number, you
must know what underlying binary system is
assumed (unsigned, 2’s comp. etc.)

34

Translating Hexadecimal

• Hex place values (162, 161, 160) can ONLY be used if
the number is positive.

• If hex represents unsigned binary simply apply hex
place values
– B2 hex = 11*161 + 2*160 = 17810

• If hex represents signed value (2’s comp.)
– First determine the sign to be pos. or neg.

• Convert the MS-hex digit to binary to determine the MSB (e.g. for
B2 hex, B=1011 so since the MSB=1, B2 is neg.)

• In general, hex values starting 0-7 = pos. / 8-F = neg.

– If pos., apply hex place values (as if it were unsigned)
– If neg., take the 16’s complement and apply hex place

values to find the neg. number’s magnitude

35

Taking the 16’s Complement

• Taking the 2’s complement of a binary number yields
its negative and is accomplished by finding the 1’s
complement (bit flip) and adding 1

• Taking the 16’s complement of a hex number yields
its negative and is accomplished by finding the 15’s
complement and adding 1

– 15’s complement is found by subtracting each digit of the
hex number from F16

FF

- B2

4D

+ 1
4E

Subtract each digit from F

15’s comp. of B2

Add 1

16’s comp. of B2

Original value B2:

16’s comp. of B2:

36

Translating Hexadecimal

• Given 6C hex
– If it is unsigned, apply hex place values

• 6C hex = 6*161 + 12*160 = 10810

– If it is signed…
• Determine the sign by looking at MSD

– 0-7 hex has a 0 in the MSB [i.e. positive]
– 8-F hex has a 1 in the MSB [i.e. negative]
– Thus, 6C (start with 6 which has a 0 in the MSB is

positive)

• Since it is positive, apply hex place values
– 6C hex = 6*161 + 12*160 = 10810

37

Translating Hexadecimal

• Given FE hex
– If it is unsigned, apply hex place values

• FE hex = 15*161 + 14*160 = 25410

– If it is signed…
• Determine sign => Negative
• Since it is negative, take 16’s complement and then

apply place values
– 16’s complement of FE = 01 + 1 = 02 and apply place

values = 2
– Add in sign => -2 = FE hex

38

Finding the Value of Hex Numbers

• B2 hex representing a signed (2’s comp.) value
– Step 1: Determine the sign: Neg.
– Step 2: Take the 16’s comp. to find magnitude

FF - B2 + 1 = 4E hex
– Step 3: Apply hex place values (4E16 = +7810)
– Step 4: Final value: B2 hex = -7810

• 7C hex representing a signed (2’s comp.) value
– Step 1: Determine the sign: Pos.
– Step 2: Apply hex place values (7C16 = +12410)

• 82 hex representing an unsigned value
– Step 1: Apply hex place values (8216 = +13010)

39

Hex Addition and Overflow

• Same rules as in binary
– Add left to right

– Drop any carry (carry occurs when sum > F16)

• Same addition overflow rules
– Unsigned: Check if final Cout = 1

– Signed: Check signs of inputs and result

7AC5

+ C18A

3C4F

11

If unsigned If signed

Overflow

Cout = 1

No Overflow

p + n

6C12

+ 549F

C0B1

10

If unsigned If signed

No Overflow

Cout = 0

Overflow

p + p = n

1

40

Hex Subtraction and Overflow

• Same rules as in binary
– Convert A – B to A + Comp. of B

– Drop any final carry out

• Same subtraction overflow rules
– Unsigned: Check if final Cout = 0

– Signed: Check signs of addition inputs and result

B1ED

- 76FE

B1ED

8901

+ 1

3AEF

If unsigned

No Overflow

Cout = 1

If signed

Overflow

n + n = p

1

0001

- 0002

0001

FFFD

+ 1

FFFF

If unsigned

Overflow

Cout = 0

If signed

No Overflow

p + n

0

41

Credits

• These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

	Slide 1: EE 457 Unit 2
	Slide 2: Signed and Unsigned Systems
	Slide 3: Signed Systems
	Slide 4: Unsigned and Signed Variables
	Slide 5: 2’s Complement System
	Slide 6: Zero and Sign Extension
	Slide 7: Zero and Sign Truncation
	Slide 8: Arithmetic & Sign
	Slide 9: Unsigned and Signed Arithmetic
	Slide 10: Unsigned and Signed Subtraction
	Slide 11: Overflow
	Slide 12: Unsigned Overflow
	Slide 13: 2’s Complement Overflow
	Slide 14: Testing for Overflow
	Slide 15: Alternate Signed Overflow Test
	Slide 16: Overflow in Addition
	Slide 17: Overflow in Subtraction
	Slide 18: Addition – Full Adders
	Slide 19: Addition – Full Adders
	Slide 20: Addition – Full Adders
	Slide 21: Addition – Full Adders
	Slide 22: Addition – Full Adders
	Slide 23: Performing Subtraction w/ Adders
	Slide 24: Performing Subtraction w/ Adders
	Slide 25: Performing Subtraction w/ Adders
	Slide 26: Performing Subtraction w/ Adders
	Slide 27: XOR Gate Review
	Slide 28: XOR Conditional Inverter
	Slide 29: Adder/Subtractor
	Slide 30: Adder/Subtractor
	Slide 31: ALU Design
	Slide 32: NON-REQUIRED Material
	Slide 33: Hexadecimal Representation
	Slide 34: Translating Hexadecimal
	Slide 35: Taking the 16’s Complement
	Slide 36: Translating Hexadecimal
	Slide 37: Translating Hexadecimal
	Slide 38: Finding the Value of Hex Numbers
	Slide 39: Hex Addition and Overflow
	Slide 40: Hex Subtraction and Overflow
	Slide 41: Credits

