EE 457 Unit 2

Fixed Point Systems and Arithmetic

Unsigned
2's Complement
Sign and Zero Extension
Hexadecimal Representation

SIGNED AND UNSIGNED SYSTEMS

Signed Systems

- Several systems have been used
- 2's complement system
- 1's complement system
- Sign and magnitude

Unsigned and Signed Variables

- Unsigned variables use unsigned binary (normal power-of-2 place values) to represent numbers

$$
\frac{1}{128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=+147
$$

- Signed variables use the 2's complement system (Neg. MSB weight) to represent numbers

$$
\frac{1}{-128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=-109
$$

2's Complement System

- MSB has negative weight
- MSB determines sign of the number
- 1 = negative
- 0 = positive
- To take the negative of a number
(e.g. $-7=>+7$ or $+2=>-2$), requires taking the complement
- 2's complement of a \# is found by flipping bits and adding 1

$$
\begin{array}{rl}
1001 & x=-7 \\
0110 & \text { Bit flip (1's comp.) } \\
+\quad 1 & \text { Add 1 } \\
\hline 0111 & -x=-(-7)=+7
\end{array}
$$

Zero and Sign Extension

- Extension is the process of increasing the number of bits used to represent a number without changing its value

Unsigned $=$ Zero Extension (Always add leading 0’s):

2's complement $=$ Sign Extension $($ Replicate sign bit $):$

$$
\begin{array}{ll}
\text { pos. } & 011010=\hat{000} 11010 \\
\text { neg. } & 110011=\hat{111110011}
\end{array}
$$

Zero and Sign Truncation

- Truncation is the process of decreasing the number of bits used to represent a number without changing its value

Unsigned $=$ Zero Truncation (Remove leading 0's):

$$
\text { OQ111011 = } 111011
$$

Decrease an 8-bit number to 6-bit
number by truncating 0 's. Can't
remove a ' 1 ' because value is changed

2's complement $=$ Sign Truncation (Remove copies of sign bit):

$$
\begin{aligned}
& \text { pos. } \mathrm{Z} 0011010=011010 \\
& \text { neg. } \overline{\text { º } 10011=10011}
\end{aligned}
$$

Any copies of the MSB can be removed without changing the numbers value. Be careful not to change the sign by cutting off ALL the sign bits.

Arithmetic \& Sign

- You learned the addition (carry-method) and subtraction (borrow-method) algorithms in grade school
- Consider A + B...do you definitely use the addition algorithm?
- Not if $A=5, B=(-2) \ldots 5+(-2)=5-2=3$
- What if $A=(2), B=(-5)$?
- Can't perform 2-5
- Flip operands and keep sign of larger
- 5-2 = 3 => Apply sign of larger mag. operand => -3
- Human add/sub algorithm depends on sign!!

Unsigned and Signed Arithmetic

- Addition/subtraction process is the same for both unsigned and signed numbers
- Add columns right to left
- Drop any final carry out
- This is the KEY reason we use 2's complement system to represent signed numbers
- Examples:

$$
\begin{array}{rrr}
11 & \text { If unsigned } \frac{\text { If signed }}{} \\
1001 & (9) & (-7) \\
+\quad 0011 & (3) & (3) \\
\hline 1100 & (12) & (-4)
\end{array}
$$

Unsigned and Signed Subtraction

- Subtraction process is the same for both unsigned and signed numbers
- Convert A - B to A + Comp. of B
- Drop any final carry out
- Examples:

Overflow

- Overflow occurs when the result of an arithmetic operation is too large to be represented with the given number of bits
- Unsigned overflow (C) occurs when adding or subtracting unsigned numbers
- Signed (2's complement overflow) overflow (V) occurs when adding or subtracting 2's complement numbers

Unsigned Overflow

Overflow occurs when you cross
this discontinuity

$$
\begin{gathered}
10+7=17 \\
4-6=14
\end{gathered}
$$

With 4-bit unsigned numbers we can only represent $0-15$. Thus, we say overflow has occurred.

2's Complement Overflow

$$
\begin{gathered}
5+7=+12 \\
-6+-4=-10
\end{gathered}
$$

With 4-bit 2's complement numbers we can only represent -8 to +7 . Thus, we say overflow has occurred.

Overflow occurs when you cross this discontinuity

Testing for Overflow

- Most fundamental test
- Check if answer is wrong (i.e. Positive + Positive yields a negative)
- Unsigned overflow (C) test
- If carry-out of final position equals ' 1 '
- Signed (2's complement) overflow (V) test
- Only occurs if two positives are added and result is negative or two negatives are added and result is positive
- Alternate test: See following slides

Alternate Signed Overflow Test

A \& B	A3	B3	S3	C3	C4	V
Both Positive	0	0	0	0	0	0
			1	1	0	1
One Positive \&	0	1	0	1	1	0
One Negative	1	0	0	1	1	0
		0	1	0	0	0
Both Negative	1	1	0	0	1	1
			1	1	1	0

- Check if Cin \& Cout of MSB column are different

Overflow in Addition

- Overflow occurs when the result of the addition cannot be represented with the given number of bits.
- Tests for overflow:
- Unsigned: if Cout = 1
- Signed: if $\mathrm{p}+\mathrm{p}=\mathrm{n}$ or $\mathrm{n}+\mathrm{n}=\mathrm{p}$

11	If unsigned	If signed	01	If unsigned	If signed
1101	(13)	(-3)	0110	(6)	(6)
+ 0100	(4)	(4)	+ 0101	(5)	(5)
0001	(17)	$(+1)$	1011	(11)	(-5)
	Overflow	No Overflow		No Overflow	Overflow
	Cout $=1$	$n+p$		Cout $=0$	$p+p=n$

Overflow in Subtraction

- Overflow occurs when the result of the subtraction cannot be represented with the given number of bits.
- Tests for overflow:
- Unsigned: if Cout = 0
- Signed: if addition is $p+p=n$ or $n+n=p$

Addition - Full Adders

- Use 1 Full Adder for each column of addition

$$
\begin{array}{r}
0110 \\
+\quad 0111
\end{array}
$$

Addition - Full Adders

- Connect bits of top number to X inputs

> 0110
> $+\quad 0111$

Addition - Full Adders

- Connect bits of bottom number to Y inputs

$$
\begin{array}{r}
0110=X \\
+0111=Y
\end{array}
$$

Addition - Full Adders

- Be sure to connect first $\mathrm{C}_{\text {in }}$ to 0

$$
\begin{array}{r}
0110=X \\
+0111=Y
\end{array}
$$

Addition - Full Adders

- Use 1 Full Adder for each column of addition

$$
\begin{array}{r}
01100 \\
0110=X \\
+\quad 0111=Y
\end{array}
$$

Performing Subtraction w/ Adders

- To subtract
- Flip bits of Y
- Add 1

$$
\begin{array}{r}
0101=X \\
-0011=Y \quad \boxtimes \quad \begin{array}{r}
0101 \\
+1100 \\
\hline 1101 \\
\hline
\end{array} \begin{array}{r}
1 \\
\hline 0010
\end{array}
\end{array}
$$

Performing Subtraction w/ Adders

- To subtract
- Flip bits of Y
- Add 1

Performing Subtraction w/ Adders

- To subtract

Performing Subtraction w/ Adders

- To subtract

XOR Gate Review

$$
Z=X \oplus Y
$$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

True if an odd \# of inputs are true $\underline{2}$ input case: True if inputs are different

XOR Conditional Inverter

- If one input to an XOR gate is 0 , the other input is passed
- If one input to an XOR gate is 1 , the other input is inverted
- Use one input as a control input which can conditionally pass or invert the other input

X	Y	Z	
0	0	0	
0	1	1	Y
1	0	1	$\overline{\mathrm{Y}}$
1	1	0	

Adder/Subtractor

- Using XOR gates before one set of adder inputs we can
- Selectively pass or invert Y
- Add an extra '1' via the Carry-in
- If $S U B / \sim A D D=0$,
$-Z=X+Y$
- If $S U B / \sim A D D=1$,

$-Z=X-Y$

Adder/Subtractor

- Exercise: Add appropriate logic to produce
- C (unsigned overflow)
- V (signed overflow) flags (assume we add a C3 output to the adder)

ALU Design

Complete the ALU design given the function table below
OP[2:0] Z

000	$X+Y$
001	$X-Y$
011	SLT:

	$\begin{aligned} & Z=1 \text {, if } X<Y \\ & Z=0 \text {, other } \end{aligned}$	$\bar{\circ}$	
100	AND		-
110	OR		$\times 0-$
Others	$\mathrm{Z}=$ und.		-

NON-REQUIRED MATERIAL

Hexadecimal Representation

- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
-11010010 = D2 hex
$-0111011011001011=76 \mathrm{CB}$ hex
- To interpret the value of a hex number, you must know what underlying binary system is assumed (unsigned, 2's comp. etc.)

Translating Hexadecimal

- Hex place values $\left(16^{2}, 16^{1}, 16^{0}\right)$ can ONLY be used if the number is positive.
- If hex represents unsigned binary simply apply hex place values
-B 2 hex $=11^{*} 16^{1}+2^{*} 16^{0}=178_{10}$
- If hex represents signed value (2 's comp.)
- First determine the sign to be pos. or neg.
- Convert the MS-hex digit to binary to determine the MSB (e.g. for $B 2$ hex, $B=1011$ so since the $M S B=1, B 2$ is neg.)
- In general, hex values starting 0-7 = pos. / 8-F = neg.
- If pos., apply hex place values (as if it were unsigned)
- If neg., take the 16's complement and apply hex place values to find the neg. number's magnitude

Taking the 16 's Complement

- Taking the 2's complement of a binary number yields its negative and is accomplished by finding the 1's complement (bit flip) and adding 1
- Taking the 16 's complement of a hex number yields its negative and is accomplished by finding the 15's complement and adding 1
- 15's complement is found by subtracting each digit of the hex number from F_{16}

Original value B2:	FF	
	$\frac{-B 2}{4 D}$	Subtract each digit from F
	15's comp. of B2	
	$+\quad 1$	Add 1
16's comp. of B2:	4 E	16's comp. of B2

Translating Hexadecimal

- Given 6C hex
- If it is unsigned, apply hex place values
- 6 C hex $=6^{*} 16^{1}+12^{*} 16^{0}=108_{10}$
- If it is signed...
- Determine the sign by looking at MSD
$-0-7$ hex has a 0 in the MSB [i.e. positive]
-8-F hex has a 1 in the MSB [i.e. negative]
- Thus, 6C (start with 6 which has a 0 in the MSB is positive)
- Since it is positive, apply hex place values

$$
-6 \mathrm{C} \text { hex }=6^{*} 16^{1}+12^{*} 16^{0}=108_{10}
$$

Translating Hexadecimal

- Given FE hex
- If it is unsigned, apply hex place values
- FE hex $=15^{*} 16^{1}+14^{*} 16^{0}=254_{10}$
-If it is signed...
- Determine sign => Negative
- Since it is negative, take 16's complement and then apply place values
-16's complement of $\mathrm{FE}=01+1=02$ and apply place values = 2
- Add in sign => -2 = FE hex

Finding the Value of Hex Numbers

- B2 hex representing a signed (2's comp.) value
- Step 1: Determine the sign: Neg.
- Step 2: Take the 16's comp. to find magnitude

$$
\text { FF - B2 + } 1=4 E \text { hex }
$$

- Step 3: Apply hex place values $\left(4 \mathrm{E}_{16}=+78_{10}\right)$
- Step 4: Final value: B2 hex $=-78_{10}$
- 7C hex representing a signed (2's comp.) value
- Step 1: Determine the sign: Pos.
- Step 2: Apply hex place values $\left(7 C_{16}=+124_{10}\right)$
- 82 hex representing an unsigned value
- Step 1: Apply hex place values $\left(82_{16}=+130_{10}\right)$

Hex Addition and Overflow

- Same rules as in binary
- Add left to right
- Drop any carry (carry occurs when sum > F_{16})
- Same addition overflow rules
- Unsigned: Check if final Cout = 1
- Signed: Check signs of inputs and result

1		
$7 \mathbf{A C} 5$		
$+\quad \mathbf{C 1 8 A}$		
$3 \mathbf{C 4 F}$	If unsigned Overflow Cout $=1$	If signed No Overflow $p+n$

$01 \quad 1$		
6 C 12		
$+\quad 5 \mathbf{4 9 F}$		
C0B1	If unsigned No Overflow Cout $=0$	If signed Overflow $p+p=n$

Hex Subtraction and Overflow

- Same rules as in binary
- Convert A - B to $A+$ Comp. of B
- Drop any final carry out
- Same subtraction overflow rules
- Unsigned: Check if final Cout = 0
- Signed: Check signs of addition inputs and result

Credits

- These slides were derived from Gandhi Puvvada's EE 457 Class Notes

