EE 357 Unit 3

IEEE 754 Floating Point Representation Floating Point Arithmetic

Floating Point

- Used to represent very small numbers
 (fractions) and very large numbers
 - Avogadro's Number: +6.0247 * 10²³
 - Planck's Constant: +6.6254 * 10-27
 - Note: 32 or 64-bit integers can't represent this range
- Floating Point representation is used in HLL's like C by declaring variables as float or double

© Mark Redekopp, All rights reserved

USC Viterbi School of Engineering

Fixed Point

- Unsigned and 2's complement fall under a category of representations called "Fixed Point"
- The radix point is assumed to be in a fixed location for all numbers
 - Integers: 10011101. (binary point to right of LSB)
 For 32-bits, unsigned range is 0 to ~4 billion
 - Fractions: .10011101 (binary point to left of MSB)
 Range [0 to 1)
- Main point: By fixing the radix point, we limit the range of numbers that can be represented
 - Floating point allows the radix point to be in a different location for each value

ISC Viterbi

© Mark Redekopp, All rights reserved

Floating Point Representation

- Similar to ______
- Floating Point representation uses the following form

– 3 Fields: _____, ____,

```
© Mark Redekopp, All rights reserved
```

Normalized FP Numbers

- Decimal Example
- In binary the only significant digit is ______
- Thus normalized FP format is:
- FP numbers will always be normalized before being ______

– Note:

© Mark Redekopp, All rights reserved

USC Viterbi School of Engineering

IEEE Floating Point Formats

- Single Precision (32-bit format)
 - 1 Sign bit
 - Exponent bits using ______ representation
 - ____ Fraction bits
 - Equiv. Decimal Range:
 7 digits x 10^{±38}

- Double Precision (64-bit format)
 - 1 Sign bit

S

Exp.

- Exponent bits
 using ______
 representation
- ____ Fraction bits
- Equiv. Decimal Range:
 16 digits x 10^{±308}

fraction

S	Exp.	fraction

JSC Viterbi

Exponent Representation

- Exponent includes its own sign (+/-)
- Rather than using 2's comp. system, Single-Precision uses Excess-127 while Double-Precision uses Excess-1023
 - This representation allows FP numbers to be easily compared
- Let E' = stored exponent code and E = true exponent value
- For single-precision: E' = E + 127
 2¹ => E = 1, E' = 128₁₀ = 1000000₂
- For double-precision: E' = E + 1023
 2⁻² => E = -2, E' = 1021₁₀ = 0111111101₂

2's comp.		Excess -127		
-1	1111 1111	+128		
-2	1111 1110	+127		
-128	1000 0000	1		
+127	0111 1111	0		
+126	0111 1110	-1		
+1	0000 0001	-126		
0	0000 0000	-127		
Comparison of				

2's comp. & Excess-N Q: Why don't we use Excess-N

Q: Why don't we use Excess-N more to represent negative #'s

USC Viterbi School of Engineering

© Mark Redekopp, All rights reserved

Exponent Representation

• FP formats

 Thus, for singleprecision the range of exponents is

E' (range of 8-bits shown)	E (E = E'-127)

IEEE Exponent Special Values

E'	Fraction	Meaning

C Viterbi				
Single-Precision Examples				
1 1 1000 0010 110 0110 0000 0000 0000 0000				
2 +0.6875 = +0.1011				
rk Redekopp, All rights reserved				

© Mark Redekopp, All rights reserved

USC Viterbi School of Engineering

Floating Point vs. Fixed Point

- Single Precision (32-bits) Equivalent Decimal Range:
 - 7 significant decimal digits * 10^{±38}
 - Compare that to 32-bit signed integer where we can represent _____. How does a 32-bit float allow us to represent such a greater range?
- Double Precision (64-bits) Equivalent Decimal Range:
 - 16 significant decimal digits * 10^{±308}

JSC Viterbi

© Ma

US

IEEE Shortened Format

- 12-bit format defined just for this class (doesn't really exist)
 - 1 Sign Bit
 - _____ Exponent bits using Excess-____
 - Same reserved codes
 - _____ Fraction (significand) bits

USC Viterbi School of Engineering FP Multiplication	USC Viterbi School of Engineering FP Multiplication
1.	 Add the exponents and subtract the Excess value (IEEE=127, shortened IEEE=15)
2.	0 10000 010110 * 0 10011 110101 = 1.010110 x 2^1 = 1.110101 x 2^4
3. 4.	$10000 = 2^{1}$ $+ 10011 = 2^{4}$ $100011 \leftarrow This result is Excess-30, so evaluate the formula of the problem o$
© Mark Redekopp, All rights reserved	$\frac{-001111}{010100 = 2^5}$
USC Viterbi School of Engineering FP Multiplication	USC Viterbi School of Engineering FP Multiplication
 Multiply fractions keep extra guard bits (extra LSB's) 	Determine sign
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* 1.110101 1010110 1010110 1010110 + 1010110 Make sure to move the binary point * Mark Redekopp, All rights reserved	Sign pos. * pos. = pos.

FP Division

• Divide fractions (align binary point by moving it to the right of the divisor)

Divide fractions

take it out to guard, round

FP Division

Warning

 \mathbf{V}

- FP addition/subtraction is NOT associative
 - Because of rounding / inability to precisely represent fractions, (a+b)+c ≠ a+(b+c)

(small + LARGE) – LARGE ≠ small + (LARGE – LARGE)

Why? Because of _____