
EE 357 Unit 3EE 357 Unit 3

IEEE 754 Floating Point
Representation

Floating Point Arithmetic

© Mark Redekopp, All rights reserved

Floating PointFloating Point

• Used to represent very small numbersUsed to represent very small numbers
(fractions) and very large numbers
– Avogadro’s Number: +6.0247 * 1023g
– Planck’s Constant: +6.6254 * 10-27

– Note: 32 or 64-bit integers can’t represent this g p
range

• Floating Point representation is used in
HLL’s like C by declaring variables as
float or double

© Mark Redekopp, All rights reserved

Fixed PointFixed Point

• Unsigned and 2’s complement fall under aUnsigned and 2 s complement fall under a
category of representations called “Fixed Point”

• The radix point is assumed to be in a fixed p
location for all numbers
– Integers: 10011101. (binary point to right of LSB)

• For 32-bits, unsigned range is 0 to ~4 billion

– Fractions: .10011101 (binary point to left of MSB)
• Range [0 to 1)g)

• Main point: By fixing the radix point, we limit the
range of numbers that can be represented

© Mark Redekopp, All rights reserved

– Floating point allows the radix point to be in a different
location for each value

Floating Point RepresentationFloating Point Representation

• Similar toSimilar to _____________________
–

Floating Point representation uses the• Floating Point representation uses the
following form
–
– 3 Fields: ________, ____________,

© Mark Redekopp, All rights reserved

Normalized FP NumbersNormalized FP Numbers
• Decimal Examplep

• In binary the only significant digit is ________
• Thus normalized FP format is:

• FP numbers will always be normalized before
b ibeing _________________________
– Note:

© Mark Redekopp, All rights reserved

IEEE Floating Point FormatsIEEE Floating Point Formats

• Single Precision • Double PrecisionSingle Precision
(32-bit format)
– 1 Sign bit

Double Precision
(64-bit format)
– 1 Sign bit

– ___ Exponent bits
using _____________
representation

– ___ Exponent bits
using ____________
representationrepresentation

– ___ Fraction bits
– Equiv. Decimal Range:

representation
– ___ Fraction bits
– Equiv. Decimal Range:Equiv. Decimal Range:

7 digits x 10±38
Equiv. Decimal Range:
16 digits x 10±308

© Mark Redekopp, All rights reserved

S fractionExp. S fractionExp.

Exponent RepresentationExponent Representation
• Exponent includes its own sign (+/-) 2’s Excessp g ()
• Rather than using 2’s comp. system,

Single-Precision uses Excess-127
while Double-Precision uses

comp. -127
-1 1111 1111 +128

-2 1111 1110 +127while Double Precision uses
Excess-1023
– This representation allows FP numbers to

be easily compared
-128 1000 0000 1

+127 0111 1111 0be easily compared
• Let E’ = stored exponent code and

E = true exponent value
• For single precision: E’ = E + 127

+126 0111 1110 -1

1 0000 0001 126• For single-precision: E = E + 127
– 21 => E = 1, E’ = 12810 = 100000002

• For double-precision: E’ = E + 1023

+1 0000 0001 -126

0 0000 0000 -127

Comparison of

© Mark Redekopp, All rights reserved

– 2-2 => E = -2, E’ = 102110 = 011111111012
2’s comp. & Excess-N

Q: Why don’t we use Excess-N
more to represent negative #’s

Exponent RepresentationExponent Representation

• FP formats E’ EFP formats

E’
(range of 8-bits shown)

E
(E = E’-127)

• Thus, for single-
precision the range
of exponents isof exponents is

© Mark Redekopp, All rights reserved

IEEE Exponent Special ValuesIEEE Exponent Special Values

E’ Fraction MeaningE Fraction Meaning

© Mark Redekopp, All rights reserved

Single-Precision ExamplesSingle Precision Examples

1 1000 0010 110 0110 0000 0000 0000 00001

+0.6875 = +0.10112

© Mark Redekopp, All rights reserved

Floating Point vs Fixed PointFloating Point vs. Fixed Point

• Single Precision (32-bits) Equivalent DecimalSingle Precision (32 bits) Equivalent Decimal
Range:
– 7 significant decimal digits * 10±38

– Compare that to 32-bit signed integer where we can
represent ____________. How does a 32-bit float
allow us to represent such a greater range?allow us to represent such a greater range?

–

• Double Precision (64-bits) Equivalent Decimal
Range:

© Mark Redekopp, All rights reserved

g
• 16 significant decimal digits * 10±308

IEEE Shortened FormatIEEE Shortened Format

• 12-bit format defined just for this class12 bit format defined just for this class
(doesn’t really exist)

1 Sign Bit– 1 Sign Bit
– ____ Exponent bits using Excess-____

• Same reserved codes• Same reserved codes
– ____ Fraction (significand) bits

1

S E’ F

1

© Mark Redekopp, All rights reserved

ExamplesExamples
1 10100 101101 +21.75 = +10101.111 21 10100 101101 21.75 10101.11

1 01101 100000 +3.625 = +11.10143

© Mark Redekopp, All rights reserved

Truncation & RoundingTruncation & Rounding
• May have more bits than fraction can store due to y

arithmetic operations, etc.
• Need to truncate these bits by rounding the

b l h b d i hnumber to a value that can be represented with
the given number of fraction bits (Assume 6-bits)

+ 1.11010000000 x 24
0.00001011010 x 24

1 11111011010 x 24fraction can only 1.11111011010 x 24
Extra bits that need to be
truncated (rounded off)

fraction can only
be 6-bits

© Mark Redekopp, All rights reserved

+1.11111011010 x 24

Rounding MethodsRounding Methods
• 4 Methods of Roundingg

– We will focus on just the first 2 methods
Similar to rounding you learned in grade school.

Round to

Round to

Round the representable value closest to but not
greater in magnitude than the precise value.
Equivalent to ___________________________

Round toward

Round to the closest representable value

R d h l bl l

© Mark Redekopp, All rights reserved

Round toward

Round to the closest representable value

Rounding ImplementationRounding Implementation
• It is possible to have a large number of bits after p g

the fraction
• To do the rounding though we can keep only a

subset of the extra bits after the fractionsubset of the extra bits after the fraction
1. ________ bits: bits immediately after LSB of fraction

2 :2. ________:
3. ________:

1 01001010010 241.01001010010 x 24

© Mark Redekopp, All rights reserved

Rounding to Nearest MethodRounding to Nearest Method

• Same idea as rounding in decimalSame idea as rounding in decimal
– .51 and up, round up,

49 and down round down– .49 and down, round down,
– .50 exactly we round up in decimal

• In this method we treat it differently If precise value• In this method we treat it differently…If precise value
is exactly half way between 2 representable values,
round towards the number with 0 in the LSB

© Mark Redekopp, All rights reserved

Round to Nearest MethodRound to Nearest Method
• Round to the closest representable valuep

– If precise value is exactly half way between 2
representable value, round towards the number with 0
in the LSBin the LSB

1.11111011010 x 24
1.111110___ x 24

GRS

+1.111110_____ x 24 +1.111111 x 24+1.111110 x 24

© Mark Redekopp, All rights reserved

Rounding to Nearest MethodRounding to Nearest Method

• 3 Cases in binary FP:3 Cases in binary FP:
– _______________ => Greater than half way

• Round fraction up (add 1 to fraction)• Round fraction up (add 1 to fraction)
• [may require renormalization]

– => Exactly half way_______________ Exactly half way
• Round to the closest fraction value with a ‘0’ in the

LSB
• [may require a re-normalization]

– _______________=> Less than half way

© Mark Redekopp, All rights reserved

• Leave fraction alone (add 0 to fraction)

Round to NearestRound to Nearest

1.001100110 x 24 1.111111101 x 24 1.001101001 x 24
GRS GRS GRS

0 0 0

© Mark Redekopp, All rights reserved

0 0 0

Round to NearestRound to Nearest
• In all these cases, the numbers are halfway between the 2 possible

round values

1 001100100 24 1 111111100 24 1 001101100 24
GRS GRS GRS

round values
• Thus, we round to the value w/ 0 in the LSB

1.001100100 x 24 1.111111100 x 24 1.001101100 x 24

© Mark Redekopp, All rights reserved

0 0 0

Round to 0 (Chopping)Round to 0 (Chopping)

• Simply drop the G R S bits and take fractionSimply drop the G,R,S bits and take fraction
as is

1.001100001 x 24 1.001101101 x 24 1.001100111 x 24
GRS GRS GRS

drop G,R,S bits drop G,R,S bits drop G,R,S bits

0 10011 001100 0 10011 001101 0 10011 001100

© Mark Redekopp, All rights reserved

FP Addition / SubtractionFP Addition / Subtraction

• In decimal addition:In decimal addition:

5.9375 x 103
+ 2.3250 x 105

© Mark Redekopp, All rights reserved

FP Addition/SubtractionFP Addition/Subtraction

1. Make exponents equal by selecting number w/1. Make exponents equal by selecting number w/
________ exponent and shifting it _______

2. Convert subtraction to addition
3. If p+p or n+n

a. magnitudes__________ g
b. Sign of result = ________________

4. If p+n or n+pp p
a. ___
b. Sign of result = ______________________

© Mark Redekopp, All rights reserved

5. Normalize and round

FP Addition/SubtractionFP Addition/Subtraction
• Remember to update G,R,S when shifting to make p , , g

exponents equal

0 10010 110101 0 10000 010110+A = B =
= 1.110101 x 23 = 1.010110 x 21

© Mark Redekopp, All rights reserved

FP Addition/Subtraction
• Since |A|>|B|,

FP Addition/Subtraction

0 10000 010110 1 01110 110101+

| | | |, _________________
–

1 010110000 x 21

= +1.010110 0 0 0 x 21

G R S
= - 1.110101 0 0 0 x 2-1

Smaller
exponent,
shift right

= - 0.011101 0 1 0 x 21

G R S

x 21
1.010110000 x 21

-

© Mark Redekopp, All rights reserved

FP Addition/Subtraction Example 3FP Addition/Subtraction Example 3

0 10100 1101001 10100 011010 +
= +1.110100 x 25= -1.011010 x 25

+

© Mark Redekopp, All rights reserved
0 10010 101000=

FP Multiplication / DivisionFP Multiplication / Division

Multiplication: Multiply fractions and addMultiplication: Multiply fractions and add
exponents

3 45 x 104 * 4 90 x 1013.45 x 104 4.90 x 101

= (3.45 * 4.90) x 10(4+1)

Di i i Di id f ti d bt tDivision: Divide fractions and subtract
exponents

3 4 104 * 4 90 1013.45 x 104 * 4.90 x 101

= (3.45 / 4.90) x 10(4-1)

© Mark Redekopp, All rights reserved

FP MultiplicationFP Multiplication

1.

2.

3.

4.

© Mark Redekopp, All rights reserved

FP MultiplicationFP Multiplication

• Add the exponents and subtract the ExcessAdd the exponents and subtract the Excess
value (IEEE=127, shortened IEEE=15)

0 10000 010110 0 10011 110101

= 1.010110 x 21

*
= 1.110101 x 24

10000 = 21
+ 10011 = 24
100011

-001111
This result is Excess-30, so
subtract 15 to get Excess-15

© Mark Redekopp, All rights reserved

010100 = 25

FP MultiplicationFP Multiplication

• Multiply fractions

0 10000 010110 0 10011 110101*

Multiply fractions
– keep extra guard bits (extra LSB’s)

= 1.010110 x 21 = 1.110101 x 24

10100 = 25Exponent

1.010110
* 1.110101

1010110
1010110--

1010110----
1010110-----

+ 1010110

© Mark Redekopp, All rights reserved

+ 1010110------
10.011101001110 Make sure to move

the binary point

FP MultiplicationFP Multiplication

• Determine sign

0 10000 010110 0 10011 110101*

Determine sign

= 1.010110 x 21 = 1.110101 x 24

10100 = 25Exponent
f ti 10 011101001110fraction
Sign pos. * pos. = pos.

10.011101001110

© Mark Redekopp, All rights reserved

FP MultiplicationFP Multiplication

• Normalize and truncate guard bits

0 10000 010110 0 10011 110101*

Normalize and truncate guard bits

= 1.010110 x 21 = 1.110101 x 24

10100 = 25Exponent
f ti 10 011101001110fraction
Sign pos. * pos. = pos.

10.011101001110

10 011101001110 x 2510.011101001110 x 25
1.001110101 x 26
1.001111 x 26

GRS
For Round-to-Nearest we
look at the G,R,S bits see
that we should round up by
adding 1 to the LSB

© Mark Redekopp, All rights reserved

0 10101 001111
adding 1 to the LSB.

FP MultiplicationFP Multiplication

• Analyze results

0 10000 010110 0 10011 110101*

Analyze results

= 0 10101 001111

= 1.010110 x 21 = 1.110101 x 24 = 1.001111 x 26

= 2.6875 = 29.25 Computed
result = 79

= 78.609375True result

= +0.390625Error

© Mark Redekopp, All rights reserved

FP DivisionFP Division

1 Determine the sign1. Determine the sign
2. Subtract the exponents and add the

Excess value (127 or 15)Excess value (127 or 15)
3. Divide the fractions
4. Normalize and round the resulting value

© Mark Redekopp, All rights reserved

FP DivisionFP Division

• Subtract the exponents and add the ExcessSubtract the exponents and add the Excess
value (IEEE=127, shortened IEEE=15)

0 10011 110100 0 10000 110000

= 1.110100 x 24

/
= 1.110000 x 21

10011 = 24
- 10000 = 21
000011

+001111
This result is Excess-0, so
add 15 to get Excess-15

© Mark Redekopp, All rights reserved

010010 = 23

FP DivisionFP Division

• Divide fractions (align binary point byDivide fractions (align binary point by
moving it to the right of the divisor)

0 10011 110100 0 10000 110000

= 1.110100 x 24

/
= 1.110000 x 21

1.11

010010 = 23Exponent

1.1101000000 111 111.01000000=

© Mark Redekopp, All rights reserved

FP DivisionFP Division

• Divide fractionsDivide fractions
– take it out to guard, round
– If there is a remainder, set sticky bit.

0 10011 110100 0 10000 110000

= 1.110100 x 24

/
= 1.110000 x 21

001.000010011
010010 = 23Exponent

GRS

111 111.010000000
111
0.01000
0.00111

-
- If any remainder after Round-Bit,

simply set the Sticky bit.

© Mark Redekopp, All rights reserved

0.00001000
0.00000111-
0.00000001

p y y

FP DivisionFP Division

• Determine signDetermine sign

0 10011 110100 0 10000 110000/

010010 = 23Exponent
f ti

= 1.110100 x 24 = 1.110000 x 21

1 000010011fraction
Sign pos. / pos. = pos.

1.000010011

© Mark Redekopp, All rights reserved

FP DivisionFP Division

• Normalize and truncate guard bitsNormalize and truncate guard bits

0 10011 110100 0 10000 110000/

010010 = 23Exponent
f ti

= 1.110100 x 24 = 1.110000 x 21

1 00001001fraction
Sign pos. / pos. = pos.

1.00001001

1.000010011 x 23
= 1 000010 x 23

1.000010011 x 23 Luckily, it is already in normal
form

For Round-to-Nearest we
look at the G R S bits see

© Mark Redekopp, All rights reserved

0 10010 000010

= 1.000010 x 23 look at the G,R,S bits see
that we should round down

FP DivisionFP Division

• Analyze resultsAnalyze results

=0 10011 110100 0 10000 110000/ 0 10010 000010

Computed
result = 8.25

= 1.110100 x 24 = 1.110000 x 21 = 1.000010 x 23

= 29 = 3.5

= 8.2857True result

= -0.0357Error

© Mark Redekopp, All rights reserved

Floating-Point ExceptionsFloating Point Exceptions

• Error conditions that can be trapped (recognizedError conditions that can be trapped (recognized
by the HW) and passed to SW to deal with
1. ________ – Result is

2 Result is2. _________ – Result is
3. Inexact –
4. Invalid – Result is4. Invalid Result is

• Can be a

5. Divide-by-Zero – Just like it sounds

© Mark Redekopp, All rights reserved

• If not trapped,

Intel FPU Exception HandlingIntel FPU Exception Handling

• Status wordStatus word
– RC = Rounding Control

• 00 (nearest) 01 (down) 10 (up) 11 (truncate)• 00 (nearest), 01 (down), 10 (up), 11 (truncate)
– PC = Precision Control

PM = Precision Mask– PM = Precision Mask
– UM/OM = Underflow / Overflow Mask

ZM / DM = Div/0 / Denormalized Mask– ZM / DM = Div/0 / Denormalized Mask
– IM = Invalid Mask (NaN)

© Mark Redekopp, All rights reserved

RCIC

15 12 11 10 9 8 7 5 4 3 2 1 0

PC IEM PM0 UM OM ZM DM IM0 0 0

Intel FPU Exception HandlingIntel FPU Exception Handling

• Status wordStatus word
– P = Precision event occurred

U = Underflow occurred– U = Underflow occurred
– O = Overflow occurred

Z Divide by zero occurred– Z = Divide by zero occurred
– D = Denormalized number occurred

I I lid b d– I = Invalid number occurred

15 12 11 10 9 8 6 5 4 3 2 1 0

© Mark Redekopp, All rights reserved

P U O Z D IOther bits indicating status

WarningWarning

• FP addition/subtraction is NOT associativeFP addition/subtraction is NOT associative
– Because of rounding / inability to precisely

represent fractions (a+b)+c ≠ a+(b+c)represent fractions, (a+b)+c ≠ a+(b+c)

(small + LARGE) – LARGE ≠ small + (LARGE – LARGE)() ()

Why? Because of ____________________

© Mark Redekopp, All rights reserved

