
EE 357 Unit 18EE 357 Unit 18

Basic Pipelining Techniques

© Mark Redekopp, All rights reserved

Single & Multi-Cycle PerformanceSingle & Multi Cycle Performance

Single Cycle CPU Multi Cycle CPUSingle-Cycle CPU
• Each piece of the datapath

requires only a small period of
th ll i t ti

Multi-Cycle CPU
• Sharing resources allows for

compact logic design but in
d d i ff dthe overall instruction

execution (clock cycle) time
yielding low utilization of the
HW’s actual capabilities

modern design we can afford
replicated structures if needed

• Each instruction still requires
l l t l tHW s actual capabilities several cycles to complete

+ Read
Reg. 1 #

Sh.
Lef t

+A

B

4

5

I-Cache

0
1 P

C

Addr.

Instruc.

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
LU Res.

Zero

0
1

2

Addr.

Read

0

1

5

5

© Mark Redekopp, All rights reserved

Register File

a a

Sign
Extend

1

D-Cache

ead
Data

Write
Data

1

16 32

PipeliningPipelining
• Combines elements of both designsg

– Datapath of ______________ CPU w/ separate resources
– Datapath broken into _________ with temporary registers between

stagesstages
• _________ clock cycle
• A single instruction requires CPI = n

S stem can achie e CPI• System can achieve CPI = _________
– Overlapping Multiple Instructions (separate instruction in each

stage at once)

Inst. 1
Inst. 1

I t 1
Inst. 2

I t 2I t 3

F D Ex
Clock 1
Clock 2
Cl k 3

Mem WB

© Mark Redekopp, All rights reserved

Inst. 1Inst. 2
Inst. 2

Inst. 3
Inst. 3

Inst. 3
Inst. 4

Inst. 4Inst. 5

Clock 3
Clock 4
Clock 5

Inst. 1
Inst. 1Inst. 2

Basic 5 Stage PipelineBasic 5 Stage Pipeline
• Same structure as single cycle but now broken into 5 stages
• Pipeline stage registers act as temp registers storing intermediate• Pipeline stage registers act as temp. registers storing intermediate

results and thus allowing previous stage to be reused for another
instruction

– Also, act as a barrier from signals from different stages intermixingAlso, act as a barrier from signals from different stages intermixing
Fetch Decode Exec. Mem WB

+ Read Sh

+A4

0 C

+

Addr.
R

eg
is

te
r

Reg. 1 #

Read
Reg. 2 #

Write
Reg #

Read
data 1

ge
 R

eg
is

te
r

A Zero

Sh.
Left
2

ge
 R

eg
is

te
r

ge
 R

eg
is

te
r

B

0

5

5

I-Cache

1 PC Instruc.
In

st
ru

ct
io

n

Register File

Reg. #

Write
Data

Read
data 2

P
ip

el
in

e
S

ta
g A

LU Res.
0
1

P
ip

el
in

e
S

ta
g

Addr.

Read
Data

Write
D t

P
ip

el
in

e
S

ta
g

1

© Mark Redekopp, All rights reserved

Sign
Extend D-Cache

Data

16 32

Issues with PipeliningIssues with Pipelining
• ____________ of HW/logic resources between stages ____________ g g

because of full utilization
– Can’t have a single cache (both I & D) because each is needed to

fetch one instruction while another accesses data]
• Prevent signals in one stage (instruc.) from ___________

another stage (instruc.) and becoming convoluted
• Balancing stage delayBalancing stage delay

– Clock period = ______________
– In example below, clock period = ______ means _____ delay for

only of logic delayonly ______ of logic delay

Sample
Stage Delay

10ns 10ns 50ns

© Mark Redekopp, All rights reserved

Fetch
Logic

Decode
Logic

Execute
Logic

Resolution of Pipelining IssuesResolution of Pipelining Issues
• No sharing of HW/logic resources between stagesg g g

– For full performance, no feedback (stage i feeding back to stage i-k)
– If two stages need a HW resource, _________ the resource in both

stages (e.g. an I- AND D-cache)
• Prevent signals from one stage (instruc.) from flowing into

another stage (instruc.) and becoming convoluted
– Stage Registers act as to signals until next edgeStage Registers act as __________ to signals until next edge

• Balancing stage delay [Important!!!]
– Balance or divide long stages (See next slides)

R
e

R
e

R
e

© Mark Redekopp, All rights reserved

Fetch
Logic

Decode
Logic

Exec. 1
Logic

egister

egister

Exec. 2
Logic

egister

Balancing Pipeline StagesBalancing Pipeline Stages

• Clock period must equal the
5 ns 15 ns

p q
LONGEST delay from register to
register

In Example 1 clock period would
Ex. 1: Unbalanced stage delay

Clock Period = 15ns– In Example 1, clock period would
have to be set to ____ [66 MHz],
meaning total time through pipeline
= 30ns for only ns of logic

10 ns 10 ns

Clock Period = 15ns

 30ns for only ____ ns of logic

• Could try to balance delay in
each stage Ex. 2: Balanced stage delay

Clock Period = 10ns (150% speedup)
– Example 2: Clock period = __ns

[100 MHz], while total time through
pipeline is still = 20ns

© Mark Redekopp, All rights reserved

Pipelining Effects on Clock PeriodPipelining Effects on Clock Period
5 ns 15 ns

• Rather than just try to balance j y
delay we could consider making
more stages

Divide long stage into multiple
Ex. 1: Unbalanced stage delay

Clock Period = 15ns

10 ns 10 ns

– Divide long stage into multiple
stages

– In Example 3, clock period could be
5ns [MHz]

Clock Period = 15ns

5ns [_____ MHz]
– Time through the pipeline (latency)

is still 20 ns, but we’ve increased
our (1 result every 5

Ex. 2: Balanced stage delay
Clock Period = 10ns (150% speedup)

5 ns 5 ns 5 ns 5 ns

our __________ (1 result every 5
ns rather than every 10 or 15 ns)

– Note: There is a small time
overhead to adding a pipeline

© Mark Redekopp, All rights reserved

Ex. 3: Break long stage into multiple stages
Clock period = 5 ns (_____ speedup)

overhead to adding a pipeline
register/stage (i.e. can’t go crazy
adding stages)

Feed-Forward IssuesFeed Forward Issues
• CISC instructions often perform several ALU and memory p y

operations per instructions
– MOVE.W (A0)+,$8(A0,D1) [M68000/Coldfire ISA]

• 3 Adds (post-increment, disp., index)()
• 3 Memory operations (I-Fetch + 1 read + 1 write)

– This makes pipelining hard because of multiple uses of ALU and
memory

• Redesign the Instruction Set Architecture to better support
pipelining (MIPS was designed with pipelining in mind)

A4

0
1 P

C

+

Addr.

Instruc.

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write

Read
data 1

Read

A
LU Res.

Zero

0

Sh.
Lef t

2

+

Addr.

A

B

4

0

5

5

5

© Mark Redekopp, All rights reserved

I-Cache

Register File

Write
Data data 2

Sign
Extend

0
1

D-Cache

Read
Data

Write
Data

1

16 32

Sample 5-Stage PipelineSample 5 Stage Pipeline
• Examine the basic operations that need to be performed by p p y

our instruction classes
– LW: I-Fetch, Decode/Reg. Fetch, Address Calc., Read Mem.,

Write to RegisterWrite to Register
– SW: I-Fetch, Decode/Reg. Fetch, Address Calc., Write Mem.
– ALUop: I-Fetch, Decode/Reg. Fetch, ALUop, Write to Reg.

B I F t h D d /R F t h C (S bt t) U d t PC– Bxx: I-Fetch, Decode/Reg. Fetch, Compare (Subtract), Update PC

• These suggest a 5-stage pipeline:
–– II--Fetch, Fetch, ,,
–– Decode/Reg. Fetch, Decode/Reg. Fetch,
–– ALU (Exec.), ALU (Exec.),

MemoryMemory

© Mark Redekopp, All rights reserved

–– Memory, Memory,
–– Reg. Reg. WritebackWriteback

Basic 5 Stage PipelineBasic 5 Stage Pipeline
• All control signals needed for an instruction in the following stages are

t d i th d d t dgenerated in the decode stage and _______________________
– Since writeback doesn’t occur until final stage, write register # is shipped with the

instruction through the pipeline and then used at the end
– Register File can read out the current data being written if read reg # = write reg #Register File can read out the current data being written if read reg # write reg #

Fetch Decode Exec. Mem WB

+ Read Sh

+A4

0 C

+

Addr.

R
eg

is
te

r

Reg. 1 #

Read
Reg. 2 #

Write
Reg #

Read
data 1

ge
 R

eg
is

te
r

A Zero

Sh.
Left
2

ge
 R

eg
is

te
r

ge
 R

eg
is

te
r

B

0

5

5

I-Cache

1 PC Instruc.

In
st

ru
ct

io
n

Register File

Reg. #

Write
Data

Read
data 2

P
ip

el
in

e
S

ta
g A

LU Res.
0
1

P
ip

el
in

e
S

ta
g

Addr.

Read
Data

Write
D t

P
ip

el
in

e
S

ta
g

1

© Mark Redekopp, All rights reserved

Sign
Extend D-Cache

Data

16 32

Sample InstructionsSample Instructions

Instruction
LW $t1,4($s0)

ADD $t4 $t5 $t6ADD $t4,$t5,$t6

BEQ $a0,$a1,LOOP

For now let’s assume we just execute one at a time For now let’s assume we just execute one at a time
though that’s not how a pipeline works (multiple though that’s not how a pipeline works (multiple

instructions are executed at one time).instructions are executed at one time).

© Mark Redekopp, All rights reserved

st uct o s a e e ecuted at o e t e)st uct o s a e e ecuted at o e t e)

LW $t1 4($s0)LW $t1,4($s0)

Fetch Decode Exec. Mem WB

+ Read
Reg. 1 #

Sh.
Left

+A

B

4

5de
$s0 #

0
va

lu
e

Read
Reg. 1 # or

y

0
1 PC

Addr.

Instruc. on
 R

eg
is

te
r Read

Reg. 2 #

Write
Reg. #

Read
data 1

R d ta
ge

 R
eg

is
te

r

A
L

Res

Zero

Left
2

ta
ge

 R
eg

is
te

r

Addr ta
ge

 R
eg

is
te

r

B

0

5

5

) m
ac

hi
ne

 c
od

00
00

00
04

 /
$s

0

Res A
dd

re
ss

Addr

A
L

Res

Zero

Read
Reg. 2 #

Write
Reg. #

Read
data 1

R d ad
 fr

om
 m

em
o

0

I-Cache

1 P

In
st

ru
ct

io

Register File

Write
Data

Read
data 2

Sign

Pi
pe

lin
e

S
t LU Res.

0
1

Pi
pe

lin
e

S
t Addr.

Read
Data

Write
Data

Pi
pe

lin
e

S
t

1

LW
 $

t1
,4

($
s0

/ O

ffs
et

=0
x0 Res.

$t
1

/ Addr.

Read
Data

Write
Data

LU Res.
0
1

Register File

Write
Data

Read
data 2

$t
1

/ D

at
a

re
a

1

Sign
Extend D-Cache16 32

$t1 #

$t
1 D-Cache

$

© Mark Redekopp, All rights reserved

Fetch LW and
increment PC

Add offset 4 to
$s0 value

Decode instruction
and fetch operands

Write
word to

$t1

Read word
from memory

ADD $t4 $t5 $t6ADD $t4,$t5,$t6

Fetch Decode Exec. Mem WB

+ Read
Reg. 1 #

Sh.
Left

+A

B

4

5od
e Read

Reg. 1 #
$t5 #

e

0
1 PC

Addr.

Instruc. on
 R

eg
is

te
r Read

Reg. 2 #

Write
Reg. #

Read
data 1

R d ta
ge

 R
eg

is
te

r

A
L

Res

Zero

Left
2

ta
ge

 R
eg

is
te

r

Addr ta
ge

 R
eg

is
te

r

B

0

5

5

t6
 m

ac
hi

ne
 c

o

Read
Reg. 2 #

Write
Reg. #

Read
data 1

R d

$t6 #

al
ue

 /
$t

5
va

lu
e

A
L

Res

Zero

m
 o

f $
t5

 +
 $

t6

m
 o

f $
t5

 +
 $

t6

0

I-Cache

1 P

In
st

ru
ct

io

Register File

Write
Data

Read
data 2

Sign

Pi
pe

lin
e

S
t LU Res.

0
1

Pi
pe

lin
e

S
t Addr.

Read
Data

Write
Data

Pi
pe

lin
e

S
t

1

A
D

D
 $

t4
,$

t5
,$

t

Register File

Write
Data

Read
data 2

Sign

$t
4

/ $

t6
 v

a

LU Res.
0
1

$t
4

/ S

um

$t
4

/ S

um

1

Sign
Extend D-Cache16 32

A Sign
Extend

$t4 #

© Mark Redekopp, All rights reserved

Fetch ADD and
increment PC

Decode instruction
and fetch operands

Add $t5 + $t6 Just pass
sum through

Write
sum to

$t4

BEQ $a0 $a1 LOOPBEQ $a0,$a1,LOOP

Fetch Decode Exec. Mem WB

+ Read
Reg. 1 #

Sh.
Left

+A

B

4

5

$a0 #

co
de

$a
0

va
l.

Sh.
Left

+

0
1 PC

Addr.

Instruc. on
 R

eg
is

te
r Read

Reg. 2 #

Write
Reg. #

Read
data 1

R d ta
ge

 R
eg

is
te

r

A
L

Res

Zero

Left
2

ta
ge

 R
eg

is
te

r

Addr ta
ge

 R
eg

is
te

r

B

0

5

5

Read
Reg. 2 #

Write
Reg. #

Read
data 1

R d

$a1 #

O
O

P
m

ac
hi

ne
 c

en
t /

 $
a1

 v
al

. /

A
L

Res

Zero

Left
2

ar
ge

t P
C

rit
eb

ac
k

I-Cache

1 P

In
st

ru
ct

io

Register File

Write
Data

Read
data 2

Sign

Pi
pe

lin
e

S
t LU Res.

0
1

Pi
pe

lin
e

S
t Addr.

Read
Data

Write
Data

Pi
pe

lin
e

S
t

1
Register File

Write
Data

Read
data 2

SignEQ
 $

a0
,$

a1
,L

O

ch
 D

is
pl

ac
em

e

LU Res.
0
1 N

ew
 T

a

N
o

w
r

Sign
Extend D-Cache16 32

Sign
ExtendB

E

B
ra

nc

$ $

© Mark Redekopp, All rights reserved

Fetch BEQ,
increment PC,
pass on PC+4

Decode instruction
and fetch operands,

pass on PC+4

Do $a0-$a1 and
check if result = 0
Calculate branch
target address

Update PC,
No Mem.
Access

Do
Nothing

PipeliningPipelining

• Now let’s see how all three can be run inNow let s see how all three can be run in
the pipeline

© Mark Redekopp, All rights reserved

5-Stage Pipeline5 Stage Pipeline
Fetch Decode Exec. Mem WB

PC

I-Cache D-CacheALUReg.
File

PC

File

© Mark Redekopp, All rights reserved

ExampleExample
Fetch Decode Exec. Mem WB
(LW)

PC

I-Cache D-CacheALUReg.
File

PC

File

© Mark Redekopp, All rights reserved

Fetch LW

ExampleExample
Fetch Decode Exec. Mem WB
(ADD) (LW)

PC LW
 $t1,4I-Cache D-CacheALUReg.

File

PC

4($s0)

File

© Mark Redekopp, All rights reserved

Decode instruction
and fetch operands

Fetch
ADD

ExampleExample
Fetch Decode Exec. Mem WB

$t1

(BEQ) (ADD) (LW)

PC reg. # / $s0I-Cache D-CacheALUReg.
File

PC A
D

D
 $t4, 0 data / 0x0

File$t5,$t6

04

© Mark Redekopp, All rights reserved

Add
displacement
0x04 to $s0

Fetch
BEQ

Decode
instruction and
fetch operands

ExampleExample
Fetch Decode Exec. Mem WB

$

(i+1) (BEQ) (ADD) (LW)

PC

$t4

BEQ $t1 reg #. /I-Cache D-CacheALUReg.
File

PC reg. # / $t5

Q
 / $a0,$a1 / / $s0 + 4

File and $t6 data

displacem
en ant

© Mark Redekopp, All rights reserved

Read word from
memory

Add
$t5 + $t6

Decode instruction
and pass

displacement

Fetch next
instruc i+1

ExampleExample
WBFetch Decode Exec. Mem
(LW)

PC

B
E

Q

(i+2) (i+1) (BEQ) (ADD)

$t1 reg #I-Cache D-CacheALUReg.
File

PC $t4 reg #

Q
 / $a0,$a1

instruc # / D
ata

File
/ S

um

1 vals / disp

c. i+1

p.

© Mark Redekopp, All rights reserved

Write
word to

$t1

Just pass
data to next

stage

Check if
condition is

true

Decode
operands of
instruc. i+1

Fetch next
instruc i+2

ExampleExample
WBFetch Decode Exec. Mem

PC

C
o

(ADD)(i+3) (i+2) (i+1) (BEQ)

I-Cache D-CacheALUReg.
File

PC

instruc

instruc

ntrol / D
is

R
4 reg #

File . i+1

c. i+2

placem
en

 / S
um

t

© Mark Redekopp, All rights reserved

Execute i+1Decode i+2Fetch i+3 If condition is true
add displacement

to PC

Write
word to

$t4

ExampleExample
WBFetch Decode Exec. Mem

PC

B

(BEQ)(target) (i+3) (i+2) (i+1)

I-Cache D-CacheALUReg.
File

PC

B
E

Q
 –

D
o

File nothing

© Mark Redekopp, All rights reserved

Delete i+2Delete i+3 Delete i+1 Do
nothing

Fetch
instruc at

branch loc.

5-Stage Pipeline5 Stage Pipeline
Fetch Decode Exec. Mem WB

PC

10 ns 10 ns10 ns10 ns 10 ns

I-Cache D-CacheALUReg.
File

PC

File

© Mark Redekopp, All rights reserved

Without pipelining (separate execution), each instruction would take _____

With pipelining, each instruction still takes _____ but 1 finishes every _____

Non-Pipelined TimingNon Pipelined Timing
• Execute n instructions Fetch

10ns
Decode

10ns
Exec.
10ns

Mem.
10ns

WB
10ns

using a k stage datapath
– i.e. Multicycle CPU w/ k

steps or single cycle CPU

10ns 10ns 10ns 10ns 10ns

C1 ADD

C2 ADD

C3 ADDsteps or single cycle CPU
w/ clock cycle k times
slower

• w/o pipelining:

C3 ADD

C4 ADD

C5 ADD
• w/o pipelining: ______

cycles
– ___________________

C6 SUB

C7 SUB

C8 SUBC8 SUB

C9 SUB

C10 SUB

© Mark Redekopp, All rights reserved

C11 LW

______ cycles

Pipelined TimingPipelined Timing
• Execute n instructions using Fetch

10ns
Decode

10ns
Exec.
10ns

Mem.
10ns

WB
10ns

a k stage datapath
– i.e. Multicycle CPU w/ k

steps or single cycle CPU w/
l k l k ti l

10ns 10ns 10ns 10ns 10ns

C1 ADD

C2 SUB ADD

C3 LW SUB ADD
P

ipeline Fil
clock cycle k times slower

• w/o pipelining: n*k cycles
– n instrucs. * k CPI

C3 LW SUB ADD

C4 SW LW SUB ADD

C5 AND SW LW SUB ADD

lling
Pipeli

• w/ pipelining: ________
– __________ for 1st instruc. +

_____ cycles for ______
instrucs.

C6 OR AND SW LW SUB

C7 XOR OR AND SW LW

C8 XOR OR AND SW

Pip
ne Full

instrucs.
– Assumes we keep the

pipeline full

C8 XOR OR AND SW

C9 XOR OR AND

C10 XOR OR

peline E
m

pty

© Mark Redekopp, All rights reserved

C11 XOR

ying

7 Instrucs. = _______________

ThroughputThroughput
• Throughput (T) = g p () __________________________

– n instructions / clocks to executed n instructions
– For a large number of instructions, the throughput of a

pipelined processor is every clock cycleevery clock cyclepipelined processor is ___________ every clock cycle___________ every clock cycle
–– ASSUMES that ______________________________ASSUMES that ______________________________

Non-pipelined Pipelined

Throughput

© Mark Redekopp, All rights reserved

HazardsHazards
• Any sequence of instructions that prevent full pipeline utilization

– Often causes the pipeline to _________ an instruction
•• Structural Hazards Structural Hazards = HW organization cannot __________________

D t H dD t H d D t d d i•• Data Hazards Data Hazards = Data dependencies
– Instruction ______ needs result from instruction ___ that is still in pipeline
– Example:

• LW $t4 0x40($s0)• LW $t4, 0x40($s0)
• ADD $t5,$t4,$t3

– ADD couldn’t decode and get the ____________________________…
stalls the pipeline

•• Control Hazards Control Hazards = Branches & changes to PC in the pipeline
– If branch is determined to be taken later in the pipeline, _____________

the instructions in the pipeline that _____________________
Oth f t ll

© Mark Redekopp, All rights reserved

• Other causes for stalls: __________________

Structural HazardsStructural Hazards
• Combinations of instructions that cannot be overlapped

in the given order due to HW constraintsin the given order due to HW constraints
– Often due to lack of HW resources

• Example structural hazard: A single memory rather than p g y
separate I & D caches
– Structural hazard any time an instruction needs to perform a data

access (i.e. ‘lw’ or ‘sw’)access (i.e. lw or sw)

LWi+1 i

ALUReg.
File

PC

i+2

© Mark Redekopp, All rights reserved

Cache
Hazard!

Structural Hazards ExamplesStructural Hazards Examples
• Another example structural hazard: Fully pipelined vs.

non pipelined functional units with issue latenciesnon-pipelined functional units with issue latencies
– Fully pipelined means it may take multiple clocks but a _______

– Non-fully pipeline means that a new instruction can only be

inserted every _____________
– Example of non-fully pipelined divider

• Usually issue latencies of 32 to 60 clocks
• Thus DIV followed by DIV w/in 32 clocks will cause a stall

S

Pi
pe

 R
eg

.

Non-pipelined Divider

Pi
pe

 R
eg

.

Pi
pe

 R
eg

.

Div.
Stage

1

Pi
pe

 R
eg

.

Div.
Stage

2

Div.
Stage

n
…

Pi
pe

 R
eg

.

DIV 1
DIV 2 (Hazard)
…

DIV 2

Sequence:
DIV 1
DIV 2

Sequence:

© Mark Redekopp, All rights reserved

DIV 2

Data HazardsData Hazards

• _________________
Hazard
– Later instruction reads

Initial Conditions (assume leading 0’s in
registers):

$s0 = 0x10010000– Later instruction reads
a result from a
previous instruction
(d t i b i

$t1 = 0x0
$t4 = 0x24
$t5 = 0x0

00000060
12345678 0x10010000

0x10010004

(data is being
communicated
between 2 instrucs.) After execution values should be:

$t5 = 0x0

)
• Example sequence

– LW $t1,4($s0)

$s0 = 0x10010000
$t1 = 0x60
$t4 = 0x24

© Mark Redekopp, All rights reserved

– ADD $t5,$t1,$t4
$t4 0x24
$t5 = 0x84

Data HazardsData Hazards
Fetch Decode Exec. Mem WB
(ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24LW

 $t1,4I-Cache ALUReg.
File

PC

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

4($s0)

File 12345678
0 00 0000

© Mark Redekopp, All rights reserved

Decode instruction
and fetch operands

Fetch
ADD

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

$t1

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 /

File$t1,$t4

12345678
0 00 0000

4

$

© Mark Redekopp, All rights reserved

Add
displacement

4 to $t1

Fetch
instruc.

i+1

$t1 still = 0x0
rather than the
desired 0x60

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

A

i+2 i+1 (ADD) (LW)

PC

$t1

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24

A
D

D
 $t5 / 0I-Cache ALUReg.

File

PC

i+1

1 reg. # / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

x0 / 0x24

File

1 x10010004

12345678
0 00 0000

ADD usesFetch i+1 Data intended

© Mark Redekopp, All rights reserved

ADD uses
wrong data

Fetch
instruc.

i+2

i+1 Data intended
for $t1 is just

now read

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

i+3 i+2 i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

i+1I-Cache ALUReg.
File

PC

i+2

A
D

D
 $t5

$t1 reg. #

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

2 / 0x24

/ 0x60

12345678
0 00 0000

© Mark Redekopp, All rights reserved

Now it’s too late the sum of the ADD Now it’s too late the sum of the ADD
instruction is wrong!instruction is wrong!

Data HazardsData Hazards

Solutions:Solutions:

1.

2.

© Mark Redekopp, All rights reserved

Stalling the PipelineStalling the Pipeline

• All instructions in front of the stalledAll instructions in front of the stalled
instruction can _______________

• All instructions behind the stalled• All instructions behind the stalled
instruction ________________
St lli i t /• Stalling inserts _____________ / nops
(no-operations) into the pipeline
– A “nop” is an actual instruction in the MIPS

ISA that does NOTHING

© Mark Redekopp, All rights reserved

Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

$t1

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 /

File$t1,$t4

12345678
0 00 0000

4

LW continues Fetch ADD stalls in the

© Mark Redekopp, All rights reserved

through
pipeline

instruc.
i+1

Decode stage
and is not allowed

to move on

Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

i+1 (ADD) (NOP/bubble) (LW)

PC

$t1

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24

I-Cache ALUReg.
File

PC A
D

D
 $t5,

1 reg. # / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File$t1,$t4

x10010004

12345678
0 00 0000

Fetch ADD remains LW continues

© Mark Redekopp, All rights reserved

instruc.
i+1 stalls

stalled until LW
writes back $t1

value

through
pipeline

Stalling the PipelineStalling the Pipeline
Fetch Decode Mem WBExec.

i+1 (ADD) (NOP/bubble) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

(NOP/bubble)

I-Cache ALUReg.
File

PC $t1 reg. #

0x10010004
00000060
0x10010000

A
D

D
 $t5,

$t4 = 0x24
$t5 = 0x0

File

/ 0x60

12345678
0 00 0000$t1,$t4

Fetch Reg. file passes LW writes

© Mark Redekopp, All rights reserved

instruc.
i+1 stalls

new value of $t1
along with $t4 to

next stage

back result to
$t1

Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

i+2 i+1 (ADD) (NOP/bubble) (NOP/bubble)

PC

A$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

A
D

D
 $t5 / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x60 / 0x24

12345678
0 00 0000

i+2 i+1 Add now has

© Mark Redekopp, All rights reserved

correct value
and can
proceed

Time Space DiagramTime Space Diagram
Fetch
10ns

Decode
10ns

Exec.
10ns

Mem.
10ns

WB
10ns10ns 10ns 10ns 10ns 10ns

C1 LW

C2 ADD LW

C3 i ADD LWC3 i ADD LW

C4 i ADD LW

C5 i ADD LW

nop

nop nop

C6 i+1 i ADD

C7 i+2 i+1 i ADD

C8 i+3 i+2 i+1 i ADD

nop nop

nop

C8 i+3 i+2 i+1 i ADD

Using Stalls to Handle
Dependencies (Data Hazards)

© Mark Redekopp, All rights reserved

Data ForwardingData Forwarding

• Also known as “bypassing”Also known as bypassing
• Take results still in the pipeline (but not written

back to a GPR) and pass them to dependent) p p
instructions
– To keep the same clock cycle time, results can only

be taken from the __________ of a stage and passed
back to the ______________ of a previous stage

– Cannot take a result produced at the of a– Cannot take a result produced at the _______ of a
stage and pass it to the ____________ of a previous
stage because of the stage delays

© Mark Redekopp, All rights reserved

• Recall that data written to the register file is
available for reading in the same clock cycle

Data Forwarding – Example 1Data Forwarding Example 1
Fetch Decode Exec. Mem WB

$t1

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 /

File$t1,$t4

12345678
0 00 0000

4

LW continues Fetch ADD is allowed to

© Mark Redekopp, All rights reserved

through
pipeline

instruc.
i+1

fetch the incorrect
value of $t1

Data Forwarding – Example 1Data Forwarding Example 1
Fetch Mem WBDecode Exec.

i+2 (LW)

PC

$t1A

i+1 (ADD)

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

1 reg. # / 0x

A
D

D
 $t5 / 0

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x10010004

x0 / 0x24

12345678
0 00 0000

i+2 i+1 LW continues ADD cannot get

© Mark Redekopp, All rights reserved

through
pipeline

data until after LW
does read. So it

stalls.

Data Forwarding – Example 1Data Forwarding Example 1
Fetch Mem WBDecode Exec.

i+2 (LW)

PC

A

i+1 (ADD)

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

A
D

D
 $t5 / 0

$t1 reg. #
0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x0
/ 0x24

/ 0x60

12345678
0 00 0000

i+2 i+1 LW forwards $t1
t EXEC t

ADD uses the

© Mark Redekopp, All rights reserved

to EXEC stage
and writes back

to reg. file

forwarded data in
place of the

wrong $t1 value

Time Space DiagramTime Space Diagram
Fetch
10ns

Decode
10ns

Exec.
10ns

Mem.
10ns

WB
10ns10ns 10ns 10ns 10ns 10ns

C1 LW

C2 ADD LW

C3 i ADD LWC3 i ADD LW

C4 i ADD LW

C5 i+1 i ADD LW

nop

nop

C6 i+2 i+1 i ADD

C7 i+3 i+2 i+1 i ADD

nop

Using Forwarding to Handle
Dependencies (Data Hazards)

© Mark Redekopp, All rights reserved

Data Forwarding – Example 2Data Forwarding Example 2

• ADD $t3,$t1,$t2
• SUB $t5 $t3 $t4

Initial Conditions (assume leading 0’s in
registers):

$t1 = 0x0aSUB $t5,$t3,$t4
• XOR $t7,$t5,$t3

$t2 = 0x04
$t3 = 0xffffffff
$t4 = 0x05

After execution:

$t4 = 0x05
$t5 = 0x12

After execution:
$t3 = 0x0e
$t5 = 0x02

© Mark Redekopp, All rights reserved

$t7 = 0x0c

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB
(SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05

I-Cache D-CacheALUReg.
File

PC A
D

D
 $t3,

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

File$t1,$t2

SUB is ADD decodes

© Mark Redekopp, All rights reserved

fetched and fetches reg.
values

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t

(XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05 t3 reg # / 0xI-Cache ALUReg.

File

PC S
U

B
 $t5, D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

x0a / 0x04

File$t3,$t4

XOR is SUB decodes and ADD produces

© Mark Redekopp, All rights reserved

fetched fetches wrong
reg. value of $t3

the sum

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t5

(i+1) (XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05

5 reg # / 0xfI-Cache ALUReg.
File

PC X
O

R
 $t7

$t3 reg # D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

ffffffff / 0x05

File,$t3,$t5

/ 0x0E

5

Instruc i+1 XOR fetches ADD forwards the SUB uses

0x0E

© Mark Redekopp, All rights reserved

is fetched wrong reg. values
for both $t3 and

,,$t5

sum to SUB in
EXEC stage

forwarded value
0x0e rather than

0xffffffff

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t7

(i+2) (i+1) (XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0x0e
$t4 0x05

7 reg
/ 0xfI-Cache ALUReg.

File

PC

i+1

$t5 reg #

$t3 reg # D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

ffffffff/ 0x12

File

1 / 0x09

/ 0x0E

2

Instruc i+2 i+1 decodes SUB has XOR uses ADD writes
back new

0x09 0x0E

© Mark Redekopp, All rights reserved

is fetched executed
correctly

forwarded values
rather than

fetched values

back new
value to $t3

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (XOR) (SUB)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0x0e
$t4 0x05

i+1I-Cache ALUReg.
File

PC

i+2

$t7 reg #

$t5 reg # D-Cache

$t7 = 0x0c
$t4 = 0x05
$t7 = 0x0c
$t5 = 0x09

File

2 / 0x05

/ 0x09

Instruc i+3 i+2 decodes XOR has i+1 executes SUB writes
back new

© Mark Redekopp, All rights reserved

is fetched executed
correctly

back new
value to $t5

Time Space DiagramTime Space Diagram
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 ADD

C2 SUB ADD

C3 XOR SUB ADD

• ADD $t3,$t1,$t2
• SUB $t5,$t3,$t4

C3 XOR SUB ADD

C4 i XOR SUB ADD

C5 i+1 i XOR SUB ADD

• XOR $t7,$t3,$t5

C6 i+2 i+1 i XOR SUB

C7 i+3 i+2 i+1 i XOR

Using Forwarding to Handle Dependencies

(Requires no stalls/bubbles for dependent

© Mark Redekopp, All rights reserved

(q p
instructions)

Data Forwarding SummaryData Forwarding Summary

• Forwarding paths from…Forwarding paths from…
– WB to MEM [ADD $t1,$t2,$t3; SW $t1,0($s0)]
– WB to EX [LW $t1,0($t2); next inst.; SUB $t3,$t1,$t4][()]
– MEM to EX [ADD $t1,$t2,$t3; SUB $t3,$t1,$t4]

• Issue Latency = Number of cycles we must stallstall
(insert bubbles) before we can issue a dependent
instruction

Instruction Type w/o Forwarding w/ Full Forwarding
LW 2 ___

ALU Instruction 2

© Mark Redekopp, All rights reserved

ALU Instruction 2 ___

Control HazardControl Hazard

• Branch outcomes: orBranch outcomes: ______________ or ____________________
• Not known until late in the pipeline

– Prevents us from fetching instructions that we knowPrevents us from fetching instructions that we know
will be executed in the interim

– Rather than stall, predict the outcome and keep
f t hi i t l ti th i li iffetching appropriately…correcting the pipeline if we
guess wrong

• Options

beq L1• Options

– Predict ____________________
– Predict

beq L1
L2 ---

© Mark Redekopp, All rights reserved

Predict ____________________ ---
beq L2

L1 ---

Branch Outcome AvailabilityBranch Outcome Availability
• Branch outcome only available in MEM stage

– Incorrect instruction sequence already in pipeline
Fetch Decode Exec. Mem WB

4
0x40028c

+

gi
st

er

Read
Reg. 1 #

Read
Reg. 2 #

Read R
eg

is
te

r

Sh.
Left
2

+

PC R
eg

is
te

r

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

In
st

ru
ct

io
n

R
eg

Register File

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

pe
lin

e
S

ta
ge

 R A
LU Res.

Zero

0
1 N

ew
 T

ar
ge

t

Addr.

Read
Data pe

lin
e

S
ta

ge
 R

0

1

0 40000 Register File

Sign
Extend

Pi

D-Cache

Write
Data

Pi

16 32

0x40000c

© Mark Redekopp, All rights reserved

Instruc n+1Instruc n+2Instruc n+3
0x40000c 0x400008 0x400004

Branch
0x400000

Branch PenaltyBranch Penalty

• Penalty = number of instructions that needPenalty = number of instructions that need
to be ___________ on misprediction

• Currently our branch outcome and target• Currently our branch outcome and target
address is available during the MEM stage,
passed back to the Fetch phase and startspassed back to the Fetch phase and starts
fetching correct path (if mispredicted) on the
next cyclenext cycle

• __cycle branch penalty when mispredicted

© Mark Redekopp, All rights reserved

Predict Not TakenPredict Not Taken

• Keep fetching instructions from the NotKeep fetching instructions from the Not
Taken (NT)/sequential stream

• Requires us to “flush”/delete instructions• Requires us to flush /delete instructions
fetched from the NT path if the branch
ends up being Takenends up being Taken

© Mark Redekopp, All rights reserved

Predict Not TakenPredict Not Taken
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 BEQ

C2 ADD BEQ

C3

BEQ $a0,$a1,L1 (NT)
L2: ADD $s1,$t1,$t2

$ $ $ C3 SUB ADD BEQ

C4 OR SUB ADD BEQ

C5 BNE OR SUB ADD BEQ

SUB $t3,$t0,$s0
OR $s0,$t6,$t7
BNE $s0 $s1 L2 (T)

C6 AND BNE OR SUB ADD

C7 SW AND BNE OR SUB

C8 LW SW AND BNE OR

BNE $s0,$s1,L2 (T)
L1: AND $t3,$t6,$t7

SW $t5,0($s1)
LW SW AND BNE OR

C9 ADD BNE

C10 SUB ADD

LW $s2,0($s5)
nopnop nop

nopnop nop

© Mark Redekopp, All rights reserved

Using Predict NT keeps the pipeline full when we
are correct and flushes instructions when wrong

(penalty = 3 for our 5-stage pipeline)

Predict TakenPredict Taken

• In our 5-stage pipeline as currently shown,In our 5 stage pipeline as currently shown,
predicting taken is …

• In other architectures we may be able to know
the branch target early and thus use thisthe branch target early and thus use this
method, however, if we predict incorrectly we
still must flush

© Mark Redekopp, All rights reserved

still must flush

Predicting TakenPredicting Taken
• Branch target address not available until MEM stage

Fetch Decode Exec. Mem WB

4
0x40028c

+

gi
st

er

Read
Reg. 1 #

Read
Reg. 2 #

Read R
eg

is
te

r

Sh.
Left
2

+

PC R
eg

is
te

r

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

In
st

ru
ct

io
n

R
eg

Register File

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

pe
lin

e
S

ta
ge

 R A
LU Res.

Zero

0
1 N

ew
 T

ar
ge

t

Addr.

Read
Data pe

lin
e

S
ta

ge
 R

0

1

??? Register File

Sign
Extend

Pi

D-Cache

Write
Data

Pi

16 32

???

© Mark Redekopp, All rights reserved

PC for T path
unknown

Branch
0x400000

PC for T path
unknown

PC for T path
unknown

Early Branch DeterminationEarly Branch Determination

• Goal is to keep the pipeline full and avoidGoal is to keep the pipeline full and avoid
bubbles/stalls

• Number of bubbles/stalls introduced by control y
hazards (branches) depends on when we
determine the outcome and target address of
the branch (__________________________)

• Currently, these values are available in the MEM
stage

• We can try to reorganize the pipeline to make
th b h t d t t dd

© Mark Redekopp, All rights reserved

the branch outcome and target address
available earlier

Early Branch DeterminationEarly Branch Determination

• By actually adding a little bit of extra HW we canBy actually adding a little bit of extra HW we can
move the outcome determination and target
address calculation to the ____________ stage
– Again this may cause a small increase in clock period

© Mark Redekopp, All rights reserved

Reorganized 5-Stage PipelineReorganized 5 Stage Pipeline

F t h D d E M WBFetch Decode Exec. Mem WB

Sh.
Left 2

+

+

is
te

r

Read
Reg. 1 #

Read
Reg. 2 #

Read

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

ns
tru

ct
io

n
R

eg
i

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
LU Res.

Zero

0
1

Addr.

Read
Data

0

1

=

In Register File

Sign
Extend D-Cache

Data
Write
Data

16 32

© Mark Redekopp, All rights reserved

Early Determination w/ Predict NTEarly Determination w/ Predict NT
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 BEQ

C2 ADD BEQ

C3

BEQ $a0,$a1,L1 (NT)
L2: ADD $s1,$t1,$t2

$ $ $ C3 SUB ADD BEQ

C4 OR SUB ADD BEQ

C5 BNE OR SUB ADD BEQ

SUB $t3,$t0,$s0
OR $s0,$t6,$t7
BNE $s0 $s1 L2 (T)

C6 AND BNE OR SUB ADD

C7 BNE OR SUB

C8 BNE OR

BNE $s0,$s1,L2 (T)
L1: AND $t3,$t6,$t7

SW $t5,0($s1)
BNE OR

C9 BNE

C10

LW $s2,0($s5)

© Mark Redekopp, All rights reserved

Using early determination & predict NT keeps the
pipeline full when we are correct and has a single

instruction penalty for our 5-stage pipeline

A Look Ahead: Branch PredictionA Look Ahead: Branch Prediction

• Currently we have a static Loop
BodyCurrently we have a static

prediction policy (NT)
• We could allow a

Body

Branch
High

probability of
being Taken______________

prediction per instruction per instruction
(give a _____ with the

g

T: loop

NT: done

branch that indicates T or
NT)
W ld ll

Branch

NT: if
T: else

May exhibit
data

dependent
behavior

• We could allow ________ ________
predictions per instruction per instruction
(use its)

Not Taken
Path Code

NT: if

© Mark Redekopp, All rights reserved

(use its _______________) Taken Path
Code

After Code

ExerciseExercise
• Schedule the following code segment

Fetch Decode Exec. Mem. WB

C1

C2

on our 5 stage pipeline assuming…
– Full forwarding paths (even into

decode stage for branches)
– Early branch determination

C3

C4

C5Early branch determination
– Predict NT (no delay slots)

• Calculate the CPI from time first
instruction completes until last

C6

C7

C8instruction completes until last
BEQ instruction completes

• Show forwarding using arrows in the
time-space diagram

C9

C10

C11
ADD $s0,$t1,$t2

L1: LW $t3,0($s0)
SLT $t1,$t3,$t4
BEQ $t1,$zero,L1 (T, NT)

C11

C12

C13

C14

© Mark Redekopp, All rights reserved

SUB $s2,$s3,$s4
ADD $s2,$s2,$s5

• CPI = ___________________________

C14

C15

C16

