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Basic Pipelining Techniques
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Single & Multi-Cycle PerformanceSingle & Multi Cycle Performance

Single Cycle CPU Multi Cycle CPUSingle-Cycle CPU
• Each piece of the datapath 

requires only a small period of 
th ll i t ti

Multi-Cycle CPU
• Sharing resources allows for 

compact logic design but in 
d d i ff dthe overall instruction 

execution (clock cycle) time 
yielding low utilization of the 
HW’s actual capabilities

modern design we can afford 
replicated structures if needed

• Each instruction still requires 
l l t l tHW s actual capabilities several cycles to complete
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PipeliningPipelining
• Combines elements of both designsg

– Datapath of ______________ CPU w/ separate resources
– Datapath broken into _________ with temporary registers between 

stagesstages 
• _________ clock cycle
• A single instruction requires CPI = n

S stem can achie e CPI• System can achieve CPI = _________
– Overlapping Multiple Instructions (separate instruction in each 

stage at once)

Inst. 1
Inst. 1

I t 1
Inst. 2

I t 2I t 3

F D Ex
Clock 1
Clock 2
Cl k 3

Mem WB
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Inst. 1Inst. 2
Inst. 2

Inst. 3
Inst. 3

Inst. 3
Inst. 4

Inst. 4Inst. 5

Clock 3
Clock 4
Clock 5

Inst. 1
Inst. 1Inst. 2

Basic 5 Stage PipelineBasic 5 Stage Pipeline
• Same structure as single cycle but now broken into 5 stages
• Pipeline stage registers act as temp registers storing intermediate• Pipeline stage registers act as temp. registers storing intermediate 

results and thus allowing previous stage to be reused for another 
instruction

– Also, act as a barrier from signals from different stages intermixingAlso, act as a barrier from signals from different stages intermixing
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Issues with PipeliningIssues with Pipelining
• ____________ of HW/logic resources between stages ____________ g g

because of full utilization
– Can’t have a single cache (both I & D) because each is needed to 

fetch one instruction while another accesses data]
• Prevent signals in one stage (instruc.) from ___________ 

another stage (instruc.) and becoming convoluted
• Balancing stage delayBalancing stage delay

– Clock period = ______________
– In example below, clock period = ______ means _____ delay for 

only of logic delayonly ______ of logic delay

Sample 
Stage Delay

10ns 10ns 50ns
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Fetch 
Logic

Decode 
Logic

Execute 
Logic

Resolution of Pipelining IssuesResolution of Pipelining Issues
• No sharing of HW/logic resources between stagesg g g

– For full performance, no feedback (stage i feeding back to stage i-k)
– If two stages need a HW resource, _________ the resource in both 

stages (e.g. an I- AND D-cache)
• Prevent signals from one stage (instruc.) from flowing into 

another stage (instruc.) and becoming convoluted
– Stage Registers act as to signals until next edgeStage Registers act as __________ to signals until next edge

• Balancing stage delay [Important!!!]
– Balance or divide long stages (See next slides)
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Fetch 
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Balancing Pipeline StagesBalancing Pipeline Stages

• Clock period must equal the 
5 ns 15 ns

p q
LONGEST delay from register to 
register

In Example 1 clock period would
Ex. 1: Unbalanced stage delay

Clock Period = 15ns– In Example 1, clock period would 
have to be set to ____ [ 66 MHz], 
meaning total time through pipeline 
= 30ns for only ns of logic

10 ns 10 ns

Clock Period = 15ns

 30ns for only ____ ns of logic

• Could try to balance delay in 
each stage Ex. 2: Balanced stage delay

Clock Period = 10ns (150% speedup)
– Example 2: Clock period = __ns 

[100 MHz], while total time through 
pipeline is still = 20ns
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Pipelining Effects on Clock PeriodPipelining Effects on Clock Period
5 ns 15 ns

• Rather than just try to balance j y
delay we could consider making 
more stages

Divide long stage into multiple
Ex. 1: Unbalanced stage delay

Clock Period = 15ns

10 ns 10 ns

– Divide long stage into multiple 
stages

– In Example 3, clock period could be 
5ns [ MHz]

Clock Period = 15ns

5ns [_____ MHz]
– Time through the pipeline (latency) 

is still 20 ns, but we’ve increased 
our (1 result every 5

Ex. 2: Balanced stage delay
Clock Period = 10ns (150% speedup)

5 ns 5 ns 5 ns 5 ns

our __________ (1 result every 5 
ns rather than every 10 or 15 ns)

– Note:  There is a small time 
overhead to adding a pipeline
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Ex. 3: Break long stage into multiple stages
Clock period = 5 ns (_____ speedup)

overhead to adding a pipeline 
register/stage (i.e. can’t go crazy 
adding stages)



Feed-Forward IssuesFeed Forward Issues
• CISC instructions often perform several ALU and memory p y

operations per instructions
– MOVE.W (A0)+,$8(A0,D1)  [M68000/Coldfire ISA]

• 3 Adds (post-increment, disp., index)( )
• 3 Memory operations (I-Fetch + 1 read + 1 write)

– This makes pipelining hard because of multiple uses of ALU and 
memory

• Redesign the Instruction Set Architecture to better support 
pipelining (MIPS was designed with pipelining in mind)
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Sample 5-Stage PipelineSample 5 Stage Pipeline
• Examine the basic operations that need to be performed by p p y

our instruction classes
– LW:  I-Fetch, Decode/Reg. Fetch, Address Calc., Read Mem., 

Write to RegisterWrite to Register
– SW: I-Fetch, Decode/Reg. Fetch, Address Calc., Write Mem.
– ALUop:  I-Fetch, Decode/Reg. Fetch, ALUop, Write to Reg.

B I F t h D d /R F t h C (S bt t) U d t PC– Bxx:  I-Fetch, Decode/Reg. Fetch, Compare (Subtract), Update PC

• These suggest a 5-stage pipeline:
–– II--Fetch, Fetch, ,,
–– Decode/Reg. Fetch, Decode/Reg. Fetch, 
–– ALU (Exec.), ALU (Exec.), 

MemoryMemory
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–– Memory, Memory, 
–– Reg. Reg. WritebackWriteback

Basic 5 Stage PipelineBasic 5 Stage Pipeline
• All control signals needed for an instruction in the following stages are 

t d i th d d t dgenerated in the decode stage and _______________________
– Since writeback doesn’t occur until final stage, write register # is shipped with the 

instruction through the pipeline and then used at the end
– Register File can read out the current data being written if read reg # = write reg #Register File can read out the current data being written if read reg #  write reg #
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Sample InstructionsSample Instructions

Instruction
LW $t1,4($s0)

ADD $t4 $t5 $t6ADD $t4,$t5,$t6

BEQ $a0,$a1,LOOP

For now let’s assume we just execute one at a time For now let’s assume we just execute one at a time 
though that’s not how a pipeline works (multiple though that’s not how a pipeline works (multiple 

instructions are executed at one time).instructions are executed at one time).
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st uct o s a e e ecuted at o e t e)st uct o s a e e ecuted at o e t e)



LW $t1 4($s0)LW  $t1,4($s0)

Fetch Decode Exec. Mem WB
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Fetch LW and 
increment PC

Add offset 4 to 
$s0 value

Decode instruction 
and fetch operands

Write 
word to 

$t1

Read word 
from memory

ADD $t4 $t5 $t6ADD $t4,$t5,$t6
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Fetch ADD and 
increment PC

Decode instruction 
and fetch operands

Add $t5 + $t6 Just pass 
sum through

Write 
sum to 

$t4

BEQ $a0 $a1 LOOPBEQ $a0,$a1,LOOP
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Fetch BEQ, 
increment PC, 
pass on PC+4

Decode instruction 
and fetch operands, 

pass on PC+4

Do $a0-$a1 and 
check if result = 0
Calculate branch 
target address

Update PC,
No Mem. 
Access

Do 
Nothing

PipeliningPipelining

• Now let’s see how all three can be run inNow let s see how all three can be run in 
the pipeline
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5-Stage Pipeline5 Stage Pipeline
Fetch Decode Exec. Mem WB

PC

I-Cache D-CacheALUReg.
File

PC

File
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ExampleExample
Fetch Decode Exec. Mem WB
(LW)

PC

I-Cache D-CacheALUReg.
File

PC

File
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Fetch LW

ExampleExample
Fetch Decode Exec. Mem WB
(ADD) (LW)

PC LW
  $t1,4I-Cache D-CacheALUReg.

File

PC

4($s0)

File
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Decode instruction 
and fetch operands

Fetch 
ADD

ExampleExample
Fetch Decode Exec. Mem WB

$t1 

(BEQ) (ADD) (LW)

PC reg. # / $s0I-Cache D-CacheALUReg.
File

PC A
D

D
 $t4, 0 data / 0x0

File$t5,$t6

04
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Add 
displacement 
0x04 to $s0

Fetch 
BEQ

Decode 
instruction and 
fetch operands



ExampleExample
Fetch Decode Exec. Mem WB
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Q
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en ant
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Read word from 
memory

Add 
$t5 + $t6

Decode instruction 
and pass 

displacement

Fetch next 
instruc i+1

ExampleExample
WBFetch Decode Exec. Mem
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Write 
word to 

$t1

Just pass 
data to next 

stage

Check if 
condition is 

true

Decode 
operands of 
instruc. i+1

Fetch next 
instruc i+2
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WBFetch Decode Exec. Mem
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Execute i+1Decode i+2Fetch i+3 If condition is true 
add displacement 

to PC

Write 
word to 

$t4

ExampleExample
WBFetch Decode Exec. Mem

PC

B

(BEQ)(target) (i+3) (i+2) (i+1)

I-Cache D-CacheALUReg.
File

PC
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File  nothing
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Delete i+2Delete i+3 Delete i+1 Do 
nothing

Fetch 
instruc at 

branch loc.



5-Stage Pipeline5 Stage Pipeline
Fetch Decode Exec. Mem WB

PC

10 ns 10 ns10 ns10 ns 10 ns

I-Cache D-CacheALUReg.
File

PC

File
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Without pipelining (separate execution), each instruction would take _____

With pipelining, each instruction still takes _____ but 1 finishes every _____

Non-Pipelined TimingNon Pipelined Timing
• Execute n instructions Fetch

10ns
Decode

10ns
Exec.
10ns

Mem.
10ns

WB
10ns

using a k stage datapath
– i.e. Multicycle CPU w/ k 

steps or single cycle CPU

10ns 10ns 10ns 10ns 10ns

C1 ADD

C2 ADD

C3 ADDsteps or single cycle CPU 
w/ clock cycle k times 
slower

• w/o pipelining:

C3 ADD

C4 ADD

C5 ADD
• w/o pipelining: ______ 

cycles
– ___________________

C6 SUB

C7 SUB

C8 SUBC8 SUB

C9 SUB

C10 SUB
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C11 LW

______ cycles

Pipelined TimingPipelined Timing
• Execute n instructions using Fetch

10ns
Decode

10ns
Exec.
10ns

Mem.
10ns

WB
10ns

a k stage datapath
– i.e. Multicycle CPU w/ k 

steps or single cycle CPU w/ 
l k l k ti l

10ns 10ns 10ns 10ns 10ns

C1 ADD

C2 SUB ADD

C3 LW SUB ADD
P

ipeline Fil
clock cycle k times slower

• w/o pipelining: n*k cycles
– n instrucs. * k CPI

C3 LW SUB ADD

C4 SW LW SUB ADD

C5 AND SW LW SUB ADD

lling
Pipeli

• w/ pipelining: ________
– __________ for 1st instruc. + 

_____ cycles for ______ 
instrucs.

C6 OR AND SW LW SUB

C7 XOR OR AND SW LW

C8 XOR OR AND SW

Pip
ne Full

instrucs.
– Assumes we keep the 

pipeline full

C8 XOR OR AND SW

C9 XOR OR AND

C10 XOR OR

peline E
m

pty
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C11 XOR

ying

7 Instrucs. = _______________

ThroughputThroughput
• Throughput (T) = g p ( ) __________________________

– n instructions / clocks to executed n instructions
– For a large number of instructions, the throughput of a 

pipelined processor is every clock cycleevery clock cyclepipelined processor is ___________ every clock cycle___________ every clock cycle
–– ASSUMES that ______________________________ASSUMES that ______________________________

Non-pipelined Pipelined

Throughput
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HazardsHazards
• Any sequence of instructions that prevent full pipeline utilization

– Often causes the pipeline to _________ an instruction
•• Structural Hazards Structural Hazards = HW organization cannot __________________

_________________________________
D t H dD t H d D t d d i•• Data Hazards Data Hazards = Data dependencies
– Instruction ______ needs result from instruction ___ that is still in pipeline
– Example:

• LW $t4 0x40($s0)• LW $t4, 0x40($s0)
• ADD $t5,$t4,$t3

– ADD couldn’t decode and get the ____________________________… 
stalls the pipeline

•• Control Hazards Control Hazards = Branches & changes to PC in the pipeline
– If branch is determined to be taken later in the pipeline, _____________ 

the instructions in the pipeline that _____________________
Oth f t ll
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• Other causes for stalls: __________________

Structural HazardsStructural Hazards
• Combinations of instructions that cannot be overlapped 

in the given order due to HW constraintsin the given order due to HW constraints
– Often due to lack of HW resources

• Example structural hazard:  A single memory rather than p g y
separate I & D caches
– Structural hazard any time an instruction needs to perform a data 

access (i.e. ‘lw’ or ‘sw’)access (i.e. lw  or sw ) 

LWi+1 i

ALUReg.
File

PC

i+2

© Mark Redekopp, All rights reserved

Cache
Hazard!

Structural Hazards ExamplesStructural Hazards Examples
• Another example structural hazard:  Fully pipelined vs. 

non pipelined functional units with issue latenciesnon-pipelined functional units with issue latencies
– Fully pipelined means it may take multiple clocks but a _______

____________________________
– Non-fully pipeline means that a new instruction can only be 

inserted every _____________
– Example of non-fully pipelined divider

• Usually issue latencies of 32 to 60 clocks
• Thus DIV followed by DIV w/in 32 clocks will cause a stall

S
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eg
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Non-pipelined Divider
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eg
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eg
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Stage 

1

Pi
pe

 R
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.

Div. 
Stage 

2

Div. 
Stage 

n
…

Pi
pe

 R
eg

.

DIV 1
DIV 2 (Hazard)
…

DIV 2

Sequence:
DIV 1
DIV 2

Sequence:
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DIV 2

Data HazardsData Hazards

• _________________ 
Hazard
– Later instruction reads

Initial Conditions (assume leading 0’s in 
registers):

$s0 = 0x10010000– Later instruction reads 
a result from a 
previous instruction 
(d t i b i

$t1 = 0x0
$t4 = 0x24
$t5 = 0x0

00000060
12345678 0x10010000

0x10010004

(data is being 
communicated 
between 2 instrucs.) After execution values should be:

$t5 = 0x0

)
• Example sequence

– LW  $t1,4($s0)

$s0 = 0x10010000
$t1 = 0x60
$t4 = 0x24
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– ADD $t5,$t1,$t4
$t4  0x24
$t5 = 0x84



Data HazardsData Hazards
Fetch Decode Exec. Mem WB
(ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24LW

  $t1,4I-Cache ALUReg.
File

PC

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

4($s0)

File 12345678
0 00 0000
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Decode instruction 
and fetch operands

Fetch 
ADD

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

$t1 

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 / 

File$t1,$t4

12345678
0 00 0000

4

$
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Add 
displacement 

4 to $t1

Fetch 
instruc. 

i+1

$t1 still = 0x0 
rather than the 
desired 0x60

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

A

i+2 i+1 (ADD) (LW)

PC

$t1

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24

A
D

D
 $t5 / 0I-Cache ALUReg.

File

PC

i+1

1 reg. # / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

x0 / 0x24

File

1 x10010004

12345678
0 00 0000

ADD usesFetch i+1 Data intended
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ADD uses 
wrong data

Fetch 
instruc. 

i+2

i+1 Data intended 
for $t1 is just 

now read

Data HazardsData Hazards
Fetch Decode Exec. Mem WB

i+3 i+2 i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

i+1I-Cache ALUReg.
File

PC

i+2

A
D

D
 $t5 

$t1 reg. #

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

2 / 0x24

# / 0x60

12345678
0 00 0000
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Now it’s too late the sum of the ADD Now it’s too late the sum of the ADD 
instruction is wrong!instruction is wrong!



Data HazardsData Hazards

Solutions:Solutions:

1.

2.
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Stalling the PipelineStalling the Pipeline

• All instructions in front of the stalledAll instructions in front of the stalled 
instruction can _______________

• All instructions behind the stalled• All instructions behind the stalled 
instruction ________________
St lli i t /• Stalling inserts _____________ / nops 
(no-operations) into the pipeline
– A “nop” is an actual instruction in the MIPS 

ISA that does NOTHING
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Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

$t1 

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 / 

File$t1,$t4

12345678
0 00 0000

4

LW continues Fetch ADD stalls in the 
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through 
pipeline

instruc. 
i+1

Decode stage 
and is not allowed 

to move on

Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

i+1 (ADD) (NOP/bubble) (LW)

PC

$t1

$s0 = 0x10010000
$t1 = 0x0
$t4 0 24

I-Cache ALUReg.
File

PC A
D

D
 $t5,

1 reg. # / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File$t1,$t4

x10010004

12345678
0 00 0000

Fetch ADD remains LW continues 
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instruc. 
i+1 stalls

stalled until LW 
writes back $t1 

value

through 
pipeline



Stalling the PipelineStalling the Pipeline
Fetch Decode Mem WBExec.

i+1 (ADD) (NOP/bubble) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

(NOP/bubble)

I-Cache ALUReg.
File

PC $t1 reg. #

0x10010004
00000060
0x10010000

A
D

D
 $t5,

$t4 = 0x24
$t5 = 0x0

File

# / 0x60

12345678
0 00 0000$t1,$t4

Fetch Reg. file passes LW writes 
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instruc. 
i+1 stalls

new value of $t1 
along with $t4 to 

next stage

back result to 
$t1

Stalling the PipelineStalling the Pipeline
Fetch Decode Exec. Mem WB

i+2 i+1 (ADD) (NOP/bubble) (NOP/bubble)

PC

A$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

A
D

D
 $t5 / 0x

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x60 / 0x24

12345678
0 00 0000

i+2 i+1 Add now has 
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correct value 
and can 
proceed

Time Space DiagramTime Space Diagram
Fetch
10ns

Decode
10ns

Exec.
10ns

Mem.
10ns

WB
10ns10ns 10ns 10ns 10ns 10ns

C1 LW

C2 ADD LW

C3 i ADD LWC3 i ADD LW

C4 i ADD LW

C5 i ADD LW

nop

nop nop

C6 i+1 i ADD

C7 i+2 i+1 i ADD

C8 i+3 i+2 i+1 i ADD

nop nop

nop

C8 i+3 i+2 i+1 i ADD

Using Stalls to Handle 
Dependencies (Data Hazards)
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Data ForwardingData Forwarding

• Also known as “bypassing”Also known as bypassing
• Take results still in the pipeline (but not written 

back to a GPR) and pass them to dependent ) p p
instructions
– To keep the same clock cycle time, results can only 

be taken from the __________ of a stage and passed 
back to the ______________ of a previous stage 

– Cannot take a result produced at the of a– Cannot take a result produced at the _______ of a 
stage and pass it to the ____________ of a previous 
stage because of the stage delays
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• Recall that data written to the register file is 
available for reading in the same clock cycle



Data Forwarding – Example 1Data Forwarding Example 1
Fetch Decode Exec. Mem WB

$t1 

i+1 (ADD) (LW)

PC

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24 reg. # / 0x1I-Cache ALUReg.

File

PC A
D

D
 $t5,

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

0010000 / 

File$t1,$t4

12345678
0 00 0000

4

LW continues Fetch ADD is allowed to 
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through 
pipeline

instruc. 
i+1

fetch the incorrect 
value of $t1

Data Forwarding – Example 1Data Forwarding Example 1
Fetch Mem WBDecode Exec.

i+2 (LW)

PC

$t1A

i+1 (ADD)

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

1 reg. # / 0x

A
D

D
 $t5 / 0

0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x10010004

x0 / 0x24

12345678
0 00 0000

i+2 i+1 LW continues ADD cannot get 
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through 
pipeline

data until after LW 
does read.  So it 

stalls.

Data Forwarding – Example 1Data Forwarding Example 1
Fetch Mem WBDecode Exec.

i+2 (LW)

PC

A

i+1 (ADD)

$s0 = 0x10010000
$t1 = 0x60
$t4 0 24

I-Cache ALUReg.
File

PC

i+1

A
D

D
 $t5 / 0

$t1 reg. #
0x10010004
00000060
0x10010000

$t4 = 0x24
$t5 = 0x0

File

1 x0
/ 0x24

# / 0x60

12345678
0 00 0000

i+2 i+1 LW forwards $t1 
t EXEC t

ADD uses the 
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to EXEC stage 
and writes back 

to reg. file

forwarded data in 
place of the 

wrong $t1 value

Time Space DiagramTime Space Diagram
Fetch
10ns

Decode
10ns

Exec.
10ns

Mem.
10ns

WB
10ns10ns 10ns 10ns 10ns 10ns

C1 LW

C2 ADD LW

C3 i ADD LWC3 i ADD LW

C4 i ADD LW

C5 i+1 i ADD LW

nop

nop

C6 i+2 i+1 i ADD

C7 i+3 i+2 i+1 i ADD

nop

Using Forwarding to Handle 
Dependencies (Data Hazards)

© Mark Redekopp, All rights reserved



Data Forwarding – Example 2Data Forwarding Example 2

• ADD $t3,$t1,$t2
• SUB $t5 $t3 $t4

Initial Conditions (assume leading 0’s in 
registers):

$t1 = 0x0aSUB $t5,$t3,$t4
• XOR $t7,$t5,$t3

$t2 = 0x04
$t3 = 0xffffffff
$t4 = 0x05

After execution:

$t4 = 0x05
$t5 = 0x12

After execution:
$t3 = 0x0e
$t5 = 0x02
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$t7 = 0x0c

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB
(SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05

I-Cache D-CacheALUReg.
File

PC A
D

D
 $t3,

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

File$t1,$t2

SUB is ADD decodes 
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fetched and fetches reg. 
values

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t

(XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05 t3 reg # / 0xI-Cache ALUReg.

File

PC S
U

B
 $t5, D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

x0a / 0x04

File$t3,$t4

XOR is SUB decodes and ADD produces 
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fetched fetches wrong 
reg. value of $t3

the sum

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t5

(i+1) (XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0xffffffff
$t4 0x05

5 reg # / 0xfI-Cache ALUReg.
File

PC X
O

R
  $t7

$t3 reg # D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

ffffffff / 0x05

File,$t3,$t5

/ 0x0E

5

Instruc i+1 XOR fetches ADD forwards the SUB uses 

0x0E
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is fetched wrong reg. values 
for both $t3 and 

,,$t5

sum to SUB in 
EXEC stage

forwarded value 
0x0e rather than 

0xffffffff



Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB

$t7

(i+2) (i+1) (XOR) (SUB) (ADD)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0x0e
$t4 0x05

7 reg
# / 0xfI-Cache ALUReg.

File

PC

i+1

$t5 reg # 

$t3 reg # D-Cache

$t4 = 0x05
$t7 = 0x0c
$t5 = 0x12

ffffffff/ 0x12

File

1 / 0x09

/ 0x0E

2

Instruc i+2 i+1 decodes SUB has XOR uses ADD writes 
back new

0x09 0x0E
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is fetched executed 
correctly

forwarded values 
rather than 

fetched values

back new 
value to $t3

Data Forwarding – Example 2Data Forwarding Example 2
Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (XOR) (SUB)

PC

$t1 = 0x0a
$t2 = 0x04
$t3 = 0x0e
$t4 0x05

i+1I-Cache ALUReg.
File

PC

i+2

$t7 reg # 

$t5 reg # D-Cache

$t7 = 0x0c
$t4 = 0x05
$t7 = 0x0c
$t5 = 0x09

File

2 / 0x05

/ 0x09

Instruc i+3 i+2 decodes XOR has i+1 executes SUB writes 
back new
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is fetched executed 
correctly

back new 
value to $t5

Time Space DiagramTime Space Diagram
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 ADD

C2 SUB ADD

C3 XOR SUB ADD

• ADD $t3,$t1,$t2
• SUB $t5,$t3,$t4

C3 XOR SUB ADD

C4 i XOR SUB ADD

C5 i+1 i XOR SUB ADD

• XOR $t7,$t3,$t5

C6 i+2 i+1 i XOR SUB

C7 i+3 i+2 i+1 i XOR

Using Forwarding to Handle Dependencies

(Requires no stalls/bubbles for dependent 
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( q p
instructions)

Data Forwarding SummaryData Forwarding Summary

• Forwarding paths from…Forwarding paths from… 
– WB to MEM [ADD $t1,$t2,$t3;  SW $t1,0($s0)]
– WB to EX  [LW $t1,0($t2); next inst.; SUB $t3,$t1,$t4][ ( ) ]
– MEM to EX [ADD $t1,$t2,$t3; SUB $t3,$t1,$t4]

• Issue Latency = Number of cycles we must stallstall
(insert bubbles) before we can issue a dependent 
instruction

Instruction Type w/o Forwarding w/ Full Forwarding
LW 2 ___

ALU Instruction 2
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ALU Instruction 2 ___



Control HazardControl Hazard

• Branch outcomes: orBranch outcomes: ______________ or ____________________
• Not known until late in the pipeline

– Prevents us from fetching instructions that we knowPrevents us from fetching instructions that we know 
will be executed in the interim

– Rather than stall, predict the outcome and keep 
f t hi i t l ti th i li iffetching appropriately…correcting the pipeline if we 
guess wrong

• Options
---
beq L1• Options

– Predict ____________________
– Predict

beq L1
L2   ---

---
---
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Predict ____________________ ---
beq L2

L1   ---

Branch Outcome AvailabilityBranch Outcome Availability
• Branch outcome only available in MEM stage

– Incorrect instruction sequence already in pipeline
Fetch Decode Exec. Mem WB

4
0x40028c

+

gi
st

er

Read 
Reg. 1 #

Read 
Reg. 2 #

Read R
eg

is
te

r

Sh. 
Left 
2

+

PC R
eg

is
te

r

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

In
st

ru
ct

io
n 

R
eg

Register File

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

pe
lin

e 
S

ta
ge

 R A
LU Res.

Zero

0
1 N

ew
 T

ar
ge

t 

Addr.

Read 
Data pe

lin
e 

S
ta

ge
 R

0

1

0 40000 Register File

Sign 
Extend

Pi

D-Cache

Write 
Data

Pi

16 32

0x40000c
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Instruc n+1Instruc n+2Instruc n+3
0x40000c 0x400008 0x400004

Branch
0x400000

Branch PenaltyBranch Penalty

• Penalty = number of instructions that needPenalty = number of instructions that need 
to be ___________ on misprediction

• Currently our branch outcome and target• Currently our branch outcome and target 
address is available during the MEM stage, 
passed back to the Fetch phase and startspassed back to the Fetch phase and starts 
fetching correct path (if mispredicted) on the 
next cyclenext cycle

• __cycle  branch penalty when mispredicted
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Predict Not TakenPredict Not Taken

• Keep fetching instructions from the NotKeep fetching instructions from the Not 
Taken (NT)/sequential stream

• Requires us to “flush”/delete instructions• Requires us to flush /delete instructions 
fetched from the NT path if the branch 
ends up being Takenends up being Taken

© Mark Redekopp, All rights reserved



Predict Not TakenPredict Not Taken
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 BEQ

C2 ADD BEQ

C3

BEQ  $a0,$a1,L1  (NT)
L2: ADD  $s1,$t1,$t2

$ $ $ C3 SUB ADD BEQ

C4 OR SUB ADD BEQ

C5 BNE OR SUB ADD BEQ

SUB  $t3,$t0,$s0
OR    $s0,$t6,$t7
BNE $s0 $s1 L2 (T)

C6 AND BNE OR SUB ADD

C7 SW AND BNE OR SUB

C8 LW SW AND BNE OR

BNE  $s0,$s1,L2   (T)
L1: AND  $t3,$t6,$t7

SW    $t5,0($s1)
LW SW AND BNE OR

C9 ADD BNE

C10 SUB ADD

LW    $s2,0($s5)
nopnop nop

nopnop nop
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Using Predict NT keeps the pipeline full when we 
are correct and flushes instructions when wrong 

(penalty = 3 for our 5-stage pipeline)

Predict TakenPredict Taken

• In our 5-stage pipeline as currently shown,In our 5 stage pipeline as currently shown, 
predicting taken is …

• In other architectures we may be able to know 
the branch target early and thus use thisthe branch target early and thus use this 
method, however, if we predict incorrectly we 
still must flush
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still must flush

Predicting TakenPredicting Taken
• Branch target address not available until MEM stage

Fetch Decode Exec. Mem WB

4
0x40028c

+

gi
st

er

Read 
Reg. 1 #

Read 
Reg. 2 #

Read R
eg

is
te

r

Sh. 
Left 
2

+

PC R
eg

is
te

r

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

In
st

ru
ct

io
n 

R
eg

Register File

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

pe
lin

e 
S

ta
ge

 R A
LU Res.

Zero

0
1 N

ew
 T

ar
ge

t 

Addr.

Read 
Data pe

lin
e 

S
ta

ge
 R

0

1

??? Register File

Sign 
Extend

Pi

D-Cache

Write 
Data

Pi

16 32

???
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PC for T path 
unknown

Branch
0x400000

PC for T path 
unknown

PC for T path 
unknown

Early Branch DeterminationEarly Branch Determination

• Goal is to keep the pipeline full and avoidGoal is to keep the pipeline full and avoid 
bubbles/stalls

• Number of bubbles/stalls introduced by control y
hazards (branches) depends on when we 
determine the outcome and target address of 
the branch (__________________________)

• Currently, these values are available in the MEM 
stage

• We can try to reorganize the pipeline to make 
th b h t d t t dd
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the branch outcome and target address 
available earlier



Early Branch DeterminationEarly Branch Determination

• By actually adding a little bit of extra HW we canBy actually adding a little bit of extra HW we can 
move the outcome determination and target 
address calculation to the ____________ stage
– Again this may cause a small increase in clock period
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Reorganized 5-Stage PipelineReorganized 5 Stage Pipeline

F t h D d E M WBFetch Decode Exec. Mem WB

Sh. 
Left 2

+

+

is
te

r

Read 
Reg. 1 #

Read 
Reg. 2 #

Read

A

B

4

0

5

5

I-Cache

0
1 PC

Addr.

Instruc.

ns
tru

ct
io

n 
R

eg
i

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

A
LU Res.

Zero

0
1

Addr.

Read 
Data

0

1

=

In Register File

Sign 
Extend D-Cache

Data
Write 
Data

16 32
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Early Determination w/ Predict NTEarly Determination w/ Predict NT
Fetch
(IF)

Decode
(ID)

Exec.
(EX)

Mem.
(ME)

WB
(IF) (ID) (EX) (ME)

C1 BEQ

C2 ADD BEQ

C3

BEQ  $a0,$a1,L1  (NT)
L2: ADD  $s1,$t1,$t2

$ $ $ C3 SUB ADD BEQ

C4 OR SUB ADD BEQ

C5 BNE OR SUB ADD BEQ

SUB  $t3,$t0,$s0
OR    $s0,$t6,$t7
BNE $s0 $s1 L2 (T)

C6 AND BNE OR SUB ADD

C7 BNE OR SUB

C8 BNE OR

BNE  $s0,$s1,L2   (T)
L1: AND  $t3,$t6,$t7

SW    $t5,0($s1)
BNE OR

C9 BNE

C10

LW    $s2,0($s5)
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Using early determination & predict NT keeps the 
pipeline full when we are correct and has a single 

instruction penalty for our 5-stage pipeline

A Look Ahead: Branch PredictionA Look Ahead: Branch Prediction

• Currently we have a static Loop 
BodyCurrently we have a static 

prediction policy (NT)
• We could allow a   

Body

Branch
High 

probability of 
being Taken______________

prediction per instruction per instruction 
(give a _____ with the 

g

T: loop

NT: done

branch that indicates T or 
NT)
W ld ll

Branch

NT: if
T: else

May exhibit 
data 

dependent 
behavior

• We could allow ________ ________ 
predictions per instruction per instruction 
(use its )

Not Taken 
Path Code

NT: if
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(use its _______________) Taken Path 
Code

After Code



ExerciseExercise
• Schedule the following code segment 

Fetch Decode Exec. Mem. WB

C1

C2

on our 5 stage pipeline assuming…
– Full forwarding paths (even into 

decode stage for branches)
– Early branch determination

C3

C4

C5Early branch determination
– Predict NT (no delay slots)

• Calculate the CPI from time first 
instruction completes until last

C6

C7

C8instruction completes until last 
BEQ instruction completes

• Show forwarding using arrows in the 
time-space diagram 

C9

C10

C11
ADD  $s0,$t1,$t2

L1: LW    $t3,0($s0)
SLT   $t1,$t3,$t4
BEQ  $t1,$zero,L1 (T, NT)

C11

C12

C13

C14
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SUB  $s2,$s3,$s4
ADD  $s2,$s2,$s5

• CPI = ___________________________

C14

C15

C16


