USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

EE 357 Unit 18

Basic Pipelining Techniques

© Mark Redekopp, Al rights reserved

Single & Multi-Cycle Performance

Single-Cycle CPU Multi-Cycle CPU

» Each piece of the datapath ¢ Sharing resources allows for
requires only a small period of compact logic design but in
the overall instruction modern design we can afford
execution (clock cycle) time replicated structures if needed
yielding low utilization of the « Each instruction still requires
HW’s actual capabilities several cycles to complete

Read +
Reg. 1#
Read

Reg.2#

Read
Write datal
Reg.#

Addr.

Instruc.
Read Addr.

data 2

Write
Data

I-Cache Read

Data

Register File
c Write
m Data
Sign
16 @ 2 D-Cache

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Pipelining

» Combines elements of both designs
— Datapath of CPU w/ separate resources

— Datapath broken into with temporary registers between
stages
. clock cycle
¢ A single instruction requires CPl =n

» System can achieve CPI =

— Overlapping Multiple Instructions (separate instruction in each
stage at once)

F D Ex Mem WB
Clock 1 | Inst. 1
Clock 2 | Inst. 2 | Inst. 1
Clock 3 | Inst. 3 | Inst. 2 | Inst. 1
Clock 4 | Inst.4 | Inst. 3 | Inst. 2 | Inst. 1
Clock 5 | Inst.5 | Inst. 4 | Inst. 3 | Inst. 2 | Inst. 1

© Mark Redekopp, All rights reserved

Basic 5 Stage Pipeline

e Same structure as single cycle but now broken into 5 stages

« Pipeline stage registers act as temp. registers storing intermediate
results and thus allowing previous stage to be reused for another

instruction
— Also, act as a barrier from signals from different stages intermixing
Fetch Decode Exec. Mem WB
4 —pf
1 Read
5 |Reg. 1#
Read F:’
5 |Reg.2# ~
= Read 3 &
8 Addr. & | Write data 1 a ()
8 Instruc. 5 e 3 o]
Write Read 2
I-Cache | pata data 2 Read| [
Register Fil & bata
egister rFile a Write a
Data
Sign
16 \ Extend 3 D-Cache
© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

Issues with Pipelining

. of HW/logic resources between stages
because of full utilization

— Can't have a single cache (both | & D) because each is needed to
fetch one instruction while another accesses data]

* Prevent signals in one stage (instruc.) from
another stage (instruc.) and becoming convoluted

» Balancing stage delay

— Clock period =
— In example below, clock period = means delay for
only of logic delay
Sample 10ns 10ns 50ns
Stage Delay

Execute
Logic

© Mark Redekopp, Al rights reserved

Resolution of Pipelining Issues

* No sharing of HW/logic resources between stages
— For full performance, no feedback (stage i feeding back to stage i-k)
— If two stages need a HW resource, the resource in both
stages (e.g. an I- AND D-cache)
* Prevent signals from one stage (instruc.) from flowing into
another stage (instruc.) and becoming convoluted
— Stage Registers act as to signals until next edge
» Balancing stage delay [Important!!!]
— Balance or divide long stages (See next slides)

Py Py Py
) @)
= =, =
%) %) %)
2 2 2
@ @ @
X X X

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Balancing Pipeline Stages

5ns 15 ns

» Clock period must equal the
LONGEST delay from register to

regISter . Ex. 1: Unbalanced stage delay
— In Example 1, clock period would Clock Period = 15ns
have to be set to [66 MHZz], o o
meaning total time through pipeline
= 30ns for only ns of logic
» Could try to balance delay in
Ex. 2: Balanced stage delay
eaCh Stage Clock Period = 10ns (150% speedup)
— Example 2: Clock period =__ns

[100 MHz], while total time through
pipeline is still = 20ns

© Mark Redekopp, All rights reserved

Pipelining Effects on Clock Period

5ns 15 ns

* Rather than just try to balance
delay we could consider making
more stages

— Divide long stage into multiple
stages

— In Example 3, clock period could be
5ns | MHz]

— Time through the pipeline (latency)
is still 20 ns, but we've increased
our (1 result every 5
ns rather than every 10 or 15 ns)

— Note: There is a small time
overhead to adding a pipeline
register/stage (i.e. can’t go crazy
adding stages)

© Mark Redekopp, All rights reserved

Ex. 1: Unbalanced stage delay
Clock Period = 15ns

10 ns 10 ns

Ex. 2: Balanced stage delay
Clock Period = 10ns (150% speedup)

5ns 5ns 5ns 5ns

Ex. 3: Break long stage into multiple stages
Clock period =5 ns (speedup)

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Feed-Forward Issues

» CISC instructions often perform several ALU and memory
operations per instructions
— MOVE.W (A0)+,$8(A0,D1) [Msg000/Coldfire ISA]
* 3 Adds (post-increment, disp., index)
* 3 Memory operations (I-Fetch + 1 read + 1 write)
— This makes pipelining hard because of multiple uses of ALU and
memory
» Redesign the Instruction Set Architecture to better support
pipelining (MIPS was designed with pipelining in mind)

Wite
Data

D-Cache

© Mark Redekopp, All rights reserved

Sample 5-Stage Pipeline

» Examine the basic operations that need to be performed by
our instruction classes

LW: I-Fetch, Decode/Reg. Fetch, Address Calc., Read Mem.,
Write to Register

SW: I-Fetch, Decode/Reg. Fetch, Address Calc., Write Mem.
ALUop: I-Fetch, Decode/Reg. Fetch, ALUop, Write to Reg.
— Bxx: I-Fetch, Decode/Reg. Fetch, Compare (Subtract), Update PC

* These suggest a 5-stage pipeline:
I-Fetch,

Decode/Reg. Fetch,

ALU (Exec.),

Memory,

Reg. Writeback

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Basic 5 Stage Pipeline

< All control signals needed for an instruction in the following stages are
generated in the decode stage and

— Since writeback doesn't occur until final stage, write register # is shipped with the
instruction through the pipeline and then used at the end

— Register File can read out the current data being written if read reg # = write reg #

Fetch Decode Exec. Mem wB
4 —pf
A' Read

5 |Reg. 1#
Read g
5 Reg. 2 # S
o = . Read 3 &
0 - g | Write data 1 a o
2 Instruc. IRE 8 54
1 a S s
o Read n
— iz data 2 ()
I-Cache ™ Data Read £
q Data 2
Register File g £
9 a Write o

Data
Sign
16 _ Extend 3 D-Cache

© Mark Redekopp, All rights reserved

School of Engineering

Sample Instructions

Instruction
LW $t1,4($s0)

ADD $t4,%t5,$t6

BEQ $a0,%al,LOOP

For now let's assume we just execute one at a time
though that’s not how a pipeline works (multiple
instructions are executed at one time).

© Mark Redekopp, All rights reserved

USC Viterbi

ol of Engine

USC Viterbi

School of En

LW $t1,4($s0)

Fetch Decode Exec. Mem

$50 # Read
Reg. 1 #

Read
Reg. 2 #

Addr. Write data 1

Reg. #

Instruc.

0x00000004 / $s0 value

. Re:
Write data 2
Data

I-Cache

$t1 #/ Address

Register File

$t1 #/ Data read from memor

LW $t1,4($s0) machine code

Extend

$t1 # / Offset:

16

$t1 #

wB

Add offset 4 to Read word

$s0 value

Decode instruction
and fetch operands

Fetch LW and
increment PC

© Mark Redekopp, All rights reserved

Write
from memory word to

$t1

ADD $t4,$t5,$t6

Fetch Decode Exec. Mem

$t5 #[Read
Reg. 1#

Read
Reg. 2 #

Addr.

Write data 1
Reg. #

Instruc.

. R
N Write data 2

I-Cache Data

$t4 # / Sum of $t5 + $t6
$t4 #/ Sum of $t5 + $t6

Register File

$t4 # / $t6 value / $t5 value

ADD $t4,$t5,$t6 machine code

Extend

16

$t4 #

wB

Decode instruction Add $t5 + $t6

and fetch operands

Fetch ADD and Just pass

increment PC

© Mark Redekopp, All rights reserved

Write
sum through sum to

$t4

USC Viterbi

ol of E ring

USC Viterbi

School of ng

BEQ $a0,$al,LOOP

Fetch Decode Exec. Mem

Read
Reg. 2 #
Read
Addr. | Write data 1
Reg. #

Instruc.

No writeback

] Re
Write data 2
Data

I-Cache

New Target PC

Register File

BEQ $a0,$al,LOOP machine code
Branch Displacement / $al val. / $a0 val.

wB

Fetch BEQ, Decode instruction Do $a0-$al and Update PC, Do
increment PC, and fetch operands, ~ check if result = 0 No Mem. Nothing
pass on PC+4 pass on PC+4 Calculate branch Access

target address

© Mark Redekopp, All rights reserved

Pipelining

 Now let's see how all three can be run in
the pipeline

© Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Fetch

5-Stage Pipeline

Decode Exec. Mem

Reg.

D-Cache

I-Cache —

© Mark Redekopp, All rights reserved

File

wB

Example

Fetch Decode Exec.
(Lw)

Reg.

Mem WB

File

D-Cache

Fetch LW

© Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Fetch
(ADD)

Example

Decode Exec. Mem
(Lw)

Fetch
ADD

© Mark Redekopp, All rights reserved

D-Cache

ALU [—

Decode instruction
and fetch operands

wB

Fetch Decode Exec.
(BEQ) (ADD) (Lw)

91$'GI$ v1$ Aav

Mem WB

D-Cache

Fetch Decode Add

displacement
0x04 to $s0

BEQ instruction and
fetch operands

© Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering

Example Example

School of Engineering

Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
(i+1) (BEQ) (ADD) (LW) (i+2) (i+1) (BEQ) (ADD) (Lw)

I-Cache I-Cache

T+l "ONJIsul

wswaoedsip / Te$'0es / O34
)
v +0S$/ #

'dsip / sfeA Teg’'oes / 039

Blep 9l pue g

Fetch next Decode instruction Add Read word from Fetch next Decode Check if Just pass Write
instruc i+1 and pass $t5 + $t6 memory instruc i+2 operands of condition is data to next word to
displacement instruc. i+1 true stage $t1

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering

Example Example

School of Engineering

Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (BEQ) (ADD) (target) (i+3) (i+2) (i+1) (BEQ)

Q
w
2 m
=1 e =
'(a ~ —> |— |
= v
E G RF‘ﬁg' — [ALU — D-Cache—{
3 5 3
o o =t
3 =
m (@)
2
Fetch i+3 Decode i+2 Execute i+1 If condition is true Write Fetch Delete i+3 Delete i+2 Delete i+1 Do
add displacement ~ word to instruc at nothing

to PC $t4 branch loc.

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

5-Stage Pipeline

Fetch Decode Exec. Mem

WwB

10 ns 10 ns 10 ns 10 ns 10 ns

Reg.
File

I-Cache — — — ALU — D-Cache

Without pipelining (separate execution), each instruction would take

With pipelining, each instruction still takes

© Mark Redekopp, Al rights reserved

but 1 finishes every

Non-Pipelined Timing

» Execute ninstructions Fooh | Pooode| Sxee. | tem- | 08
using a k stage datapath c1 | App
— i.e. Multicycle CPU w/ k c2 ADD
steps or single cycle CPU) DD
w/ clock cycle k times
C4 ADD
slower
» wj/o pipelining: © ™
Wio pip g: c6 |sus
cycles
Cc7 SsuB
- c8 SuUB
c9 suB
C10 SuUB
Cll | W

cycles

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Pipelined Timing

« Execute n instructions using Fetch | Decode | Exec. | Mem. | WB
10ns 10ns 10ns 10ns 10ns
a k stage datapath = 200
— i.e. Multicycle CPU w/ k
. Cc2 SuB ADD
steps or single cycle CPU w/
clock cycle k times slower C3 |[Lw |suB ADD
» wi/o pipelining: n*k cycles ca [sw |ww suB | ADD
— ninstrucs. * k CPI c5 |AND | sw w SUB | ADD
* W/ plpe“nlng: _— C6 OR AND SwW LW SuB
- for 1stinstruc. +
CyCleS fOr Cc7 XOR OR AND SwW Lw
instrucs. cs8 XOR | OR AND | sw
— Assumes we keep the = or or AND
pipeline full
C10 XOR OR
c1 XOR

7 Instrucs. =

© Mark Redekopp, All rights reserved

Bui sujadid

N4 suijadid

Buifidw3 suyadid

School of Engineering

Throughput

* Throughput (T) =

— ninstructions / clocks to executed n instructions

— For a large number of instructions, the throughput of a
pipelined processor is every clock cycle

— ASSUMES that

Non-pipelined Pipelined

Throughput

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

Hazards

» Any sequence of instructions that prevent full pipeline utilization
— Often causes the pipeline to an instruction
« Structural Hazards = HW organization cannot

» Data Hazards = Data dependencies
— Instruction needs result from instruction ____ that is still in pipeline
— Example:
o LW $t4, 0x40($s0)
» ADD $t5,$t4,$t3
— ADD couldn’t decode and get the
stalls the pipeline
» Control Hazards = Branches & changes to PC in the pipeline
— If branch is determined to be taken later in the pipeline,
the instructions in the pipeline that

» Other causes for stalls:

© Mark Redekopp, Al rights reserved

Structural Hazards

» Combinations of instructions that cannot be overlapped
in the given order due to HW constraints
— Often due to lack of HW resources

« Example structural hazard: A single memory rather than
separate | & D caches

— Structural hazard any time an instruction needs to perform a data
access (i.e. ‘lw’ or ‘sw’)

[Pc]

i+2

Reg.
File

| Cache
Hazard!

ALU

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

Structural Hazards Examples

* Another example structural hazard: Fully pipelined vs.
non-pipelined functional units with issue latencies
— Fully pipelined means it may take multiple clocks but a

— Non-fully pipeline means that a new instruction can only be
inserted every
— Example of non-fully pipelined divider
¢ Usually issue latencies of 32 to 60 clocks
« Thus DIV followed by DIV w/in 32 clocks will cause a stall

Sequence: Sequence:
DIV 1 =) N DIV 1
DIV 2 x| v DIV 2 (Hazard)
) Stage Non-pipelined Divider
=3 2
[
l DIV 2

© Mark Redekopp, All rights reserved

School of Engineering

Data Hazards

Initial Conditions (assume leading 0’s in

Hazard registers):
. . $s0 = 0x10010000
— Later instruction reads
a result from a $t1 = 0x0 00000060 | 0x10010004
previous instruction $t4 = 0x24 12345678 | 0x10010000
$t5 = 0x0

(data is being
communicated
between 2 instrucs.)

$s0 = 0x10010000

o Example sequence $t1 = 0x60
A" $t1,4($$0) $t4 = 0x24

Y
— ADD $t5,5t1,%$t4 $t5 = 0x84

After execution values should be:

© Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Fetch
(ADD)

Data Hazards

I-Cache

Fetch
ADD

© Mark Redekopp, All rights reserved

Decode Exec. Mem
(Lw)
$s0 = 0x10010000 [|]
= 0x0
> 0x10010004
00000060
ALU 0x10010000

Decode instruction
and fetch operands

wB

School of Engineering

Fetch
i+1

Data Hazards

Decode Exec. Mem
(ADD) (Lw)

I-Cache

7I1$'TI$ SIS aav

Fetch
instruc.
i+1

© Mark Redekopp, All rights reserved

$s0 = 0x10010000
$t1l = 0x0
$t4 = 0x24

0x10010004

00000060

0x10010000

12345678

$t1 still = 0x0 Add
rather than the displacement
desired 0x60 4to $t1

wB

USC Viterbi

USC Viterbi

School of Engineering

Fetch
i+2

Data Hazards

Decode Exec.
i+1 (ADD)

Fetch
instruc.
i+2

© Mark Redekopp, All rights reserved

$s0 = 0x10010000
$tl = Ox0
$t4 = 0x24
$t5 = 0x0

7000TOOTX0 / # °

Mem
(Lw)

00000060

i+1 ADD uses
wrong data

Data intended
for $tl is just
now read

wB

School of Engineering

Fetch
i+3

Data Hazards

Decode Exec. Mem
i+2 i+1 (ADD)

© Mark Redekopp, All rights reserved

$s0 = 0x10010000
$tl = 0x60
$t4 = 0x24
$t5 = 0x0

>

)]

) 0x10010004
@ 00000060
2

a1 0x10010000
-

-
X

N

g

09X0 / # "ba1 TI$

Now it's too late the sum of the ADD
instruction is wrong!

wB
(Lw)

USC Viterbi USC Viterbi

School of Engineering

Data Hazards Stalling the Pipeline

School of Engineering

Solutions: e All instructions in front of the stalled
instruction can

1 e All instructions behind the stalled
5 instruction
 Stalling inserts / nops

(no-operations) into the pipeline

— A “nop” is an actual instruction in the MIPS
ISA that does NOTHING

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering

Stalling the Pipeline Stalling the Pipeline

School of Engineering

Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
i+1 (ADD) (LW) i+1 (ADD) (NOP/bubble) (LwW)

$s0 = 0x10010000] $s0 = 0x10010000 []
$t1 = 0x0 $t1 = 0x0
> st - 0xe
) g
o 0x10010004 o N #
&% 00000060 & —
O 0x10010000 o1 — ALU >C<>
2 2 5
% B2 S
I I S
<)
=
Fetch ADD stalls in the LW continues Fetch ADD remains LW continues
instruc. Decode stage through instruc. stalled until LW through
i+1 and is not allowed pipeline i+1 stalls writes back $t1 pipeline
to move on value

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Fetch
i+1

Stalling the Pipeline

Decode Exec. Mem
(ADD) (NOP/bubble) (NOP/bubble)

I-Cache

Fetch
instruc.
i+1 stalls

© Mark Redekopp, All rights reserved

$s0 = 0x10010000 [|
$tl = 0x60
$t4 = 0x24
$t5 = 0x0

> 0x10010004

N ALU N 00000060

0x10010000

12345678

wB
(Lw)

Reg. file passes

new value of $t1

along with $t4 to
next stage

LW writes
back result to
$t1

Stalling the Pipeline

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (NOP/bubble) (NOP/bubble)
$s0 = 0x10010000]
$t1 = 0x60 >
w)
O
:’,-ﬁ" 0x10010004
- 00000060
|I-Cache 2 0x10010000
3
o
<
N
~

Add now has
correct value
and can
proceed

i+2 i+1

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

© Mark Redekopp, All rights reserved

Time Space Diagram

Fetch [Decode | Exec. Mem. wB
10ns 10ns 10ns 10ns 10ns
C1 LW

Cc2 ADD LW

C3 i ADD LW

c4 i ADD LW

c5 i ADD LW
S L—

C6 i+1 i ADD

c7 i+2 i+1 i ADD

cs i+3 i+2 i+1 i ADD

Using Stalls to Handle
Dependencies (Data Hazards)

Data Forwarding

« Also known as “bypassing”

» Take results still in the pipeline (but not written
back to a GPR) and pass them to dependent
instructions

— To keep the same clock cycle time, results can only
be taken from the of a stage and passed
back to the of a previous stage

— Cannot take a result produced at the of a
stage and pass it to the of a previous
stage because of the stage delays

» Recall that data written to the register file is
available for reading in the same clock cycle

© Mark Redekopp, All rights reserved

USC Viterbi
Sck

USC Viterbi

School of Engineering

Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+1 (ADD) (LwW)

$s0 = 0x10010000
$tl = 0x60
= 0x24

0x10010004

00000060

0x10010000

12345678

I-Cache

71$'TI$ SIS Aav

Fetch ADD is allowed to LW continues
instruc. fetch the incorrect through
i+1 value of $t1 pipeline

© Mark Redekopp, All rights reserved

School of Engineering

Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (Lw)

$s0 = 0x10010000]
$t1 = 0x60
$t4 = 0x24

$t5 = 0x0

00000060

I-Cache

7000TO0TXO0 / # °

i+2 i+1 ADD cannot get LW continues
data until after LW through
does read. So it pipeline
stalls.

© Mark Redekopp, All rights reserved

USC Viterbi
Sck

School of Engineering

USC Viterbi

School of Engineering

Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (Lw)

$s0 = 0x10010000]
$t1 = 0x60
= 0x24)U>
@
o =3
gr} 0x10010004 =
o @
~ 00000060
o 0x10010000 1
5 =
g e
i
i+2 i+1 ADD uses the LW forwards $t1
forwarded data in to EXEC stage
place of the and writes _back
to reg. file

wrong $t1 value

© Mark Redekopp, All rights reserved

Time Space Diagram

Fetch [Decode | Exec. Mem. wB
10ns 10ns 10ns 10ns 10ns
C1 LW

Cc2 ADD LW

C3 i ADD LW

c4 i ADD LW

c5 i+1 i ADD LW
| |

C6 i+2 i+1 i ADD

Cc7 i+3 i+2 i+1 i ADD

Using Forwarding to Handle
Dependencies (Data Hazards)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

Data Forwarding — Example 2

« ADD $t3,$t1,5t2
« SUB $t5,$t3,$t4
* XOR $t7,$t5,$t3

© Mark Redekopp, All rights rese

rved

Initial Conditions (assume leading 0’s in

registers):
$tl =
$t2 =
$t3 =
$t4 =
$t5 =

Ox0a
0x04
OXFFFFFfff
0x05
0x12

After execution

$t3 =
$t5 =
$t7 =

0x0e
0x02
0x0c

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem
(SUB) (ADD)

$tl = OxOa

$t2 = 0x04

$t3 = OXFFFFFFFF

$t4 = 0x05

$t5 = 0x12

$t7 = 0xOc
I-Cache ALU — D-Cache

SUB is
fetched

© Mark Redekopp, All rights reserved

2I$'TI$ €IS Aav

ADD decodes
and fetches reg.
values

wB

USC Viterbi

USC Viterbi

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem
(XOR) (SUB) (ADD)
$tl = OxOa
$t2 = 0x04 |]
$t3 = OXFFFFFFFf
$t4 = 0x05
$t5 = 0x12
$t7 = 0xOc
D-Cache

XOR is
fetched

© Mark Redekopp, All rights reserve

Y1$'€1$°G1$ aNS

a
+H
o
X

o
1)

=
o
=

o
=

SUB decodes and
fetches wrong
reg. value of $t3

ADD produces
the sum

wB

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem
(i+1) (XOR) (SuB) (ADD)
$tl = Ox0a
$t2 = 0x04 "
$t3 = OXFFFFFFFF|S
) $t4 = 0x05
$t5 = 0x12
°' $t7 = OxOc 3
e > = A D-Cache
Ox0E
Instruc i+1 XOR fetches SUB uses ADD forwards the
is fetched wrong reg. values forwarded value sum to SUB in
for both $t3 and 0xOe rather than EXEC stage

© Mark Redekopp, All rights reserved

$t5

Oxffffffff

wB

USC Viterbi

USC Viterbi

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem WB
(i+2) (i+1) (XOR) (SUB) (ADD)
$tl = OxOa
$t2 = 0x04
$t3 = 0x0e
$t4 = 0x05
$t5 = 0x12
$t7 = 0OxOc
I-Cache ' =9 A : D-Cache
0x09 OXOE
Instruc i+2 i+1 decodes XOR uses SUB has ADD writes
is fetched forwarded values executed back new
rather than correctly value to $t3

fetched values

© Mark Redekopp, All rights reserved

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (XOR) (SUB)
$tl = OxOa

$t2 = 0x04
$t3 = 0x0Oe
$t4 = 0x05
$t5 = 0x09
$t7 = 0xOc

I-Cache ' = ' D-Cache

Instruc i+3 i+2 decodes i+1 executes XOR has SUB writes
is fetched executed back new
correctly value to $t5

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

Time Space Diagram

o e | s [e |
« ADD $t3,$t1,$t2 o | ro0
. SUB $t5,$t3,5t4 i R Wi R
* XOR $t7,5t3,$t5 I

Using Forwarding to Handle Dependencies

(Requires no stalls/bubbles for dependent
instructions)

© Mark Redekopp, All rights reserved

School of Engineering

Data Forwarding Summary

* Forwarding paths from...
— WB to MEM [ADD $t1,$t2,$t3; SW $t1,0($s0)]
— WB to EX [LW $t1,0($t2); next inst.; SUB $t3,$t1,$t4]
— MEM to EX [ADD $t1,$t2,$t3; SUB $t3,$t1,$t4]
 Issue Latency = Number of cycles we must stall
(insert bubbles) before we can issue a dependent

instruction
Instruction Type w/o Forwarding w/ Full Forwarding
LW 2 -
ALU Instruction 2 -

© Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Control Hazard

* Branch outcomes: or

* Not known until late in the pipeline
— Prevents us from fetching instructions that we know
will be executed in the interim

— Rather than stall, predict the outcome and keep
fetching appropriately...correcting the pipeline if we

guess wrong —
» Options L beq 1L1
— Predict < -—
— Predict _
‘\ beq L2
LT -

Mark Redekopp, All rights reserved

Branch Outcome Availability

* Branch outcome only available in MEM stage
— Incorrect instruction sequence already in pipeline

Mem

Fetch Decode Exec.

]
_]

0x40028c

Read
Reg. 1#

Read
Reg. 2 #

U‘[m%
iz
]
= Q

¥

Addr. Write

Reg. #

Instruc. |—p Addr.

. Read
Write data 2 >
Data

I-Cache Read
Data

Write

Data

D-Cache

Instruction Register
Pipeline Stage Register

0x40000c Register File

Instruc n+3 Instruc n+2 Instruc n+1 Branch
0x40000c 0x400008 0x400004 0x400000

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Branch Penalty

» Penalty = number of instructions that need
to be on misprediction

» Currently our branch outcome and target
address is available during the MEM stage,
passed back to the Fetch phase and starts
fetching correct path (if mispredicted) on the
next cycle

e __cycle branch penalty when mispredicted

© Mark Redekopp, All rights reserved

School of Engineering

Predict Not Taken

» Keep fetching instructions from the Not
Taken (NT)/sequential stream

* Requires us to “flush”/delete instructions
fetched from the NT path if the branch
ends up being Taken

© Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

Predict Not Taken Predict Taken
o "o | o | we | " « In our 5-stage pipeline as currently shown,
BEQ $a0,%al,L1 (NT) | eeo predicting taken is ...
L2: ADD $s1,$t1,$t2 c2 | aop | eeo
SUB $t3,$t0,$s0 ¢ N ©c°
OR $s0,%t6,$t7 | OR | sw | Ao -
BNE $SO,$51,L2 (T) C5 | BNE OR SUB | ADD | BEQ
L1: AND $t3,$t6,$t7 C6 | AND | BNE OR SUB | ADD .
SW $15,0($51) Z SW | AND | BNE | OR | sus * In other architectures we may be able t.o know
LW $s52,0($s5) o | sw [oo [o the branch target early and thus use this
© | 290 |¢hop) I¢op) |€op 3| N method, however, if we predict incorrectly we
0 | 2P | A% Woep {nepd e still must flush

Using Predict NT keeps the pipeline full when we
are correct and flushes instructions when wrong
(penalty = 3 for our 5-stage pipeline)

© Mark Redekopp, Al rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering School of Engineering

Predicting Taken Early Branch Determination
* Branch target address not available until MEM stage] o]
* Goal is to keep the pipeline full and avoid

bubbles/stalls

* Number of bubbles/stalls introduced by control
hazards (branches) depends on when we

Mem
0x40028c

Fetch Decode Exec.

1

Read

—iSL’Reg.l#

e, | determine the outcome and target address of
| 8 e i the branch ()

S e Read_’ﬁ i I
Cache| |of | Plows o772 reas » Currently, these values are available in the MEM

299 = Register File 1] \[,)V;;e Stage
Sign . . .
Q"" D-Cache » We can try to reorganize the pipeline to make

the branch outcome and target address

PC for T path PC for T path PC for T path Branch ; ;
unknown unknown unknown 0x400000 avallable ear“er

© Mark Redekopp, All rights reserved

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

Early Branch Determination

* By actually adding a little bit of extra HW we can
move the outcome determination and target
address calculation to the stage
— Again this may cause a small increase in clock period

© Mark Redekopp, Al rights reserved

Reorganized 5-Stage Pipeline

Fetch Decode Exec. Mem wWB

]
’ —\|
+
N
]
]
]

Reg. 1 #

Read
Reg. 2 #

Read
Write data 1
Reg. #

o

Addr.

EE!

12

Instruc. |—»|

—[Addr.

Read

. . Data
Register File 3
Write

Dat
/"~ sion ata

16\ Extend / 52 D-Cache

Read

Write data 2

Data

i

I-Cache

[

—>

Instruction Register

© Mark Redekopp, Al rights reserved

USC Viterbi

School of Engineering

USC Viterbi

Early Determination w/ Predict NT

| "o | e | we | "
BEQ $a0,$al,Ll (NT) | |e=
L2: ADD $s1,$t1,$t2 c2 | oo |JEEGN
SUB $t3,$t0,$s0 3 | sus | ADpD | BEQ
OR $SO,$t6,$t7 C4 | or SUB | ADD | BEQ
BNE $SO,$51,L2 (T) C5 | BNE OR SUB | ADD | BEQ
L1: AND $t3,$t6,$t7 - ~o [R
SW $t5,0($s1) _ o
LW $s2,0($s5) - —
c10

Using early determination & predict NT keeps the
pipeline full when we are correct and has a single
instruction penalty for our 5-stage pipeline

© Mark Redekopp, All rights reserved

School of Engineering

A Look Ahead: Branch Prediction

1

« Currently we have a static Bty
prediction policy (NT) "

« We could allow a Peing Taken
prediction per instruction
(give a with the
branch that indicates T or May exhibi
NT)

NT: if
Not Taken
Path Code

* Wecouldallow
predictions per instruction
(use its)

Taken Path
Code

After Code

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Exercise

Schedule the following code segment
on our 5 stage pipeline assuming...
— Full forwarding paths (even into
decode stage for branches)
— Early branch determination
— Predict NT (no delay slots)

Calculate the CPI from time first
instruction completes until last
BEQ instruction completes

Show forwarding using arrows in the
time-space diagram
ADD $s0,$t1,$t2
L1 LW $t3,0($s0)
SLT $t1,$t3,$t4
BEQ $t1,$zero,L1 (T, NT)
SUB $s2,$s3,$s4
ADD $s2,$s2,$s5
CPI =

© Mark Redekopp, Al rights reserved

Fetch

Decode

Exec.

wB

C1

Cc2

C3

ca

C5

C6

Cc7

Ccs

c9

C10

Ci1

C12

C13

C14

C15

C16

