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Single & Multi-Cycle Performance

Single-Cycle CPU Multi-Cycle CPU

» Each piece of the datapath ¢ Sharing resources allows for
requires only a small period of compact logic design but in
the overall instruction modern design we can afford
execution (clock cycle) time replicated structures if needed
yielding low utilization of the « Each instruction still requires
HW’s actual capabilities several cycles to complete
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Pipelining

» Combines elements of both designs
— Datapath of CPU w/ separate resources

— Datapath broken into with temporary registers between
stages
. clock cycle
¢ A single instruction requires CPl =n

» System can achieve CPI =

— Overlapping Multiple Instructions (separate instruction in each
stage at once)

F D Ex Mem WB
Clock 1 | Inst. 1
Clock 2 | Inst. 2 | Inst. 1
Clock 3 | Inst. 3 | Inst. 2 | Inst. 1
Clock 4 | Inst.4 | Inst. 3 | Inst. 2 | Inst. 1
Clock 5 | Inst.5 | Inst. 4 | Inst. 3 | Inst. 2 | Inst. 1
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Basic 5 Stage Pipeline

e Same structure as single cycle but now broken into 5 stages

« Pipeline stage registers act as temp. registers storing intermediate
results and thus allowing previous stage to be reused for another

instruction
— Also, act as a barrier from signals from different stages intermixing
Fetch Decode Exec. Mem WB
4 —pf
1 Read
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Read F:’
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Issues with Pipelining

. of HW/logic resources between stages
because of full utilization

— Can't have a single cache (both | & D) because each is needed to
fetch one instruction while another accesses data]

* Prevent signals in one stage (instruc.) from
another stage (instruc.) and becoming convoluted

» Balancing stage delay

— Clock period =
— In example below, clock period = means delay for
only of logic delay
Sample 10ns 10ns 50ns
Stage Delay

Execute
Logic
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Resolution of Pipelining Issues

* No sharing of HW/logic resources between stages
— For full performance, no feedback (stage i feeding back to stage i-k)
— If two stages need a HW resource, the resource in both
stages (e.g. an I- AND D-cache)
* Prevent signals from one stage (instruc.) from flowing into
another stage (instruc.) and becoming convoluted
— Stage Registers act as to signals until next edge
» Balancing stage delay [Important!!!]
— Balance or divide long stages (See next slides)
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Balancing Pipeline Stages

5ns 15 ns

» Clock period must equal the
LONGEST delay from register to

regISter . Ex. 1: Unbalanced stage delay
— In Example 1, clock period would Clock Period = 15ns
have to be set to [ 66 MHZz], o o
meaning total time through pipeline
= 30ns for only ns of logic
» Could try to balance delay in
Ex. 2: Balanced stage delay
eaCh Stage Clock Period = 10ns (150% speedup)
— Example 2: Clock period =__ns

[100 MHz], while total time through
pipeline is still = 20ns
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Pipelining Effects on Clock Period

5ns 15 ns

* Rather than just try to balance
delay we could consider making
more stages

— Divide long stage into multiple
stages

— In Example 3, clock period could be
5ns | MHz]

— Time through the pipeline (latency)
is still 20 ns, but we've increased
our (1 result every 5
ns rather than every 10 or 15 ns)

— Note: There is a small time
overhead to adding a pipeline
register/stage (i.e. can’t go crazy
adding stages)
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Ex. 1: Unbalanced stage delay
Clock Period = 15ns

10 ns 10 ns

Ex. 2: Balanced stage delay
Clock Period = 10ns (150% speedup)

5ns 5ns 5ns 5ns

Ex. 3: Break long stage into multiple stages
Clock period =5 ns ( speedup)
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Feed-Forward Issues

» CISC instructions often perform several ALU and memory
operations per instructions
— MOVE.W (A0)+,$8(A0,D1) [Msg000/Coldfire ISA]
* 3 Adds (post-increment, disp., index)
* 3 Memory operations (I-Fetch + 1 read + 1 write)
— This makes pipelining hard because of multiple uses of ALU and
memory
» Redesign the Instruction Set Architecture to better support
pipelining (MIPS was designed with pipelining in mind)

Wite
Data

D-Cache
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Sample 5-Stage Pipeline

» Examine the basic operations that need to be performed by
our instruction classes

LW: I-Fetch, Decode/Reg. Fetch, Address Calc., Read Mem.,
Write to Register

SW: I-Fetch, Decode/Reg. Fetch, Address Calc., Write Mem.
ALUop: I-Fetch, Decode/Reg. Fetch, ALUop, Write to Reg.
— Bxx: I-Fetch, Decode/Reg. Fetch, Compare (Subtract), Update PC

* These suggest a 5-stage pipeline:
I-Fetch,

Decode/Reg. Fetch,

ALU (Exec.),

Memory,

Reg. Writeback

© Mark Redekopp, Al rights reserved
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Basic 5 Stage Pipeline

< All control signals needed for an instruction in the following stages are
generated in the decode stage and

— Since writeback doesn't occur until final stage, write register # is shipped with the
instruction through the pipeline and then used at the end

— Register File can read out the current data being written if read reg # = write reg #

Fetch Decode Exec. Mem wB
4 —pf
_A'_ Read

5 |Reg. 1#
Read g
5 Reg. 2 # S
o = . Read 3 &
0 - g | Write data 1 a o
2 Instruc. IRE 8 54
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o Read n
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I-Cache ™ Data Read £
q Data 2
Register File g £
9 a Write o

Data
Sign
16 \_ Extend 3 D-Cache
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Sample Instructions

Instruction
LW $t1,4($s0)

ADD $t4,%t5,$t6

BEQ $a0,%al,LOOP

For now let's assume we just execute one at a time
though that’s not how a pipeline works (multiple
instructions are executed at one time).
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LW $t1,4($s0)

Fetch Decode Exec. Mem

$50 # Read
Reg. 1 #

Read
Reg. 2 #

Addr. Write data 1

Reg. #

Instruc.

0x00000004 / $s0 value

. Re:
Write data 2
Data

I-Cache

$t1 #/ Address

Register File

$t1 #/ Data read from memor

LW $t1,4($s0) machine code

Extend

$t1 # / Offset:

16

$t1 #

wB

Add offset 4 to Read word

$s0 value

Decode instruction
and fetch operands

Fetch LW and
increment PC

© Mark Redekopp, All rights reserved

Write
from memory word to

$t1

ADD $t4,$t5,$t6

Fetch Decode Exec. Mem

$t5 #[ Read
Reg. 1#

Read
Reg. 2 #

Addr.

Write data 1
Reg. #

Instruc.

. R
N Write data 2

I-Cache Data

$t4 # / Sum of $t5 + $t6
$t4 #/ Sum of $t5 + $t6

Register File

$t4 # / $t6 value / $t5 value

ADD $t4,$t5,$t6 machine code

Extend

16

$t4 #

wB

Decode instruction Add $t5 + $t6

and fetch operands

Fetch ADD and Just pass

increment PC

© Mark Redekopp, All rights reserved

Write
sum through sum to

$t4
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BEQ $a0,$al,LOOP

Fetch Decode Exec. Mem

Read
Reg. 2 #
Read
Addr. | Write data 1
Reg. #

Instruc.

No writeback

] Re
Write data 2
Data

I-Cache

New Target PC

Register File

BEQ $a0,$al,LOOP machine code
Branch Displacement / $al val. / $a0 val.

wB

Fetch BEQ, Decode instruction Do $a0-$al and Update PC, Do
increment PC,  and fetch operands, ~ check if result = 0 No Mem.  Nothing
pass on PC+4 pass on PC+4 Calculate branch Access

target address
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Pipelining

 Now let's see how all three can be run in
the pipeline

© Mark Redekopp, All rights reserved
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Fetch

5-Stage Pipeline

Decode Exec. Mem

Reg.

D-Cache

I-Cache —
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File

wB

Example

Fetch Decode Exec.
(Lw)

Reg.

Mem WB

File

D-Cache

Fetch LW
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Fetch
(ADD)

Example

Decode Exec. Mem
(Lw)

Fetch
ADD
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D-Cache

ALU [—

Decode instruction
and fetch operands

wB

Fetch Decode Exec.
(BEQ) (ADD) (Lw)

91$'GI$ v1$ Aav

Mem WB

D-Cache

Fetch Decode Add

displacement
0x04 to $s0

BEQ instruction and
fetch operands
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Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
(i+1) (BEQ) (ADD) (LW) (i+2) (i+1) (BEQ) (ADD) (Lw)

I-Cache I-Cache

T+l "ONJIsul

wswaoedsip / Te$'0es / O34
)
v +0S$/ #

'dsip / sfeA Teg’'oes / 039

Blep 9l pue g

Fetch next Decode instruction Add Read word from Fetch next Decode Check if Just pass Write
instruc i+1 and pass $t5 + $t6 memory instruc i+2 operands of condition is data to next word to
displacement instruc. i+1 true stage $t1
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Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (BEQ) (ADD) (target) (i+3) (i+2) (i+1) (BEQ)

Q
w
2 m
=1 e =
'(a ~ —>  |— |
= v
E G RF‘ﬁg' — [ ALU — D-Cache—{
3 5 3
o o =t
3 =
m (@)
2
Fetch i+3 Decode i+2 Execute i+1 If condition is true Write Fetch Delete i+3 Delete i+2 Delete i+1 Do
add displacement ~ word to instruc at nothing

to PC $t4 branch loc.
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5-Stage Pipeline

Fetch Decode Exec. Mem

WwB

10 ns 10 ns 10 ns 10 ns 10 ns

Reg.
File

I-Cache — — — ALU — D-Cache

Without pipelining (separate execution), each instruction would take

With pipelining, each instruction still takes

© Mark Redekopp, Al rights reserved

but 1 finishes every

Non-Pipelined Timing

» Execute ninstructions Fooh | Pooode| Sxee. | tem- | 08
using a k stage datapath c1 | App
— i.e. Multicycle CPU w/ k c2 ADD
steps or single cycle CPU ) DD
w/ clock cycle k times
C4 ADD
slower
» wj/o pipelining: © ™
Wio pip g: c6 |sus
cycles
Cc7 SsuB
- c8 SuUB
c9 suB
C10 SuUB
Cll | W

cycles
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Pipelined Timing

« Execute n instructions using Fetch | Decode | Exec. | Mem. | WB
10ns 10ns 10ns 10ns 10ns
a k stage datapath = 200
— i.e. Multicycle CPU w/ k
. Cc2 SuB ADD
steps or single cycle CPU w/
clock cycle k times slower C3 |[Lw |suB ADD
» wi/o pipelining: n*k cycles ca [sw |ww suB | ADD
— ninstrucs. * k CPI c5 |AND | sw w SUB | ADD
* W/ plpe“nlng: _— C6 OR AND SwW LW SuB
- for 1stinstruc. +
CyCleS fOr Cc7 XOR OR AND SwW Lw
instrucs. cs8 XOR | OR AND | sw
— Assumes we keep the = or or AND
pipeline full
C10 XOR OR
c1 XOR

7 Instrucs. =

© Mark Redekopp, All rights reserved

Bui sujadid

N4 suijadid

Buifidw3 suyadid

School of Engineering

Throughput

* Throughput (T) =

— ninstructions / clocks to executed n instructions

— For a large number of instructions, the throughput of a
pipelined processor is every clock cycle

— ASSUMES that

Non-pipelined Pipelined

Throughput
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Hazards

» Any sequence of instructions that prevent full pipeline utilization
— Often causes the pipeline to an instruction
« Structural Hazards = HW organization cannot

» Data Hazards = Data dependencies
— Instruction needs result from instruction ____ that is still in pipeline
— Example:
o LW $t4, 0x40($s0)
» ADD $t5,$t4,$t3
— ADD couldn’t decode and get the
stalls the pipeline
» Control Hazards = Branches & changes to PC in the pipeline
— If branch is determined to be taken later in the pipeline,
the instructions in the pipeline that

» Other causes for stalls:

© Mark Redekopp, Al rights reserved

Structural Hazards

» Combinations of instructions that cannot be overlapped
in the given order due to HW constraints
— Often due to lack of HW resources

« Example structural hazard: A single memory rather than
separate | & D caches

— Structural hazard any time an instruction needs to perform a data
access (i.e. ‘lw’ or ‘sw’)

[ Pc ]

i+2

Reg.
File

| Cache
Hazard!

ALU
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Structural Hazards Examples

* Another example structural hazard: Fully pipelined vs.
non-pipelined functional units with issue latencies
— Fully pipelined means it may take multiple clocks but a

— Non-fully pipeline means that a new instruction can only be
inserted every
— Example of non-fully pipelined divider
¢ Usually issue latencies of 32 to 60 clocks
« Thus DIV followed by DIV w/in 32 clocks will cause a stall

Sequence: Sequence:
DIV 1 =) N DIV 1
DIV 2 x| v DIV 2 (Hazard)
) Stage Non-pipelined Divider
=3 2
[
l DIV 2

© Mark Redekopp, All rights reserved
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Data Hazards

Initial Conditions (assume leading 0’s in

Hazard registers):
. . $s0 = 0x10010000
— Later instruction reads
a result from a $t1 = 0x0 00000060 | 0x10010004
previous instruction $t4 = 0x24 12345678 | 0x10010000
$t5 = 0x0

(data is being
communicated
between 2 instrucs.)

$s0 = 0x10010000

o Example sequence $t1 = 0x60
A" $t1,4($$0) $t4 = 0x24

Y
— ADD $t5,5t1,%$t4 $t5 = 0x84

After execution values should be:

© Mark Redekopp, All rights reserved
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Fetch
(ADD)

Data Hazards

I-Cache

Fetch
ADD

© Mark Redekopp, All rights reserved

Decode Exec. Mem
(Lw)
$s0 = 0x10010000 [ | ]
= 0x0
> 0x10010004
00000060
ALU 0x10010000

Decode instruction
and fetch operands

wB

School of Engineering

Fetch
i+1

Data Hazards

Decode Exec. Mem
(ADD) (Lw)

I-Cache

7I1$'TI$ SIS aav

Fetch
instruc.
i+1
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$s0 = 0x10010000
$t1l = 0x0
$t4 = 0x24

0x10010004

00000060

0x10010000

12345678

$t1 still = 0x0 Add
rather than the displacement
desired 0x60 4to $t1

wB
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Fetch
i+2

Data Hazards

Decode Exec.
i+1 (ADD)

Fetch
instruc.
i+2
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$s0 = 0x10010000
$tl = Ox0
$t4 = 0x24
$t5 = 0x0

7000TOOTX0 / # °

Mem
(Lw)

00000060

i+1 ADD uses
wrong data

Data intended
for $tl is just
now read

wB

School of Engineering

Fetch
i+3

Data Hazards

Decode Exec. Mem
i+2 i+1 (ADD)

© Mark Redekopp, All rights reserved

$s0 = 0x10010000
$tl = 0x60
$t4 = 0x24
$t5 = 0x0

>

)]

) 0x10010004
@ 00000060
2

a1 0x10010000
-

-
X

N

g

09X0 / # "ba1 TI$

Now it's too late the sum of the ADD
instruction is wrong!

wB
(Lw)
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Solutions: e All instructions in front of the stalled
instruction can

1 e All instructions behind the stalled
5 instruction
 Stalling inserts / nops

(no-operations) into the pipeline

— A “nop” is an actual instruction in the MIPS
ISA that does NOTHING

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved
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Stalling the Pipeline Stalling the Pipeline
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Fetch Decode Exec. Mem WB Fetch Decode Exec. Mem WB
i+1 (ADD) (LW) i+1 (ADD) (NOP/bubble) (LwW)

$s0 = 0x10010000 ] $s0 = 0x10010000 [ ]
$t1 = 0x0 $t1 = 0x0
> st - 0xe
) g
o 0x10010004 o N #
&% 00000060 & —
O 0x10010000 o1 — ALU >C<>
2 2 5
% B2 S
I I S
<)
=
Fetch ADD stalls in the LW continues Fetch ADD remains LW continues
instruc. Decode stage through instruc. stalled until LW through
i+1 and is not allowed pipeline i+1 stalls writes back $t1 pipeline
to move on value

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved
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Fetch
i+1

Stalling the Pipeline

Decode Exec. Mem
(ADD) (NOP/bubble) (NOP/bubble)

I-Cache

Fetch
instruc.
i+1 stalls
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$s0 = 0x10010000 [ |
$tl = 0x60
$t4 = 0x24
$t5 = 0x0

> 0x10010004

N ALU N 00000060

0x10010000

12345678

wB
(Lw)

Reg. file passes

new value of $t1

along with $t4 to
next stage

LW writes
back result to
$t1

Stalling the Pipeline

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (NOP/bubble) (NOP/bubble)
$s0 = 0x10010000 ]
$t1 = 0x60 >
w)
O
:’,-ﬁ" 0x10010004
- 00000060
|I-Cache 2 0x10010000
3
o
<
N
~

Add now has
correct value
and can
proceed

i+2 i+1
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Time Space Diagram

Fetch [ Decode | Exec. Mem. wB
10ns 10ns 10ns 10ns 10ns
C1 LW

Cc2 ADD LW

C3 i ADD LW

c4 i ADD LW

c5 i ADD LW
S L—

C6 i+1 i ADD

c7 i+2 i+1 i ADD

cs i+3 i+2 i+1 i ADD

Using Stalls to Handle
Dependencies (Data Hazards)

Data Forwarding

« Also known as “bypassing”

» Take results still in the pipeline (but not written
back to a GPR) and pass them to dependent
instructions

— To keep the same clock cycle time, results can only
be taken from the of a stage and passed
back to the of a previous stage

— Cannot take a result produced at the of a
stage and pass it to the of a previous
stage because of the stage delays

» Recall that data written to the register file is
available for reading in the same clock cycle

© Mark Redekopp, All rights reserved
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Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+1 (ADD) (LwW)

$s0 = 0x10010000
$tl = 0x60
= 0x24

0x10010004

00000060

0x10010000

12345678

I-Cache

71$'TI$ SIS Aav

Fetch ADD is allowed to LW continues
instruc. fetch the incorrect through
i+1 value of $t1 pipeline

© Mark Redekopp, All rights reserved
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Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (Lw)

$s0 = 0x10010000 ]
$t1 = 0x60
$t4 = 0x24

$t5 = 0x0

00000060

I-Cache

7000TO0TXO0 / # °

i+2 i+1 ADD cannot get LW continues
data until after LW through
does read. So it pipeline
stalls.

© Mark Redekopp, All rights reserved
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Data Forwarding — Example 1

Fetch Decode Exec. Mem WB
i+2 i+1 (ADD) (Lw)

$s0 = 0x10010000 ]
$t1 = 0x60
= 0x24 )U>
@
o =3
gr} 0x10010004 =
o @
~ 00000060
o 0x10010000 1
5 =
g e
i
i+2 i+1 ADD uses the LW forwards $t1
forwarded data in to EXEC stage
place of the and writes _back
to reg. file

wrong $t1 value

© Mark Redekopp, All rights reserved

Time Space Diagram

Fetch [ Decode | Exec. Mem. wB
10ns 10ns 10ns 10ns 10ns
C1 LW

Cc2 ADD LW

C3 i ADD LW

c4 i ADD LW

c5 i+1 i ADD LW
| |

C6 i+2 i+1 i ADD

Cc7 i+3 i+2 i+1 i ADD

Using Forwarding to Handle
Dependencies (Data Hazards)

© Mark Redekopp, All rights reserved
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Data Forwarding — Example 2

« ADD $t3,$t1,5t2
« SUB $t5,$t3,$t4
* XOR $t7,$t5,$t3

© Mark Redekopp, All rights rese

rved

Initial Conditions (assume leading 0’s in

registers):
$tl =
$t2 =
$t3 =
$t4 =
$t5 =

Ox0a
0x04
OXFFFFFfff
0x05
0x12

After execution

$t3 =
$t5 =
$t7 =

0x0e
0x02
0x0c

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem
(SUB) (ADD)

$tl = OxOa

$t2 = 0x04

$t3 = OXFFFFFFFF

$t4 = 0x05

$t5 = 0x12

$t7 = 0xOc
I-Cache ALU — D-Cache

SUB is
fetched

© Mark Redekopp, All rights reserved

2I$'TI$ €IS Aav

ADD decodes
and fetches reg.
values

wB
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Data Forwarding — Example 2

Fetch Decode Exec. Mem
(XOR) (SUB) (ADD)
$tl = OxOa
$t2 = 0x04 | ]
$t3 = OXFFFFFFFf
$t4 = 0x05
$t5 = 0x12
$t7 = 0xOc
D-Cache

XOR is
fetched

© Mark Redekopp, All rights reserve

Y1$'€1$°G1$ aNS

a
+H
o
X

o
1)

=
o
=

o
=

SUB decodes and
fetches wrong
reg. value of $t3

ADD produces
the sum

wB

School of Engineering

Data Forwarding — Example 2

Fetch Decode Exec. Mem
(i+1) (XOR) (SuB) (ADD)
$tl = Ox0a
$t2 = 0x04 "
$t3 = OXFFFFFFFF|S
) $t4 = 0x05
$t5 = 0x12
°' $t7 = OxOc 3
e > = A D-Cache
Ox0E
Instruc i+1 XOR fetches SUB uses ADD forwards the
is fetched wrong reg. values forwarded value sum to SUB in
for both $t3 and 0xOe rather than EXEC stage

© Mark Redekopp, All rights reserved

$t5

Oxffffffff

wB
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Data Forwarding — Example 2

Fetch Decode Exec. Mem WB
(i+2) (i+1) (XOR) (SUB) (ADD)
$tl = OxOa
$t2 = 0x04
$t3 = 0x0e
$t4 = 0x05
$t5 = 0x12
$t7 = 0OxOc
I-Cache ' =9 A : D-Cache
0x09 OXOE
Instruc i+2 i+1 decodes XOR uses SUB has ADD writes
is fetched forwarded values executed back new
rather than correctly value to $t3

fetched values

© Mark Redekopp, All rights reserved
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Data Forwarding — Example 2

Fetch Decode Exec. Mem WB
(i+3) (i+2) (i+1) (XOR) (SUB)
$tl = OxOa

$t2 = 0x04
$t3 = 0x0Oe
$t4 = 0x05
$t5 = 0x09
$t7 = 0xOc

I-Cache ' = ' D-Cache

Instruc i+3 i+2 decodes i+1 executes XOR has SUB writes
is fetched executed back new
correctly value to $t5

© Mark Redekopp, All rights reserved
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Time Space Diagram

o e | s [ e |
« ADD $t3,$t1,$t2 o | ro0
. SUB $t5,$t3,5t4 i R Wi R
* XOR $t7,5t3,$t5 I

Using Forwarding to Handle Dependencies

(Requires no stalls/bubbles for dependent
instructions)

© Mark Redekopp, All rights reserved
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Data Forwarding Summary

* Forwarding paths from...
— WB to MEM [ADD $t1,$t2,$t3; SW $t1,0($s0)]
— WB to EX [LW $t1,0($t2); next inst.; SUB $t3,$t1,$t4]
— MEM to EX [ADD $t1,$t2,$t3; SUB $t3,$t1,$t4]
 Issue Latency = Number of cycles we must stall
(insert bubbles) before we can issue a dependent

instruction
Instruction Type w/o Forwarding w/ Full Forwarding
LW 2 -
ALU Instruction 2 -
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Control Hazard

* Branch outcomes: or

* Not known until late in the pipeline
— Prevents us from fetching instructions that we know
will be executed in the interim

— Rather than stall, predict the outcome and keep
fetching appropriately...correcting the pipeline if we

guess wrong —
» Options L beq 1L1
— Predict < -—
— Predict _
‘\ beq L2
LT -
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Branch Outcome Availability

* Branch outcome only available in MEM stage
— Incorrect instruction sequence already in pipeline
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Branch Penalty

» Penalty = number of instructions that need
to be on misprediction

» Currently our branch outcome and target
address is available during the MEM stage,
passed back to the Fetch phase and starts
fetching correct path (if mispredicted) on the
next cycle

e __cycle branch penalty when mispredicted
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Predict Not Taken

» Keep fetching instructions from the Not
Taken (NT)/sequential stream

* Requires us to “flush”/delete instructions
fetched from the NT path if the branch
ends up being Taken
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Predict Not Taken Predict Taken
o "o | o | we | " « In our 5-stage pipeline as currently shown,
BEQ $a0,%al,L1 (NT) | eeo predicting taken is ...
L2: ADD $s1,$t1,$t2 c2 | aop | eeo
SUB $t3,$t0,$s0 ¢ N ©c°
OR  $s0,%t6,$t7 | OR | sw | Ao -
BNE $SO,$51,L2 (T) C5 | BNE OR SUB | ADD | BEQ
L1: AND $t3,$t6,$t7 C6 | AND | BNE OR SUB | ADD .
SW  $15,0($51) Z SW | AND | BNE | OR | sus * In other architectures we may be able t.o know
LW $s52,0($s5) o | sw [ oo [ o the branch target early and thus use this
© | 290 |¢hop) I¢op ) |€op 3| N method, however, if we predict incorrectly we
0 | 2P | A% Woep {nepd e still must flush

Using Predict NT keeps the pipeline full when we
are correct and flushes instructions when wrong
(penalty = 3 for our 5-stage pipeline)
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Predicting Taken Early Branch Determination
* Branch target address not available until MEM stage ] o ]
* Goal is to keep the pipeline full and avoid

bubbles/stalls

* Number of bubbles/stalls introduced by control
hazards (branches) depends on when we

Mem
0x40028c

Fetch Decode Exec.

1

Read

—iSL’Reg.l#

e, | determine the outcome and target address of
| 8 e i the branch ( )

S e Read_’ﬁ i I
Cache| |of | Plows o772 reas » Currently, these values are available in the MEM

299 = Register File 1] \[,)V;;e Stage
Sign . . .
Q"" D-Cache » We can try to reorganize the pipeline to make

the branch outcome and target address

PC for T path PC for T path PC for T path Branch ; ;
unknown unknown unknown 0x400000 avallable ear“er
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Early Branch Determination

* By actually adding a little bit of extra HW we can
move the outcome determination and target
address calculation to the stage
— Again this may cause a small increase in clock period
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Reorganized 5-Stage Pipeline
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Early Determination w/ Predict NT

| "o | e | we | "
BEQ $a0,$al,Ll (NT) | |e=
L2: ADD $s1,$t1,$t2 c2 | oo |JEEGN
SUB $t3,$t0,$s0 3 | sus | ADpD | BEQ
OR $SO,$t6,$t7 C4 | or SUB | ADD | BEQ
BNE $SO,$51,L2 (T) C5 | BNE OR SUB | ADD | BEQ
L1: AND $t3,$t6,$t7 - ~o [ R
SW  $t5,0($s1) _ o
LW  $s2,0($s5) - —
c10

Using early determination & predict NT keeps the
pipeline full when we are correct and has a single
instruction penalty for our 5-stage pipeline
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A Look Ahead: Branch Prediction

1

« Currently we have a static Bty
prediction policy (NT) "

« We could allow a Peing Taken
prediction per instruction
(give a with the
branch that indicates T or May exhibi
NT)

NT: if
Not Taken
Path Code

* Wecouldallow
predictions per instruction
(use its )

Taken Path
Code

After Code

© Mark Redekopp, All rights reserved




USC Viterbi

School of Engineering

Exercise

Schedule the following code segment
on our 5 stage pipeline assuming...
— Full forwarding paths (even into
decode stage for branches)
— Early branch determination
— Predict NT (no delay slots)

Calculate the CPI from time first
instruction completes until last
BEQ instruction completes

Show forwarding using arrows in the
time-space diagram
ADD $s0,$t1,$t2
L1 LW  $t3,0($s0)
SLT $t1,$t3,$t4
BEQ $t1,$zero,L1 (T, NT)
SUB $s2,$s3,$s4
ADD $s2,$s2,$s5
CPI =
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