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Single-Cycle CPU Datapath
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Multicycle CPU Implementation

» Single cycle CPU sets the clock period according to the
execution time
» Rather than making every instruction “pay” the worst
case time, why not make each instruction “pay” just for

— Example: Pay Parking
¢ Parking meters: Cost proportional to time spent
« Flat fee parking lot: One price no matter the time
* Multicycle CPU implementation breaks instructions into
smaller, shorter sub-operations
— Clock period according to the

* Instructions like ADD or Jump with few sub-operations
will take fewer cycles while more involved instructions
like LW will take more cycles
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Single vs. Multi-Cycle CPU

» Single Cycle CPU design makes all instructions wait for the full clock
cycle and the cycle time is based on the SLOWEST instruction

» Multi-cycle CPU will break datapath into sub-operations with the
cycle time set by the longest sub-operation. Now instructions only
take the number of clock cycles they need to perform their sub-ops.
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Single-/Multi-Cycle Comparison
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In single-cycle implementations,
the clock cycle time must be set
for the longest instruction. Thus,
shorter instructions waste time if
they require a shorter delay.
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In multi-cycle CPU, each
instruction is broken into separate
short (and hopefully time-
balanced) sub-operations. Each
instruction takes only the clock
cycles needed, allowing shorter
instructions to finish earlier and
have the next instruction start.

USC Viterbi

School of Engineering

Sharing Resources in Single-Cycle

» Single-cycle CPU

required multiple:

— Adders/ALU
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Sharing Resources in Multicycle CPU

» Any resource needed in different clock

cycles (time steps) can be

—1 ALU and 2 adders in single-cycle CPU can

be replaced by

(& some

muxes)

— Separate instruction and data memories can

be replaced with a

memory
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Temporary Registers

* Another implication of a multi-cycle implementation is that
data may be in one cycle (step) but
in a later cycle

» This may necessitate saving/storing that value in a
temporary register

— If the producer can keep producing
(i.e. is not needed for another subsequent operation) then we can
do without the temporary register

— If the producer is for another operation in a
subsequent cycle, then we must the value it produced in
a temporary register
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Temporary Registers Instruction Register

[31: 25‘
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More on Temporary Registers Multi-Cycle CPU Datapath

* Do temporary registers need a write

enable (i.e. do we need IRwrite
Signal? . - PC[31:28]l
.y s g % ¢ o 26 30
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register to be e nel326]| | fEE, Read L
, then we do —P Q— %22 Instruc[25:0]—<[zulf]' 2ead2 d:?aag
. — CLK - eg. 2 #
need a write enable instruc. |baa . AN
. . RET: Memory Reg. [15:11] R date:z
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Datapath w/ Mux Selects Single vs. Multi-Cycle CPU
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Instruction Fetch + PC Increment R-Type Execution
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LW Execution
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SW Execution
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BEQ Execution Step 1
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BEQ Execution Step 2

PCSource ]
Target PC TargetWrite
(PC+4+0ffset)
° PC[31:28]
H g B 1
g ) 2 S ® 2% < 30
s g & £ 3
= B 2
2
0 Instruc[31:26]|  {25:21
—>{ Addr.
Instruc[25:0] —¢
Read feoll — PCWriteCond
Data
Write
1 Data
Instruc.
Memory Reg.
MemtoReg —
Register File

ALUSelB

s (" Sin N\, sh.
16 T \_Extend /35 Left2
[5:0] control

© Mark Redekopp, All rights reserved




USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Jump Execution
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Controlling the Datapath

* Now we need to implement the logic for
the control signals

» This will require an FSM for our multi-cycle
CPU (since we will have sub-operations or
steps to execute each instruction)
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Multi-Cycle CPU
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Control Signal Explanation

Signal Name
MemRead
MemWrite
ALUSelA

RegDst

RegWrite

MemtoReg

lorD

IRWrite
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Effect when Deasserted
None

None

Select the PC value

Register to write is specified by rt
field

None

Reg. file write data comes from
ALU

PC is used as address to
memory

None

Effect when Asserted
Read data from memory
Write to data memory
Selects the rs register value

Register to write is specified by rd
field

Register file will write the specified
register

Reg. file write data comes from
memory read data

ALU output is used as address to
memory

Memory read data is written to IR
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Control Signal Explanation Generating a State Diagram

e « Start with states to fetch instruction, increment PC, &

00 Selects the rt register value decode it
01 Selects the constant 4 — These are common to any instruction because at this point we

ALUSelB ’ i ion it i

€ 10 Selects the sign extended lower 16-bits of IR don’t know what instruction it is
11 Selects the sign extended and shifted lower 16-bits of IR ° Once_deCOde_d usea_________ sequence of states for
: each instruction
00 ALU performs an ADD operation . . .
0 . < ] — One state for each sub-operation of each instruction
1 ALU performs a UB operation . .
ALUGP « Goal is to find state breakdown that leads to short, equal

10 The function code field of instruction will determine ALU op. timed steps
00 Selects the ALU output to pass back to the PC input — Short: Shorter the time delay of the step =>

PCSource 01 Selects the target register value to pass back to the PC input — Equal-timed: Clock cycle is set by the slowest state; if the
10 ST (TR T R Ees Ve @ [es R (e 6 e delays in states are poorly balanced, some states will have to

pay a longer delay even though they don’t need it
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State 1 = Decode / Reg. Fetch
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Questions

» After state O (fetch) we store the instruction in
the IR, after state 1 when we fetch register
operands do we need to store operands in temp
reg’s (e.g. AReg, BReg)?

* Do we need RegReadA, RegReadB control
signals?
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LW/SW State 2
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LW State 3
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[5:0]
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MemtoReg=1
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Write 4—1
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SW State 5

MemWrite
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ALUOP=00
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ALUOp
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ALUSelA=1
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ALUSelA=1
ALUSeIB=00
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Questions

* For R-Type or LW...
— Can we turn on RegWrite one state earlier?

— Can we set the RegDst signal earlier?
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BEQ State 8

ALUSelB=00

ALUSelA=1

ALUOp=01
lorD PCWriteCond
o TPCSO;‘\;CE PCSource=01
rite argetWrite
Control ALUOD
PCWriteCond Uni ALUSelB
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Jump State 9

PCWrite
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PCSource
PCWrite TargetWrite
— @ ALUOp!
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IRWrite )( PC[31:28]
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