
Multi-Cycle CPU OrganizationMulti-Cycle CPU Organization

Datapath and Control

© Mark Redekopp, All rights reserved

Single-Cycle CPU DatapathSingle Cycle CPU Datapath

0
1

Sh

+

MemRead & MemWrite

+

Sh.
Left
2

A

B

4

PCSrcControl

RegWrite

ALUSrc
RegDst

MemtoReg

Branch

MemRead & MemWrite

[3
1:

26
]

ALUOp[1:0]

Addr

Read
Reg. 1 #

Read
Reg. 2 #

W it
Read

d t 1 Z
0

5

5

0

MemRead

[25:21]

[20:16]

I-Cache

PC

Addr.

Instruc.

Register File

Write
Reg. #

Write
Data

data 1

Read
data 2

A
LU Res.

Zero

0
1

Addr.

Read
Data

W it

1

0
1

RegDst

5

[15:11]

0]

© Mark Redekopp, All rights reserved

g

Sign
Extend D-Cache

Write
Data16 32

ALUSrc MemtoReg

MemWrite
ALU control

INST[5:0]

[1
5:

0

ALUOp[1:0]

Multicycle CPU ImplementationMulticycle CPU Implementation
• Single cycle CPU sets the clock period according to the

ti ti_________________ execution time
• Rather than making every instruction “pay” the worst

case time, why not make each instruction “pay” just forcase time, why not make each instruction pay just for

– Example: Pay Parking

P ki t C t ti l t ti t• Parking meters: Cost proportional to time spent
• Flat fee parking lot: One price no matter the time

• Multicycle CPU implementation breaks instructions into
smaller, shorter sub-operations
– Clock period according to the ____________________

• Instructions like ADD or Jump with few sub-operations

© Mark Redekopp, All rights reserved

• Instructions like ADD or Jump with few sub-operations
will take fewer cycles while more involved instructions
like LW will take more cycles

Single vs Multi-Cycle CPUSingle vs. Multi Cycle CPU
• Single Cycle CPU design makes all instructions wait for the full clock

cycle and the cycle time is based on the SLOWEST instruction
• Multi-cycle CPU will break datapath into sub-operations with the

cycle time set by the longest sub-operation. Now instructions only
take the number of clock cycles they need to perform their sub-ops.

add

Instruc.
Fetch

Decode
/ Reg.
Fetch

ALU Memory
Access

Write
Resultlw CPI=1

Single-Cycletime

Instruc.
Fetch

Decode
/ Reg. ALU Memory

Access
Write
ResultR

E
G

.

R
E

G
.

R
E

G
.

R
E

G
. CPI=n

g y

© Mark Redekopp, All rights reserved

Fetch g
Fetch Access ResultlwR R R R

time Multi-cycle

Single-/Multi-Cycle ComparisonSingle /Multi Cycle Comparison

CLK

Wasted

CLK

R-Type

CLK

R-Type
Fetch / Reg. Read /
ALU Op / Reg. Write

F t h / R R d /

Fetch Reg.
Read

ALU
Op

Reg.
Write

Next
Instruc.

Wasted

Wasted

BEQ

SW

BEQ

SW

Fetch / Reg. Read /
Update PC

Fetch / Reg. Read /
Calc. Addr / Mem Write.

Fetch Reg.
Read

Update
PC

Fetch Reg.
Read

Calc.
Addr.

Mem
Write

Next Instruc.

Next
Instruc.

In single-cycle implementations, In multi-cycle CPU, each

LW LWFetch / Reg. Read / Calc. Addr. /
Mem Read / Reg. Write Fetch Reg.

Read
Calc.
Addr.

Mem
Read

Reg.
Write

g y p ,
the clock cycle time must be set
for the longest instruction. Thus,
shorter instructions waste time if

they require a shorter delay.

y ,
instruction is broken into separate

short (and hopefully time-
balanced) sub-operations. Each
instruction takes only the clock
cycles needed allowing shorter

© Mark Redekopp, All rights reserved

cycles needed, allowing shorter
instructions to finish earlier and
have the next instruction start.

Sharing Resources in Single-CycleSharing Resources in Single Cycle

• Single-cycle CPU g y
required multiple:
– Adders/ALU Control

1:
26

]

– ___________________

because all operations
occurred during a single

Read
Reg. 1 #

Read
Reg. 2 #

Read

5

5

[3
1

[25:21]

[20:16]

0C

clock cycle which limited
our control of the flow of
data signals

Shared
Mem.

Addr.

Dout.

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

0
1

RegDst

5

[15:11]

0
1

PC

Mem. Addr.

Din.

data signals Register File

Sign
Extend

16

RegDst

[1
5:

0]

Mem. Write
Data

© Mark Redekopp, All rights reserved

Sharing Resources in Multicycle CPUSharing Resources in Multicycle CPU

• Any resource needed in different clockAny resource needed in different clock
cycles (time steps) can be ___________

1 ALU and 2 adders in single cycle CPU can– 1 ALU and 2 adders in single-cycle CPU can
be replaced by ________________ (& some
muxes))

– Separate instruction and data memories can
be replaced with a ____________ memoryp ____________ y

© Mark Redekopp, All rights reserved

Temporary RegistersTemporary Registers
• Another implication of a multi-cycle implementation is that p y p

data may be ___________ in one cycle (step) but
______________ in a later cycle
Thi it t i / t i th t l i• This may necessitate saving/storing that value in a
temporary register
– If the producer can keep producing _____________________

(i.e. is not needed for another subsequent operation) then we can
do without the temporary register

– If the producer is __________ for another operation in a
subsequent cycle, then we must _______ the value it produced in
a temporary register

© Mark Redekopp, All rights reserved

Temporary RegistersTemporary Registers
• If the producer can keep p p

producing across multiple
cycles (i.e. is not needed for
another subsequent

CLK

Producer
(ALU)

Branch Target

another subsequent
operation) then we can do
without the temporary Temporary Register not

Necessary

Consumer
(PC)

Branch
Target

register
• If the producer is needed for

another operation in a
CLK

P d Branch Nextanother operation in a
subsequent cycle, then we
must save the value it

d d i t

Producer
(ALU)

Branch
Target

Temp
Reg.

Branch
Target

Next
Value

© Mark Redekopp, All rights reserved

produced in a temporary
register

Temp Register Necessary

Consumer
(PC)

Branch
Target

Instruction RegisterInstruction Register
• Do we need a register to store

Control

[3
1:

26
]

g
instruction
– In single-cycle CPU: _________

Addr

Read
Reg. 1 #

Read
Reg. 2 #

Write
Read

data 1

5

5

0

[25:21]

[20:16]

I-Cache

PC

Addr.

Instruc.

Register File

Write
Reg. #

Write
Data

data 1

Read
data 2

0
1

RegDst

5

[15:11]

0]

– In multi-cycle CPU: ___________
• Single memory may need to be

Sign
Extend

16

[1
5:

Single-Cycle CPU Datapath

PC Addr.

Read
Data

0

ct
io

n
 R

eg
.

1

Data

© Mark Redekopp, All rights reserved

Memory

Write
Data

In
st

ru
cData

read/write
address
from ALU

Multicycle CPU Datapath

More on Temporary RegistersMore on Temporary Registers

• Do temporary registers need a writeDo temporary registers need a write
enable (i.e. do we need IRwrite
signal?

te

• Unless it is acceptable for the
register to be ________________

IR
W

rit

D Q_______________, then we do
need a write enable

B d d i it th IR
Instruc.

Reg.

D Q

CLK

– Based on our design, we write the IR

© Mark Redekopp, All rights reserved

Multi-Cycle CPU DatapathMulti Cycle CPU Datapath

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e
PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

y g

Register File

Write
Data

data 2

0
1

1
2
3

ALU

4

[15:0]

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

Datapath w/ Mux SelectsDatapath w/ Mux Selects
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

Single vs Multi-Cycle CPUSingle vs. Multi Cycle CPU
Single-Cycle CPU Multi-Cycle CPU
Single LONG clock Several SHORT clocks

No sharing of resources Sharing resources possible

ALU & 2 separate adders Single ALU does all three jobs

S t i t ti & d t Si l ifi dSeparate instruction & data memory Single unified memory

No need for any temp. register Need for temp. registers like IR

PCWrite Unneeded PCWrite Needed

Control unit not an FSM Control Unit is an FSM

© Mark Redekopp, All rights reserved

Control unit not an FSM Control Unit is an FSM

Instruction Fetch + PC IncrementInstruction Fetch PC Increment
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite_______

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

st
ru

c.

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

In
s

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

R-Type ExecutionR Type Execution
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite

PC Addr.
M

em
R

ea
0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

Result

Op. B

Op. A

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

LW ExecutionLW Execution
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[rs]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[rd]

[rt]
Base Reg ________

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg
Offset

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

SW ExecutionSW Execution
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]
Base Reg ______

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg
Offset

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32
Write Data

BEQ Execution Step 1BEQ Execution Step 1
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWrite

PC+4
(PC was already incremented in fetch step)

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

BEQ Execution Step 2BEQ Execution Step 2
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWriteTarget PC
(PC+4+Offset)

PC Addr.
M

em
R

ea
0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16] PCWriteCond
Op. A

Op. B
y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

Jump ExecutionJump Execution
PCSource

T tW it

d te e

0
1
2

Target
Reg.

Sh.

PC[31:28]

32W
rit

e

TargetWriteJump PC

(PC[31:28] || IR[25:0] || 00)

PC Addr.

M
em

R
ea

0
1

M
em

W
rit

Instruc[31:26]

Instruc[25:0]

IR
W

rit
e

Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W

AL
U

Se
lAIo
rD

RegDst]

Memory

Read
Data

Write
Data Instruc.

Reg.

Instruc[25:0]
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
data 2

0
1

A
LU Res.

Zero1

0[15:11]

[20:16]

y g

Register File

Write
Data

data 2

0
1

1
2
3

4

[15:0] ALUSelB

MemtoReg

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
control

[15:0]

[5:0]

16 32

Controlling the DatapathControlling the Datapath

• Now we need to implement the logic forNow we need to implement the logic for
the control signals

• This will require an FSM for our multi cycle• This will require an FSM for our multi-cycle
CPU (since we will have sub-operations or
steps to execute each instruction)steps to execute each instruction)

© Mark Redekopp, All rights reserved

Multi-Cycle CPUMulti Cycle CPU
IorD

ALUOp
TargetWrite
PCSource

PCWrite

IRWrite

0
1
2

Target
Reg.

Sh

PC[31:28]

te

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr.

M
em

R
ea

d

0
1

M
em

W
rit

e

Instruc[31:26] Read
Reg. 1 # 0

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Memory

Read
Data

Write
Data

1

Instruc.
Reg

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read
d t 2

0
1

A
LU Res.

Zero

0
1

0[15:11]

[20:16]

Memory Reg.

Register File

Write
Data

data 2

0
1

0
1
2
3

ALU

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

Control Signal ExplanationControl Signal Explanation
Signal Name Effect when Deasserted Effect when Asserted

MemRead None Read data from memory

MemWrite None Write to data memory

ALUSelA Select the PC value Selects the rs register value

RegDst Register to write is specified by rt
field

Register to write is specified by rd
fieldfield field

RegWrite None Register file will write the specified
register

MemtoReg Reg. file write data comes from Reg. file write data comes from
ALU memory read data

IorD PC is used as address to
memory

ALU output is used as address to
memory

© Mark Redekopp, All rights reserved

memory memory
IRWrite None Memory read data is written to IR

Control Signal ExplanationControl Signal Explanation
Signal Name Value Effect

ALUSelB

00 Selects the rt register value

01 Selects the constant 4

10 Selects the sign extended lower 16-bits of IR

11 Selects the sign extended and shifted lower 16-bits of IR

00 ALU performs an ADD operation

ALUOp

00 ALU performs an ADD operation

01 ALU performs a SUB operation

10 The function code field of instruction will determine ALU op.

PCSource

00 Selects the ALU output to pass back to the PC input

01 Selects the target register value to pass back to the PC input

© Mark Redekopp, All rights reserved

10 Selects the jump address value to pass back to the PC input

Generating a State DiagramGenerating a State Diagram
• Start with states to fetch instruction, increment PC, & , ,

decode it
– These are common to any instruction because at this point we

don’t know what instruction it isdon t know what instruction it is

• Once decoded use a ________ sequence of states for
each instruction
– One state for each sub-operation of each instruction

• Goal is to find state breakdown that leads to short, equal
timed stepstimed steps
– Short: Shorter the time delay of the step => _______________
– Equal-timed: Clock cycle is set by the slowest state; if the

delays in states are poorly balanced some states will have to

© Mark Redekopp, All rights reserved

delays in states are poorly balanced, some states will have to
pay a longer delay even though they don’t need it

Multi-cycle CPU FSMMulti cycle CPU FSM
MemRead

ALUSelA=__
IorD=__
IRWrite

ALUSelA=__
ALUSelB=

Instruc. Fetch Instruc. Decode +
Reg. Fetch

0
1

Reset

ALUSelB=___
ALUOp=00

PCSource=___
PCWrite

ALUOp=00
TargetWrite

(Op=‘BEQ’)

(Op=‘JMP’)

ALUSelA=1
ALUSelB=__
ALUOp=00

IorD=__

ALUSelA=1
ALUSelB=__
ALUOp=10

ALUSelA=1
ALUSelB=00
ALUOp=01

PCWriteCond
PCSource=__

PCWrite
PCSource=__

Mem. Addr.

Execution
2 6 8 9

MemRead
ALUSelA=1
ALUSelB=__

MemWrite
ALUSelA=1
ALUSelB=__

ALUSelA=1
ALUSelB=__
ALUOp=10
RegDst=1

Computation Memory
Access Write-back

Branch
Completion

Jump
Completion

Memory
Access

3
5 7

MemRead
ALUSelA=1

ALUOp=00
IorD=__

ALUOp=00
IorD=__

RegDst=1
MemtoReg=__

RegWrite

Write-back
4

© Mark Redekopp, All rights reserved

ALUSelB=___
ALUOp=00

IorD=__
MemtoReg=__

RegDst=0
RegWrite

State 0 = Fetch MemRead
ALUSelA=0State 0 Fetch

IorD

TargetWrite
PCSource

PCWrite

IorD=0
IRWrite

ALUSelB=01
ALUOp=00

PCSource=00
PCWrite

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d
0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

State 1 = Decode / Reg. Fetch
IorD

TargetWrite
PCSource

PCWrite

State 1 Decode / Reg. Fetch
ALUSelA=0
ALUSelB=11
ALUOp=00
TargetWrite

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

QuestionsQuestions

• After state 0 (fetch) we store the instruction inAfter state 0 (fetch) we store the instruction in
the IR, after state 1 when we fetch register
operands do we need to store operands in temp
reg’s (e.g. AReg, BReg)?

• Do we need RegReadA, RegReadB control
signals?

© Mark Redekopp, All rights reserved

LW/SW State 2LW/SW State 2
IorD

TargetWrite
PCSource

PCWrite

ALUSelA=1
ALUSelB=10
ALUOp=00

IorD=1

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

LW State 3 MemReadLW State 3
IorD

TargetWrite
PCSource

PCWrite

MemRead
ALUSelA=1
ALUSelB=10
ALUOp=00

IorD=1

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d
0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

LW State 4 MemRead
ALUSelA=1LW State 4

IorD

TargetWrite
PCSource

PCWrite

ALUSelB=10
ALUOp=00

IorD=1
MemtoReg=1

RegDst=0
RegWrite

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

SW State 5 MemWriteSW State 5
IorD

TargetWrite
PCSource

PCWrite

MemWrite
ALUSelA=1
ALUSelB=10
ALUOp=00

IorD=1

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

R-Type State 6R Type State 6
IorD

TargetWrite
PCSource

PCWrite

ALUSelA=1
ALUSelB=00
ALUOp=10

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

R-Type State 7 ALUSelA=1R Type State 7
IorD

TargetWrite
PCSource

PCWrite

ALUSelA=1
ALUSelB=00
ALUOp=10
RegDst=1

MemtoReg=0
RegWrite

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d
0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

QuestionsQuestions

• For R-Type or LW…For R Type or LW…
– Can we turn on RegWrite one state earlier?

– Can we set the RegDst signal earlier?

© Mark Redekopp, All rights reserved

BEQ State 8BEQ State 8
IorD

TargetWrite
PCSource

PCWrite

ALUSelA=1
ALUSelB=00
ALUOp=01

PCWriteCond
PCSource=01

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

Jump State 9Jump State 9
IorD

TargetWrite
PCSource

PCWrite

PCWrite
PCSource=___

IRWrite

0
1
2

Target
Reg.

PC[31:28]

ALUSelA
ALUSelB
ALUOp

PCWriteCond Control
Unit

Addr

M
em

R
ea

d

0

M
em

W
rit

e

Instruc[31:26] Read
R 1 #

Sh.
Left 2

[25:21]

R
eg

W
rit

e 26 30
32

P
C

W
rit

e

[5
:0

]

M
em

to
R

eg
R

eg
D

st

PC

Zero

Addr.

Read
Data

Write
Data

1

Instruc.

Instruc[25:0]
Reg. 1 #
Read
Reg. 2 #

Write
Reg. #

Read
data 1

Read

0
1

A
LU Res.

Zero

0
1

0

[20:16]

Memory Reg.

Register File

Reg. #

Write
Data

Read
data 2

1

0
1

0
1
2
3

[15:11]
4

© Mark Redekopp, All rights reserved

Sign
Extend

Sh.
Left 2

ALU
Ctrl[15:0]

[5:0]

16 32

