USC Viterbi

USC Viterbi

School of Engineering

Multi-Cycle CPU Organization

Datapath and Control

© Mark Redekopp, Al rights reserved

School of Engineering

Single-Cycle CPU Datapath

0

1
MemRead & MemWrite +
ALUOP[1:0]
MemtoReg
RegDst PCSrc

Control
ALUSrc Branch
3 RegWrite
[25:21] Read
Reg. 1#
5 =
[20:16] Read MemRead
Reg. 2 #
Read ' 0
Addr. 0 Write data 1 Zero l
[15:11] > Reg. #
Instruc. [1 9: ™~ Res. Addi
5 Write Read 0 c ’
I-Cache —>| Data data 2 . Read a

RegDpt . . Data
=1 Register File .
g Write
Bl L Data

16 ([Sign) 32

ALUSrc MemtoReg
T \Le"d/ INSTIS0) ALU control D-Ci‘:he
ALUOp[1:0] ——» .
p[1:0] MemWrite

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

Multicycle CPU Implementation

» Single cycle CPU sets the clock period according to the
execution time
» Rather than making every instruction “pay” the worst
case time, why not make each instruction “pay” just for

— Example: Pay Parking
¢ Parking meters: Cost proportional to time spent
« Flat fee parking lot: One price no matter the time
* Multicycle CPU implementation breaks instructions into
smaller, shorter sub-operations
— Clock period according to the

* Instructions like ADD or Jump with few sub-operations
will take fewer cycles while more involved instructions
like LW will take more cycles

© Mark Redekopp, All rights reserved

School of Engineering

Single vs. Multi-Cycle CPU

» Single Cycle CPU design makes all instructions wait for the full clock
cycle and the cycle time is based on the SLOWEST instruction

» Multi-cycle CPU will break datapath into sub-operations with the
cycle time set by the longest sub-operation. Now instructions only
take the number of clock cycles they need to perform their sub-ops.

add
v
Decode .
e [TReg. (AL e Ly e
Fetch w CPI=1
tlme;,—------————————————————[----------------------F Single-Cycle
v
nstruc. ||al | B8S°%€ || 0 Memory ||@| Write CPI=n
| / Reg. Huj ALU o LU
Fetch ||| o | | | Access || Result
Fetch
tlmJe _____________|_____|_____| _____ | |_____|__"|'"'_|_"'['> Multi-cycle

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Single-/Multi-Cycle Comparison

CLK

R-Type

BEQ

SW

LW

-J [J CLK
Fetch / Reg. Read / >
ALU Op / Reg. Write R-Type
< Fetch / Reg. Read / >
Update PC BEQ

Fetch / Reg. Read / > >
Calc. Addr / Mem Write. S
Fetch / Reg. Read / Calc. Addr. / W
Mem Read / Reg. Write

In single-cycle implementations,
the clock cycle time must be set
for the longest instruction. Thus,
shorter instructions waste time if
they require a shorter delay.

=

© Mark Redekopp, Al rights reserved

T [[i 1 i 1 i
[S S A N N A |
J eed Leed Leod Laod Lol
Reg. ALU Reg.
R Read (0] Write

Reg. Update

Reg. Calc. Next

Reg. Calc. Mem
IFEtiely Read Read Write

In multi-cycle CPU, each
instruction is broken into separate
short (and hopefully time-
balanced) sub-operations. Each
instruction takes only the clock
cycles needed, allowing shorter
instructions to finish earlier and
have the next instruction start.

USC Viterbi

School of Engineering

Sharing Resources in Single-Cycle

» Single-cycle CPU

required multiple:

— Adders/ALU
- . ° 125:21] Read
because all operations [~ |Rea. 14
occurred during a single Reg.2#

Read
Write data 1
Reg. #

Read

clock cycle which limited

our control of the flow of Reag
H Mem. Addr. Data

data signals | RegDSt | pogister File

Write

Mem. Write 8 Sign
Data Extend

© Mark Redekopp, Al rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Sharing Resources in Multicycle CPU

» Any resource needed in different clock

cycles (time steps) can be

—1 ALU and 2 adders in single-cycle CPU can

be replaced by

(& some

muxes)

— Separate instruction and data memories can

be replaced with a

memory

© Mark Redekopp, All rights reserved

Temporary Registers

* Another implication of a multi-cycle implementation is that
data may be in one cycle (step) but
in a later cycle

» This may necessitate saving/storing that value in a
temporary register

— If the producer can keep producing
(i.e. is not needed for another subsequent operation) then we can
do without the temporary register

— If the producer is for another operation in a
subsequent cycle, then we must the value it produced in
a temporary register

© Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering School of Engineering

Temporary Registers Instruction Register

[31: 25‘

« If the producer can keep sHelal * Do we need a register to store i
producing across multiple R e M instruction /~*|Reg 14
cycles (i.e. is not needed for Producer (X sbnenarde X) — In single-cycle CPU: 7R 2 4

Read
another subsequent . Adr. 0 | e oaa
. onsumer arge nstruc. e
operation) then we can do °C) s - J lue o
i Temporary Register not I-Cache Data aa
W|tr_10tut the temporary Necessary o ReaDst | pegister File
register 2 :
. TTOTY T — In multi-cycle CPU:
CLK bl L4 g —_—
* Ifthe producer_ls n_eeded for » Single memory may need to be Single-Cycle CPU Datapath
another operation in a producer (B e
subsequent cycle, then we Ao i B
. Branc
must save the value it e (G -
produced in a temporary Coneumer readuie e g
ist °C) e fom , 2
reg|S er om ALU Memory
Temp Register Necessary Multicycle CPU Datapath
© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of Engineering School of Engineering

More on Temporary Registers Multi-Cycle CPU Datapath

* Do temporary registers need a write

enable (i.e. do we need IRwrite
Signal? . - PC[31:28]l
.y s g % ¢ o 26 30
* Unless it is acceptable for the l J l ﬂ |
register to be e nel326]| | fEE, Read L
, then we do —P Q— %22 Instruc[25:0]—<[zulf]' 2ead2 d:?aag
. — CLK - eg. 2 #
need a write enable instruc. |baa . AN
. . RET: Memory Reg. [15:11] R date:z
— Based on our design, we write the IR wite PN
aj Register File
[15:0] Sign O\, Sh. ALU
15 I Extend J 35 (Left2) control
[5:0]

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

School of E g ol ¢ ng

Datapath w/ Mux Selects Single vs. Multi-Cycle CPU

PCS: 5 .
e] Single-Cycle CPU Multi-Cycle CPU
TargetWrite i
Single LONG clock Several SHORT clocks
PC[31:28] q R .
- 1 No sharing of resources Sharing resources possible
g z RegDst ¢S & H q
E! ALU & 2 separate adders Single ALU does all three jobs
" Instruc[31:26]| {[25:21 Read
Addr. Reg. 1#
Read INSUUES0N =9 5616) Reaq Read Separate instruction & data memory Single unified memory
e Data L/ Reg. 2 # data 1
] Data v Write H H H
Instruc. Reg.# Read No need for any temp. register Need for temp. registers like IR
Memory Reg. [15:11] ’ data 2
Write
MemtoR — . a
emiones B PCWrite Unneeded PCWrite Needed
0 Reqgister File
1 . e
[15:0] S , S, "HUses Control unit not an FSM Control Unit is an FSM
% T *(_cema) % Left2
[5:0] control
© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi USC Viterbi

g ol ¢

Instruction Fetch + PC Increment R-Type Execution

PCSource 7
TargetWrite
PC[31:28] PC[31:28]
3| 2 1 o . 1
3 g = £
2 2 s
% : 28 2% < 30 : z I 26
g 2 RegDst] s 2 2 =
b=l
§ <
Instruc[31:26] < [25:21] Read Instruc[31:26]
Reg. 1# Addr.
Instruc[25:0 Instruc[25:0
I 1 [20:16] Read Read Read I 1
data 1 Data
Reg. 2;# . Result
Write 0 E— | Write
Data Insti Write Data Insti
nstruc. 1 Reg. # Read nstruc.
Memory Reg. [15:11] data 2 Memory Reg.
Write
MemtoReg — Data MemtoReg —
0 Register File Register File
1
. ALUSelB . ALUSelB
115:0] Sign sh. 115:0] Son O\ sh.
1% Extend 35 Left2 15 I _Extend / 35 Left2
[5:0] control [5:0] control

© Mark Redekopp, All rights reserved © Mark Redekopp, All rights reserved

USC Viterbi

ool of En

USC Viterbi

ool of Engineering

LW Execution

PCSource —l

TargetWrite

@ PC[31:28]
H 3 e l
g ol & s
S £ £
g 2 RegDst]
8 0 Instruc[31:26] < Read
Reg. 1#

Instruc[25:0]
Read

Reg.2# Base Reg
Write

Data Inst Write
nstruc. Reg. #

Memory Reg.

Write

MemtoReg — Data

Register File

ALUSelB

control

© Mark Redekopp, All rights reserved

SW Execution

2
= B g
& a|l & s
s 5| &
= =
8 0 Instruc[31:26]

Instruc[25:0]

; >
Write e
Data c

Instruc.

Memory Reg.

MemtoReg —

Register File

ALUSelB

[15:0] " Sign 0\ Sh.
16 T _Extend /3 Left2
Write Data [5:0] control

© Mark Redekopp, All rights reserved

USC Viterbi

ool of En

USC Viterbi

School of Enc

BEQ Execution Step 1

PCSource —l

PC+4
(PC was already incremented in fetch step)

TargetWrite

® PCI[31:28]
§ g e 1
=l |8 H : g2 % < R
- 2 & RegDst] xs l 2
=1
. <
0 Instruc[31:26] < [25:21] Read
—> Addr. Reg. 1#
Read Instruc[25:0] [20:16] Read
Read
Data data 1
- Reg. 2 #
Write o
™ Data Inst Write
MEUATE, 1 Reg. # Read
Memory Reg. [15:11] data 2
Write
MemtoReg — Data
Register File
e ALUSelB
[15:0] €
v
16 % 32
[5:0]

control

© Mark Redekopp, All rights reserved

BEQ Execution Step 2

PCSource]
Target PC TargetWrite
(PC+4+0ffset)
° PC[31:28]
H g B 1
g) 2 S ® 2% < 30
s g & £ 3
= B 2
2
0 Instruc[31:26]| {25:21
—>{ Addr.
Instruc[25:0] —¢
Read feoll — PCWriteCond
Data
Write
1 Data
Instruc.
Memory Reg.
MemtoReg —
Register File

ALUSelB

s (" Sin N\, sh.
16 T _Extend /35 Left2
[5:0] control

© Mark Redekopp, All rights reserved

USC Viterbi

USC Viterbi

School of Engineering

School of Engineering

Jump Execution

Jump PC
(PC[31:28] || IR[25:0] || 00)

le—
MemWrite
fe———

Addr.

Read
Data
Write
—>
Data

Memory

£
§ o8 26
& RegDst] & = l
Instruc[31:26] | ¢[25:21 Read
Reg. 1#
Instruc[25:0] —
[20:16] Read
Read
data 1
| - Reg. 2 #
Instruc ’ wiite
. —1 Reg. # Read
Reg. [15:11] data 2
Write 4 —>
MemtoReg — Data
0 Register File
! ALUSelB
" el
11501 Sign , Sh.
16 Extend 32 Left2
[5:0] control

© Mark Redekopp, Al rights reserved

Controlling the Datapath

* Now we need to implement the logic for
the control signals

» This will require an FSM for our multi-cycle
CPU (since we will have sub-operations or
steps to execute each instruction)

© Mark Redekopp, Al rights reserved

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

Multi-Cycle CPU

lorD

e

PCSource

PCWrite TargetWrite

ALUOp
PCWriteCond CEm.;OI ALUSelB
n ALUSelA

IRWrite \l\

_\\

PC[31:28]
% Zero l l
% _ z| 8 o2 26 30
2 2 5 €3
w0, 4 é
Instruc[31:26] — { [25:21] Read P
Addr. Reg. 1#
. 4 —0
Read (i 235 [20:16] Read Read 1 Zero
Data Reg.2# datal >
. '
Write | ™ Res.
| pata - O || | write c
ISUSC 1 Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
5 Data 5
a Register File 3
11501 Sign Sh. @
16 Extend 32 Left2
[5:0]

© Mark Redekopp, All rights reserved

Control Signal Explanation

Signal Name
MemRead
MemWrite
ALUSelA

RegDst

RegWrite

MemtoReg

lorD

IRWrite

© Mark Redekopp, All rights reserved

Effect when Deasserted
None

None

Select the PC value

Register to write is specified by rt
field

None

Reg. file write data comes from
ALU

PC is used as address to
memory

None

Effect when Asserted
Read data from memory
Write to data memory
Selects the rs register value

Register to write is specified by rd
field

Register file will write the specified
register

Reg. file write data comes from
memory read data

ALU output is used as address to
memory

Memory read data is written to IR

USC Viterbi USC Viterbi

School of Engineering School of Engineering

Control Signal Explanation Generating a State Diagram

e « Start with states to fetch instruction, increment PC, &

00 Selects the rt register value decode it
01 Selects the constant 4 — These are common to any instruction because at this point we

ALUSelB ’ i ion it i

€ 10 Selects the sign extended lower 16-bits of IR don’t know what instruction it is
11 Selects the sign extended and shifted lower 16-bits of IR ° Once_deCOde_d usea_________ sequence of states for
: each instruction
00 ALU performs an ADD operation . . .
0 . <] — One state for each sub-operation of each instruction
1 ALU performs a UB operation . .
ALUGP « Goal is to find state breakdown that leads to short, equal

10 The function code field of instruction will determine ALU op. timed steps
00 Selects the ALU output to pass back to the PC input — Short: Shorter the time delay of the step =>

PCSource 01 Selects the target register value to pass back to the PC input — Equal-timed: Clock cycle is set by the slowest state; if the
10 ST (TR T R Ees Ve @ [es R (e 6 e delays in states are poorly balanced, some states will have to

pay a longer delay even though they don’t need it

© Mark Redekopp, Al rights reserved © Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

School of Engineering

— MemRead
ate U = relc ALUSelA=0
lorD=0
IRWrite
Reset 0~ MemRead Instruc. Decode + AALLUUSC(;IB-?J?Jl
ALUSelA=__ Reg. Fetch lord PCSour[rJ:;-OO
lorD=__ ALUSelA=__ PCSource -
IRWrite ALUSelB= PCWrite TargetWrite PCWrite
ALUSelB=___ ALUOp=00 _ Control ALUOp
ALUOP=00 TargetWrite PCWwriteCond Unit ALUSelB
PCSource=___ ALUSelA
PCWrite (Op="IMP") \
IRWrite \’\)(PC[31:28]
g £ Zero l 1
~ ALUSelA=1 g H |8 26 30
ALUEE = ALUSelA=1 ALUSelB=00) £ £ = 1[4 g
ALUSelB=__ _ _, PCWrite o} 2 ol 2 x s
- ALUSelB=__ ALUOp=01 _ = = n o E
ALUOp=00 - p PCSource=__ 5]
lorD= ALUOp=10 PCWriteCond 25:21 =
@ie=_ PCSource= Instruc[31:26] — {[25:21] Read
Mem. Addr. — Addr Reg. 1# e
Computation Memory Branch Jump Instruc[25:0] —¢ ’ —°
Access Write-back Completion Completion Read [20:16] Read Read 1 Zero
3 Data Reg.2# datal
Memory MemRead MemWrite ALUEER=L (|):
A = Write | Res.
coess ALUSelA=1 ALUSelA=1 AUISEER_ > 0 i c
ALUOp=10 Data Write
ALUSelB=__ ALUSelB=__ RegDat=t Instruc. 1 Reg. # Read
= = - . b 0
ALUOp=00 ALUOp=00 MemtoReg=__ Memory Reg. [15:11] data 2
lorD=__ lorD=__ RegWrite Write 4—>1
Data 2
0
4 . .
Write-back e a Register File 3
ALUSelA=1
ALUSelB=___ "
ALUOp=00 [15:0] S) sh.
lorD=__ © © 16 I _Extend /3 Left2
MemtoReg=__
RegDst=0 [5:0]
RegWrite
© Mark Redekopp, A, il © Mark Redekopp, Al Tignts reserved

State 1 = Decode / Reg. Fetch

ALUSelA=0
ALUSelB=11
ALUOpP=00

TargetWrite

lorD PCSource
PCWrite TargetWrite
ALUOp
PCWriteCond ALUSelB
ALUSelA
IRWiite PC[31:28]
g Zero l l
: - FEE ¥
£ 2 gy &
o, 4 é
Instruc[31:26] |— §[25:21] Read P
Addr. Reg. 1#
. P —0
Read i 230 [20:16] Read Read Zero
Data Reg.2# datal >
a -
Write | ™ Res.
| Data [v Write (=
USULCS il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
115:0] Sign S, @
16 Extend 32 Left2
[5:0]

© Mark Rec

Skopp, ATl Ights reserved

Questions

» After state O (fetch) we store the instruction in
the IR, after state 1 when we fetch register
operands do we need to store operands in temp
reg’s (e.g. AReg, BReg)?

* Do we need RegReadA, RegReadB control
signals?

© Mark Redekopp, Al rights reserved

LW/SW State 2

ALUSelA=1
ALUSelB=10
ALUOp=00

lorD

lorD=1

PCSource
PCWrite TargetWrite
ALUOp
oIt ALUSeIA
IRWrite \l\’(PC[31:28]
% Zero l l
s _ 48 ¢ % £
] 2 ﬂ £ xs
o, 4 é
Instruc[31:26] — §[25:21] Read P
Addr. Reg. 1#
. —0
Read i 235) [20:16] Read Read Zero
Data Reg.2# datal >
2 '
Write | ™ Res.
| pata - O ||| write c
LAY, 1 Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
11501 Sign , Sh. @
16 Extend 32 Left2
[5:0]

© Mark Rec

fekopp, All fignts reserved

LW State 3

MemRead
ALUSelA=1

ALUSelB=10
ALUOp=00
lorD=1
lord PCSource
PCWrite TargetWrite
— Control ALUOP,
PCWwriteCond Uni ALUSelB
it ALUSeIA
\
IRWrite \’\’(PC[31:28]
I]
g % Zero f +
4 3 3| @ o 26 30
£ £ = [=1[:4 o8
5] g 82 x s
. =
Instruc[31:26] — ¢ [25:21] Read ~
Addr. Reg. 1#
q 4 — 0
Read i 235 [20:16] Read Read Zero
Data Reg.2# datal >
2 '
Write | ™ Res.
| pata - O || | write =
ISUSCS il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
Data
0 : . 2
a Register File 3
(1501 S) Sh. @
15 I Extend 35 Left2
[5:0]
© Mark Redekopp, All ignts reserved

MemRead
a e ALUSelA=1
ALUSelB=10
ALUOpP=00
lorD=1
MemtoReg=1
lorD PCSource RegDst=0
PCWrite TargetWrite RegWrite
ALUOp
oIt ALUSelA
IRWrite \'\’l/ PC[31:28]
¢ : ! 1
3 H zero 3|8 of 26 30
o £ IS 9% gz
2 & ﬂ“ 2
o, | E
. =
8 0 Instruc[31:26] — ¢ [25:21] Read A
Addr. Reg. 1# >
i Instruc[25:0] ——4) ©
Read . [20:16] Read Read Zero
Data Reg.2# datal >
Write G ™ Res.
Data [Write (=
USULCS il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
115:0] Sign Sh.
16 Extend 32 Left2
[5:0]

© Mark Redekopp, All rights reserved

SW State 5

MemWrite

ALUSelA=1
ALUSelB=10
ALUOP=00
lorD=1
lord PCSource
PCWwrite TargetWrite
ALUOp
i ALUSelA
\
IRWrite \'\’l/ PC[31:28]
¢ : ! 1
g S 3|2 &5
= 2 r?_| £
. =
8 0 Instruc[31:26] — ¢ [25:21] Read -~
Addr.
i Instruc[25:0] — R ©
Read . [20:16] Read Read Zero
Data Reg.2# datal >
a '
Write | ™ Res.
| pata ik © Write (=
WU Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
11501 S) Sh.
16 I _Extend / 35 Left2
[5:0]
© Mark Redekopp, All rights reserved

USC Viterbi

R-Type State 6

ALUSelA=1

ALUSelB=00
ALUOp=10
lord PCSource
PCWrite TargetWrite
#—l Control ALUOP,
PCWriteCond Ui ALUSelB
oIt ALUSeIA
IRWrite \l\’(PC[31:28]
¢ : ! 1
3 H zero 3|8 of 26 30
o £ IS s <
2 o ﬂ‘g 2
= o %
8 0 Instruc[31:26] — §[25:21] Read P
Addr. Reg. 1# ,
i Instruc[25:0] —) ©
Read : [20:16] Read Read Zero
Data Reg.2# datal >
Write | g ™ Res.
Data - Write c
MELE il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
11501 Sign , Sh.
16 Extend 32 Left2
[5:0]
© Mark Redekopp, ATl ignts reserved

USC Viterbi

R-Type State 7

ALUSelA=1
ALUSeIB=00
ALUOp=10

RegDst=1
MemtoReg=0
lorD PCSource RegWri(ge
PCWrite TargetWrite
_Pcwrite | | Targetwrite
Control ALUOD
PCWwriteCond Unit ALUSelB
a ALUSeIA
\
>
IRWrite \’\’(PC[31:28]
2)] i
E] L]
3 ¢ H zero 3|3 oyl 26 30
& 5 5 g 5 ¢E
= s D, ;°E| E B
. =
8 0 Instruc[31:26] — ¢ [25:21] Read ~
Addr.
i Instruc[25:0] ——4 A ©
Read : [20:16] Read Read Zero
Data Reg.2# datal >
2 e
Write | ™ Res.
| pata - O ||| write =
ISUSCS il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
(1501 S) Sh.
15 I _Extend / 35 Left2
[5:0]
© Mark Redekopp, Al Tignts reserved

USC Viterbi

0

Questions

* For R-Type or LW...
— Can we turn on RegWrite one state earlier?

— Can we set the RegDst signal earlier?

© Mark Redekopp, All rights reserved

USC Viterbi

ineering

BEQ State 8

ALUSelB=00

ALUSelA=1

ALUOp=01
lorD PCWriteCond
o TPCSO;‘\;CE PCSource=01
rite argetWrite
Control ALUOD
PCWriteCond Uni ALUSelB
oIt ALUSelA
\
>
IRWrite \'\’l/ PC[31:28]
¢ : ! |
3 H zero FE of 26 30
a E = 1[4 22
o] S gL @z
= 0, | g
. =
8 0 Instruc[31:26] — ¢ [25:21] Read -~
i A Instruc[25:0] — R ©
Read . [20:16] Read Read Zero
Data Reg.2# datal >
Write | G ™ Res.
Data ik Write (=
IMELE il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
11501 Son) Sh.
16 I _Extend / 35 Left2
[5:0]

© Mark Redekopp, Al fignts reserved

USC Viterbi

0

Jump State 9

PCWrite

\ PCSource=___

lorD

PCSource
PCWrite TargetWrite
— @ ALUOp!
PCWriteCond Cam_rol ALUSelB
oIt ALUSeIA
\’\ -
IRWrite)(PC[31:28]
¢ : ! 1
2 £ Zero o
g z = gg ge % 30
2 & 32 x3
2
8 0 Instruc[31:26] — §[25:21] Read
1 Addr. Reg. 1# 0
Read i 235) [20:16] Read Read 1 Zero
Data Reg.2# datal >
2 '
Write | ™ Res.
| pata - O || | write =
MELE il Reg. # Read 0
Memory Reg. [15:11] data 2
Write 4—1
f Data 2
a Register File 3
11501 Sign , Sh.
16 Extend 32 Left2
[5:0]
© Mark Redekopp, ATl ignts reserved

