
© Mark Redekopp, All rights reserved

EE 357 Unit 11

MIPS ISA

© Mark Redekopp, All rights reserved

Components of an ISA

1. Data and Address Size
– 8-, 16-, 32-, 64-bit

2. Which instructions does the processor support
– SUBtract instruc. vs. NEGate + ADD instrucs.

3. Registers accessible to the instructions
– Faster than accessing data from memory

4. Addressing Modes
– How instructions can specify location of data

operands

5. Length and format of instructions
– How is the operation and operands represented with

1‟s and 0‟s

© Mark Redekopp, All rights reserved

MIPS ISA

• RISC Style

• 32-bit internal / 32-bit external data size
– Registers and ALU are 32-bits wide

– Memory bus is logically 32-bits wide (though may be
physically wider)

• Registers
– 32 General Purpose Registers (GPR‟s)

• For integer and address values

• A few are used for specific tasks/values

– 32 Floating point registers

• Fixed size instructions
– All instructions encoded as a single 32-bit word

– Three operand instruction format (dest, src1, src2)

– Load/store architecture (all data operands must be in registers
and thus loaded from and stored to memory explicitly)

© Mark Redekopp, All rights reserved

MIPS Data Sizes

Integer

• 3 Sizes Defined

– Byte (B)

• 8-bits

– Halfword (H)

• 16-bits = 2 bytes

– Word (W)

• 32-bits = 4 bytes

Floating Point

• 3 Sizes Defined

– Single (S)

• 32-bits = 4 bytes

– Double (D)

• 64-bits = 8 bytes

• (For a 32-bit data bus, a

double would be accessed

from memory in 2 reads)

© Mark Redekopp, All rights reserved

MIPS GPR‟s
Assembler Name Reg. Number Description

$zero $0 Constant 0 value

$at $1 Assembler temporary

$v0-$v1 $2-$3 Procedure return values or expression

evaluation

$a0-$a3 $4-$7 Arguments/parameters

$t0-$t7 $8-$15 Temporaries

$s0-$s7 $16-$23 Saved Temporaries

$t8-$t9 $24-$25 Temporaries

$k0-$k1 $26-$27 Reserved for OS kernel

$gp $28 Global Pointer (Global and static

variables/data)

$sp $29 Stack Pointer

$fp $30 Frame Pointer

$ra $31 Return address for current procedure

© Mark Redekopp, All rights reserved

MIPS Programmer-Visible Registers

MIPS Core

PC:

$0 - $31

32-bits

• General Purpose Registers
(GPR‟s)
– Hold data operands or

addresses (pointers) to data
stored in memory

• Special Purpose Registers
– PC: Program Counter (32-bits)

• Holds the address of the next
instruction to be fetched from
memory & executed

– HI: Hi-Half Reg. (32-bits)
• For MUL, holds 32 MSB‟s of

result. For DIV, holds 32-bit
remainder

– LO: Lo-Half Reg. (32-bits)
• For MUL, holds 32 LSB‟s of

result. For DIV, holds 32-bit
quotient

GPR’s

Special Purpose Registers

HI:

LO:

© Mark Redekopp, All rights reserved

MIPS Programmer-Visible Registers

MIPS Core

• Coprocessor 0 Registers
– Status Register

• Holds various control bits
for processor modes,
handling interrupts, etc.

– Cause Register
• Holds information about

exception (error) conditions

• Coprocessor 1 Registers
– Floating-point registers

– Can be used for single or
double-precision (i.e. at least
64-bits wides)

GPR’s

$f0 - $f31

64 or more

Coprocessor 1 –

Floating-point Regs.

Coprocessor 0 –

Status & Control Regs

Status:

Cause:

PC:

Special Purpose Registers

HI:

LO:

$0 - $31

32-bits

© Mark Redekopp, All rights reserved

General Instruction Format Issues

• 3 Operand Format

– Example: ADD $t0, $t1, $t2 ($t0 = $t1 + $t2)

• Fixed Size instructions = All instructions are a

32-bit (long)word

– Bits describing the opcode, source/dest. registers and

immediates/absolute addresses/displacements must

fit in a single 32-bit value

© Mark Redekopp, All rights reserved

MIPS INSTRUCTIONS

ALU (R-Type) Instructions

Memory Access, Branch, & Immediate (I-Type) Instructions

© Mark Redekopp, All rights reserved

MIPS Instructions & Addressing Modes

• Types of instructions

– R-Type

• Instructions with 3 register operands

• Arithmetic and logic instructions

– I-Type

• Instructions with an immediate (constant) value

• Memory load and store instructions

• Arithmetic and logical immediate instructions

• Branch instructions

• Addressing Modes: Methods for specifying the location of operands

Mode Syntax Shorthand Description

Reg. Direct $n R[n] Contents of given reg.

Reg. Indirect w/ Offset off($n) M[off+R[n]] Contents of memory at

address R[n] + offset

Immediate Const const Operand is the constant

© Mark Redekopp, All rights reserved

R-Type Instructions

• Format

– rs, rt, rd are 5-bit fields for register numbers

– shamt = shift amount and is used for shift

instructions indicating # of places to shift bits

– opcode and func identify actual operation

• Example:

– ADD $5, $24, $17

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

000000 11000

opcode rs

10001

rt

00101

rd

00000

shamt

100000

func

Arith. Inst. $24 $17 $5 unused ADD

© Mark Redekopp, All rights reserved

R-Type Arithmetic/Logic Instructions
C operator Assembly Notes

+ ADD Rd, Rs, Rt

- SUB Rd, Rs, Rt Order: R[s] – R[t]. SUBU for unsigned

* MULT Rs, Rt

MULTU Rs, Rt

Result in HI/LO. Use mfhi and mflo

instruction to move results

* MUL Rd, Rs, Rt If multiply won‟t overflow 32-bit result

/ DIV Rs, Rt

DIVU Rs, Rt

R[s] / R[t].

Remainder in HI, quotient in LO

& AND Rd, Rs, Rt

| OR Rd, Rs, Rt

^ XOR Rd, Rs, Rt

~(|) NOR Rd, Rs, Rt Can be used for bitwise-NOT (~)

<< SLL Rd, Rs, shamt

SLLV Rd, Rs, Rt

Shifts R[s] left by shamt (shift

amount) or R[t] bits

>> (signed) SRA Rd, Rs, shamt

SRAV Rd, Rs, Rt

Shifts R[s] right by shamt or R[t] bits

replicating sign bit to maintain sign

>> (unsigned) SRL Rd, Rs, shamt

SRLV Rd, Rs, Rt

Shifts R[s] left by shamt or R[t] bits

shifting in 0‟s

<, >, <=, >= SLT Rd, Rs, Rt

SLTU Rd, Rs, Rt

Order: R[s] – R[t]. Sets R[d]=1 if R[s]

< R[t], 0 otherwise

© Mark Redekopp, All rights reserved

Shift Instructions

• Logical Shifts (SLL, SRL) and Arithmetic (SRA)

• Format:
– Sxx rd, rt, shamt

– SxxV rd, rt, rs

• Notes:
– shamt limited to a 5-bit value (0-31)

– SxxV shifts data in rt by number of places specified in rs

• Examples
– SRA $5, $12, 7

– SRAV $5, $12, $20

000000 00000

opcode rs

10001

rt

00101

rd

00111

shamt

000011

func

Arith. Inst. unused $12 $5 7 SRA

000000 10100 10001 00101 00000 000111

Arith. Inst. $20 $12 $5 unused SRAV

© Mark Redekopp, All rights reserved

I-Type Instructions

• Format

– rs, rt are 5-bit fields for register numbers

– immediate is a 16-bit constant

– opcode identifies actual operation

• Example:

– ADDI $5, $24, 1

– LW $5, -8($3)

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

20

010111 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

© Mark Redekopp, All rights reserved

Immediate Operands

• Most ALU instructions also have an immediate form to be used

when one operand is a constant value

• Syntax: ADDI Rs, Rt, imm

– Because immediates are limited to 16-bits, they must be extended to a

full 32-bits when used the by the processor

– Arithmetic instructions always signsign--extendextend to a full 32-bits even for

unsigned instructions (addiu)

– Logical instructions always zerozero--extendextend to a full 32-bits

• Examples:

– ADDI $4, $5, -1 // R[4] = R[5] + 0xFFFFFFFF

– ORI $10, $14, -4 // R[10] = R[14] | 0x0000FFFC

Arithmetic Logical

ADDI ANDI

ADDIU ORI

SLTI XORI

SLTIU

Note: SUBI is unnecessary

since we can use ADDI with

a negativenegative immediate value

© Mark Redekopp, All rights reserved

Load Format (LW)

• LW Rt, offset(Rs)

– Rt = Destination register

– offset(Rs) = Address of desired data

– Shorthand: R[t] = M[offset + R[s]]

– offset limited to 16-bit signed number

• Examples

– LW $2, 0x40($3) // R[2] = 0xF8BE97CD

– LW $2, 0xFFFC($4) // R[2] = 0x5A12C5B7

5A12C5B7

134982FE

F8BE97CD

00002000R[3]

0000204CR[4]

old val.R[2]

0x002048

0x002044

0x002040

© Mark Redekopp, All rights reserved

Store Format (SW)

• SW Rt, offset(Rs)

– Rt = Source register

– offset(Rs) = Address to store data

– Shorthand: M[offset + R[s]] = R[t]

– offset limited to 16-bit signed number

• Examples

– SW $2, 0x40($3)

– SW $2, 0xFFF8($4)

00002000R[3]

0000204CR[4]

123489ABR[2]
123489AB

0x002048

123489AB

00000000

0x002044

0x002040

© Mark Redekopp, All rights reserved

Loading an Immediate

• If immediate (constant) 16-bits or less

– Use ORI or ADDI instruction with $0 register

– Examples

• ADDI $2, $0, 1 // R[2] = 0 + 1 = 1

• ORI $2, $0, 0xF110 // R[2] = 0 | 0xF110 = 0xF110

• If immediate more than 16-bits

– Immediates limited to 16-bits so we must load

constant with a 2 instruction sequence using the

special LUI (Load Upper Immediate) instruction

– To load $2 with 0x12345678

• LUI $2,0x1234

• ORI $2,$2,0x5678

12340000R[2]

12345678R[2]

OR 00005678

LUI

ORI

© Mark Redekopp, All rights reserved

Translating HLL to Assembly

C operator Assembly Notes

int x,y,z;

…

x = y + z;

LUI $8, 0x1000

ORI $8, $8, 0x0004

LW $9, 4($8)

LW $10, 8($8)

ADD $9,$9,$10

SW $9, 0($8)

Assume x @ 0x10000004

& y @ 0x10000008

& z @ 0x1000000C

© Mark Redekopp, All rights reserved

Pseudo-instructions

• “Macros” translated by the assembler to

instructions actually supported by the HW

• Simplifies writing code in assembly

• Example – LI (Load-immediate) pseudo-

instruction translated by assembler to 2

instruction sequence (LUI & ORI)

...

lui $2, 0x1234

ori $2, $2, 0x5678

...

...

li $2, 0x12345678

...

With pseudo-instruction After assembler…

© Mark Redekopp, All rights reserved

Pseudo-instructions

Pseudo-instruction Actual Assembly

NOT Rd,Rs NOR Rd,Rs,$0

NEG Rd,Rs SUB Rd,$0,Rs

LI Rt, immed. # Load Immediate LUI Rt, {immediate[31:16], 16‟b0}

ORI Rt, {16‟b0, immediate[15:0]}

LA Rt, label # Load Address LUI Rt, {immediate[31:16], 16‟b0}

ORI Rt, {16‟b0, immediate[15:0]}

BLT Rs,Rt,Label SLT $1,Rs,Rt

BNE $1,$0,Label

Note: Pseudoinstructions are assembler-dependent. See MARS Help for more details.

© Mark Redekopp, All rights reserved

Branch Instructions

• Conditional Branches

– Branches only if a particular condition is true

– Fundamental Instrucs.: BEQ (if equal), BNE (not equal)

– Syntax: BNE/BEQ Rs, Rt, label

• Compares Rs, Rt and if EQ/NE, branch to label, else continue

• Unconditional Branches

– Always branches to a new location in the code

– Instruction: BEQ $0,$0,label

– Pseudo-instruction: B label

label: ----

b label

beq $2,$3,label

label: ----

!=

=

© Mark Redekopp, All rights reserved

Two-Operand Compare & Branches

• Two-operand comparison is accomplished

using the SLT/SLTI/SLTU (Set If Less-

than) instruction

– Syntax: SLT Rd,Rs,Rt or SLT Rd,Rs,imm

• If Rs < Rt then Rd = 1, else Rd = 0

– Use appropriate BNE/BEQ instruction to infer

relationship
Branch if… SLT BNE/BEQ

$2 < $3 SLT $1,$2,$3 BNE $1,$0,label

$2 ≤ $3 SLT $1,$3,$2 BEQ $1,$0,label

$2 > $3 SLT $1,$3,$2 BNE $1,$0,label

$2 ≥ $3 SLT $1,$2,$3 BEQ $1,$0,label

© Mark Redekopp, All rights reserved

Translating HLL to Assembly

C operator Assembly

int dat[4],x=0;

for(i=0;i<4;i++)

x += dat[i];

DAT: .space 16

X: .long 0

LA $8, DAT

ADDI $9,$0,4

ADD $10,$0,$0

LP: LW $11,0($8)

ADD $10,$10,$11

ADDI $8,$8,4

ADDI $9,$9,-1

BNE $9,$0,LP

LA $8,X

SW $10,0($8)

© Mark Redekopp, All rights reserved

Jump Instructions

• Jumps provide method of

branching beyond range

of 16-bit displacement

• Syntax: J label/address

– Operation: PC = address

– Address is appended with

two 0‟s just like branch

displacement yielding a

28-bit address with upper

4-bits of PC unaffected

• New instruction format:

J-Type

opcode

6-bits

Jump address

26-bits

Old PC

00Jump address
Old PC

[31:28]

PC before execution of Jump

New PC after execution of Jump

Sample Jump instruction

4-bits 26-bits 2-bits

© Mark Redekopp, All rights reserved

Jump Register

• „jr‟ instruction can be used if a full 32-bit

jump is needed or variable jump address

is needed

• Syntax: JR rs

– Operation: PC = R[s]

– R-Type machine code format

• Usage:

– Can load rs with an immediate address

– Can calculate rs for a variable jump (class

member functions, switch statements, etc.)

