
© Mark Redekopp, All rights reserved

Introduction to Digital Logic

Lecture 7:

Design Goals (Metrics)

2-Level Logic

Negative Logic

© Mark Redekopp, All rights reserved

Warmup

• Consider F(w,x,y,z). Show the algebraic form of m4 and

M4?

• Use Boolean algebra to find the minimal SOP expression

for the function, F = Σa,b,s(3,4,6,7)

• Use Boolean algebra to find the minimal POS expression

for the function, G = Πx,y,z(1,3,5,7)

© Mark Redekopp, All rights reserved

Check Up

• The smaller the product term (i.e. fewer literals) the

(more / less) minterms it covers

• (True / False) “Converting to SOP/POS” means convert

to a canonical sum/product and add in missing variables

– FALSE: SOP/POS is just a form…a canonical sum is the

biggest SOP expression of a function while a canonical product

is the biggest POS expression

• SOP and POS expressions can be minimized using theorems, etc.

• SOP and POS expressions can be expanded by adding in missing variables

© Mark Redekopp, All rights reserved

Logic Exercise 1

• Tom and his three friends, Alice, Bob, and

Charlie have been invited to a party. But

Tom is an introvert and will only go if only

a single one of his friends also goes.

Express this as a logic function

– T = A + B + C

– T = A B C

– T = AB’C’ + A’BC’ + A’B’C

– T = B’C’ + A’C’ + A’B’

© Mark Redekopp, All rights reserved

Logic Exercise 1

• Tom and his three friends, Alice, Bob, and

Charlie have been invited to a party. But

Tom is an introvert and will only go if only a

single one of his friends also goes. Express

this as a logic function

– T = A + B + C (at least one friend goes)

– T = A B C (all friends go)

– T = AB’C’ + A’BC’ + A’B’C (exactly one friend)

– T = B’C’ + A’C’ + A’B’ (0 or 1 friend goes)

© Mark Redekopp, All rights reserved

Logic Exercise 2

• Jill is also friends with Alice, Bob, and

Charlie and has also been invited. Jill is

shy and will only go if at least two of her

other friends go. Express this as a logic

function

– J = AB + BC + AC

– J = ABC’ + AB’C + A’BC

– J = A’ + B’ + C’

– J = A’ B’ C’

© Mark Redekopp, All rights reserved

Logic Exercise 2

• Jill is also friends with Alice, Bob, and

Charlie and has also been invited. Jill is

shy and will only go if at least two of her

other friends go. Express this as a logic

function

– J = AB + BC + AC (2 or 3 friends go)

– J = ABC’ + AB’C + A’BC (exactly two go)

– J = A’ + B’ + C’ (not everyone goes)

– J = A’ B’ C’ (no friends go)

© Mark Redekopp, All rights reserved

Covering Combinations 1

• An alien lands on earth and watches college students to try

to learn their behavior, picking one student Bill as his

subject. The alien watches Bill's class attendance

behavior over several days and notices:

– Day 1: Bill attends, a HW is due, it is sunny

– Day 2: Bill attends, a HW is due, it is cloudy

– Day 3: Bill doesn’t attend, a HW is not due, it is sunny

– Day 4: Bill doesn’t attend, a HW is not due, it is cloudy

• What is a conclusion the alien can draw about Bill’s

attendance

• Bill attends if a HW is due
– If the same result occurs for all the values of a variable, that variable must

not affect the result

© Mark Redekopp, All rights reserved

Covering Combinations 2

• The alien continues to watch and records Bill’s attendance

again based on a HW being due, whether it is sunny or not,

and whether Bill sets his alarm the night before.

– Help our alien friend derive the simplest expression for Bill’s

attendance

– Find a pattern in a subset of input combinations

such that the output is true wherever that pattern

holds and the output is false wherever that pattern

does not hold.

– Make sure some pattern you found accounts for all

locations in the truth table where the output is true

H S A B

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

© Mark Redekopp, All rights reserved

Covering Combinations 2

• The alien continues to watch and records Bill’s attendance

again based on a HW being due, whether it is sunny or not,

and whether Bill sets his alarm the night before.

– Help our alien friend derive the simplest expression for Bill’s

attendance

– Find a pattern in a subset of input combinations

such that the output is true wherever that pattern

holds and the output is false wherever that pattern

does not hold.

– Make sure some pattern you found accounts for all

locations in the truth table where the output is true

• B = H + SA

H S A B

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

© Mark Redekopp, All rights reserved

Covering Combinations 2

• The alien continues to watch and records Bill’s attendance

again based on a HW being due, whether it is sunny or not,

and whether Bill sets his alarm the night before.

– Help our alien friend derive the simplest expression for Bill’s

attendance

– Find a pattern in a subset of input combinations

such that the output is true wherever that pattern

holds and the output is false wherever that pattern

does not hold.

– Make sure some pattern you found accounts for all

locations in the truth table where the output is true

• B = H + SA

• Each term ‘covers’ combinations of variables

not present in the term

H S A B

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

© Mark Redekopp, All rights reserved

DIGITAL DESIGN GOALS

Speed, area, and power

© Mark Redekopp, All rights reserved

Digital Design Goals

• When designing a circuit, we want to optimize for the

following three things:

– Area or Circuit Size (minimize)

– Speed (maximize) / Delay (minimize)

– Power (minimize)

• Can usually only optimize 2 of the 3

– There is a huge trade space! This is what engineering is all

about!

© Mark Redekopp, All rights reserved

Minimizing Circuit Area

• Approaches:

– Reduce the number of gates used to

implement a circuit

– Reduce the number of inputs to each gate

• In general a gate with n inputs requires 2n

transistors to implement

• Simplify logic expressions (usually by

factoring and then canceling terms) to

reduce the number of gates

© Mark Redekopp, All rights reserved

Maximizing Speed

• Speed is affected by:

– Levels of logic (path length)

– Gate type

– Number of inputs (fan-in) to the gate

– Number of outputs a gate connects to (fan-

out)

– Feature size and implementation technology

© Mark Redekopp, All rights reserved

Levels of Logic

• Definition: Maximum number of gates [not

including inverters] on any path from an

input to the output

C = P + P((V+B+T)+R)

P

P

R

V

T
B

C
1 Level

4 Levels

3 Levels

Max of all paths

= 4 levels

© Mark Redekopp, All rights reserved

Gate Delays

• Order the gate

types in terms of

fastest to

slowest?

• Typical gate delay

for a 2-input

NAND or NOR is

under a 100 ps.

Z
X

Y
Z

X

Y

Z
X

Y
Z

X

Y

X Z

X

Y
Z Z

X

Y

1

2

3

4

© Mark Redekopp, All rights reserved

Digital Design Goals

• When designing a circuit, we want to optimize for the

following three things:

– Area (minimize)

• Use fewer number of gates

• Use gates w/ fewer inputs

– Speed (maximize) / Delay (minimize)

• Fewer levels of logic

– Levels of logic = max. # of gates on a path from ANY input to output

• Relative speed of gates: INV, NAND/NOR, AND/OR, XOR/XNOR

– Power (minimize)

• How much energy the circuit consumes when switching between 0 and 1

• Can usually only optimize 2 of the 3

© Mark Redekopp, All rights reserved

2-LEVEL IMPLEMENTATIONS

© Mark Redekopp, All rights reserved

How Many Levels?

• Consider our the alarm circuit with

an additional panic input:

– The alarm should sound if the panic

button is true or if the system is

enabled, you are not exiting, and the

house is not secure. The house is

considered secure if the windows, door,

and garage sensors are all true

• How many levels of logic is this

circuit?

– 3

• Can we reduce to 2?

– Yes…Any circuit can be converted to a

2-level implementation

– How? By converting to SOP or POS.

N

X

W
D
G

AP

© Mark Redekopp, All rights reserved

Converting to 2-Levels

• To SOP: • To POS:

N

X

W
D
G

AP

A = P + NX’(WDG)’

© Mark Redekopp, All rights reserved

• SOP => AND-OR

implementation

• POS => OR-AND

implementation

Panic

Enable

Exiting

Window

Door

Garage

P

N

X

W

D

G

Level 1 Level 2

Panic

Enable

Exiting

Window

Door

Garage

P

N

X

W

D

G

Level 1 Level 2

A

© Mark Redekopp, All rights reserved

AND-OR / NAND-NAND

• SOP =>

– AND-OR Implementation

– NAND-NAND Implementation

=
=

© Mark Redekopp, All rights reserved

OR-AND / NOR-NOR

• POS =>

– OR-AND Implementation

– NOR-NOR Implementation

=
=

© Mark Redekopp, All rights reserved

AND-NOR / NAND-AND

• Suppose we wanted to

implement a function with

AND-NOR

– Implement F’ via SOP,

AND-OR

– Change last OR gate to

NOR and you will have F.

– AND-NOR can then be

converted by NAND-AND

=
=

=

F

F

F

F

© Mark Redekopp, All rights reserved

OR-NAND / NOR-OR

=
=

F

F

F

F

=

• Suppose we wanted to

implement a function with

OR-NAND

– Implement F’ via POS,

OR-AND

– Change last AND gate to

NAND and you will have F.

– OR-NAND can then be

converted by NOR-OR

© Mark Redekopp, All rights reserved

Circuit Design

• Take a problem description and create a
circuit

– “A car stereo display should show the clock
time (as opposed to other information) when
the power is off or when the power is on and
the sound settings or radio station are not
being changed. The sound settings are
considered as the volume, balance and
treble/bass.”

C = P + P(S+R)

= P + P((V+B+T)+R)

© Mark Redekopp, All rights reserved

Car Stereo Example

C = P + P((V+B+T)+R)

P

P

R

V

T
B

C

© Mark Redekopp, All rights reserved

Car Stereo Example

C = P + P((V+B+T)+R)

P

P

R

V

T
B

C

4 Levels of Logic

© Mark Redekopp, All rights reserved

2-Level Implementation

• Converting to SOP or POS always yields a 2-

level implementation

C = P + P((V+B+T)+R)

= P + P((V•B•T)+R)

= P + P•V•B•T + PR

P

P
V
B
T

P
R

C

© Mark Redekopp, All rights reserved

NEGATIVE (ACTIVE-LO) LOGIC

© Mark Redekopp, All rights reserved

DeMorgan Equivalents

=

=

=

=

?

?

© Mark Redekopp, All rights reserved

Negative Logic

• Recall it is up to us humans to assign meaning to the two voltage

levels

– Thus, far we’ve used (unknowingly) the positive logic convention where

1 means true and 0 means false

– In negative logic 0 means true and 1 means false

volts

time

1=true/on

0=false/off

volts

time

1=false/off

0=true/on

Negative Logic

Convention

Positive Logic

Convention

(Value/Meaning) (Value/Meaning)

© Mark Redekopp, All rights reserved

Negative Logic ‘AND’ Function

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

1 1 1

1 0 1

0 1 1

0 0 0

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

P.L.

AND

X

Y
Z

P.L. P.L.

P.L.

AND

X

Y
Z

N.L. AND

N.L. N.L.

N.L.

AND

X

Y
Z

N.L. N.L.

Traditional AND gate

functionality assumes

positive logic

convention

Given negative logic

signals, we can invert to

positive logic, perform the

AND operation, then

convert back to negative

logic

However, we then see that

an OR gate implements the

negative logic ‘AND’

function

Traditional

P.L. AND

N.L. AND

function

N.L. AND =

P.L. OR

© Mark Redekopp, All rights reserved

Negative Logic ‘OR’ Function

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

1 1 1

1 0 0

0 1 0

0 0 0

Traditional OR gate

functionality assumes

positive logic

convention

Given negative logic

signals, we can invert to

positive logic, perform the

OR operation, then convert

back to negative logic

However, we then see that

an AND gate implements

the negative logic ‘OR’

function

Traditional

P.L. OR

N.L. OR

function

N.L. OR =

P.L. AND

P.L.

OR

X

Y
Z

P.L. P.L.
P.L.

OR

X

Y
Z

N.L. OR

N.L. N.L.

N.L

OR

X

Y
Z

N.L. N.L.

© Mark Redekopp, All rights reserved

Negative Logic

A negative logic OR function is equivalent to an AND gate

=

=

A negative logic AND function is equivalent to an OR gate

These are the preferred way of showing the N.L. functions because the inversion

bubbles explicitly show where N.L. is being converted to P.L. and the basic gate

schematics retain their meaning (when we see an AND gate we know we’re doing some

king of AND function with the bubbles indicating N.L.)

© Mark Redekopp, All rights reserved

OLD

© Mark Redekopp, All rights reserved

Application: TRUST Program

• The situation…

– U.S. military consumes 1% of all chips worldwide

– More and more chips are designed in the U.S. but fabricated in

other countries (Taiwan, Korea, etc.)

– Chip designs often use some IP (=Intellectual Property =

pre-designed circuit components from another vendor)

• The problem: Sabotage in the form of…

– Malicious changes to a design before fabrication

– Introduce flaws during the fabrication process

– Add additional logic that can be triggered at some later point in

time

• Solution: DARPA’s Trust in IC’s program

© Mark Redekopp, All rights reserved

Application: TRUST Program

© Mark Redekopp, All rights reserved

Solutions

• Design Changes

– Simulation

• Describe the circuit to a computer, indicate what input combinations to

plug in and let software CAD tools tell us what the output will be

• Problem: 2n combinations…too many

– Formal Verification

• Given two circuits, use theorems and other methods to formally prove

that two circuits are equivalent or not

• Fabrication Errors

– Reverse Engineer a circuit: shave off one layer of a chip at a time,

taking images of each layer and let a computer reconstruct a model

of the circuit; then compare it to original design

– Other more advanced techniques (X-ray imaging, etc.)

© Mark Redekopp, All rights reserved

Unique Representations

• Canonical => Same functions will have same representations

• Truth Tables along with Canonical Sums and Products specify a
function uniquely

• Equations/circuit schematics are NOT inherently canonical

x y z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

 zyx
P

,,
)7,5,3,2(zyx

P
,,

)6,4,1,0(

Canonical

Sum

Canonical

Product

Truth

Table

rows where P=1 rows where P=0

Yields SOP equation,

AND-OR circuit

Yields POS equation,

OR-AND circuit

© Mark Redekopp, All rights reserved

Binary Decision Diagram

• Graph (binary tree)

representation of

logic function

• Vertex =

Variable/Decision

• Edge = Variable

value (T / F)

X Y Z F

0

0

0 0

1 0

1

0 1

1 0

1

0

0 1

1 1

1

0 0

1 1

10

X

Y

Z

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

True

False

BDD for F

10

X

Y

Z

© Mark Redekopp, All rights reserved

Canonical Representations

• As long as variable mapping between 2 functions is
known then the following can be used as a
unique/canonical representation [i.e. will be the
same for the 2 functions]

• Truth Tables

– show output for all possible combinations

– n inputs => 2n rows, only good for ≤ 5 var’s.

• Canonical Sums

– indicates where a function is 1 by listing the input
combinations (rows) where it equals 1

• Canonical Products

– indicates where a function is 0 by listing the input
combinations (rows) where it equals 0

• Binary Decision Diagrams

– Can be compact & are helpful to represent for
computer tools

 zyx
P

,,
)7,5,3,2(

 cba
Q

,,
)7,5,3,2(

? = ?

Yes, If x=a, y=b, z=c

