

Lecture 5 Slides

Canonical Sums and Products (Minterms and Maxterms)

2-3 Variable Theorems

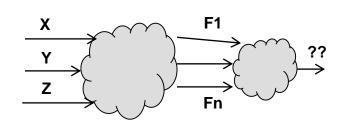
DeMorgan's Theorem

Using products of maxterms to implement a function

MAXTERMS

Question

 Is there a set of functions (F1, F2, etc.) that would allow you to build ANY 3variable function



- Think simple, think many

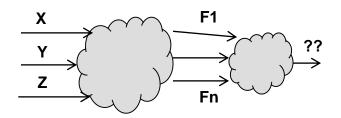
X	Υ	Z	F1	F2	Fn	?
0	0	0				?
0	0	1				?
0	1	0				?
0	1	1				?
1	0	0				?
1	0	1				?
1	1	0				?
1	1	1				?

Х	Υ	Z	m0	m1	m2	m3	m4	m5	m6	m7	?
0	0	0	1	0	0	0	0	0	0	0	?
0	0	1	0	1	0	0	0	0	0	0	?
0	1	0	0	0	1	0	0	0	0	0	?
0	1	1	0	0	0	1	0	0	0	0	?
1	0	0	0	0	0	0	1	0	0	0	?
1	0	1	0	0	0	0	0	1	0	0	?
1	1	0	0	0	0	0	0	0	1	0	?
1	1	1	0	0	0	0	0	0	0	1	?

OR together any combination of m_i's

Question

 OR...this set of functions would also work.



Х	Υ	Z	MO	M1	M2	М3	M4	M5	М6	M7	?
0	0	0	0	1	1	1	1	1	1	1	?
0	0	1	1	0	1	1	1	1	1	1	?
0	1	0	1	1	0	1	1	1	1	1	?
0	1	1	1	1	1	0	1	1	1	1	?
1	0	0	1	1	1	1	0	1	1	1	?
1	0	1	1	1	1	1	1	0	1	1	?
1	1	0	1	1	1	1	1	1	0	1	?
1	1	1	1	1	1	1	1	1	1	0	?

G
1
0
1
0
1
1
0
1

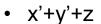
AND together any combination of M_I's

G = M1 • M3 • M6

Maxterm Definition

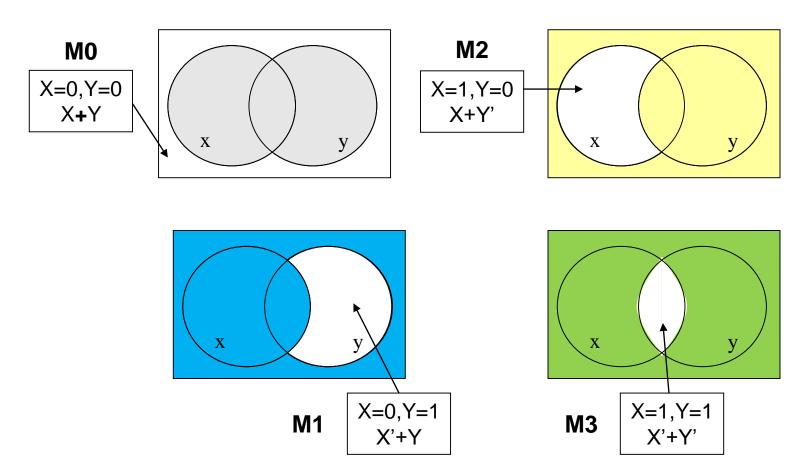
 Maxterm: A sum term where each input variable of a function appears exactly once in that term (either in its true or complemented form)

$$- f(x,y,z) =>$$



Venn Diagram of Maxterms

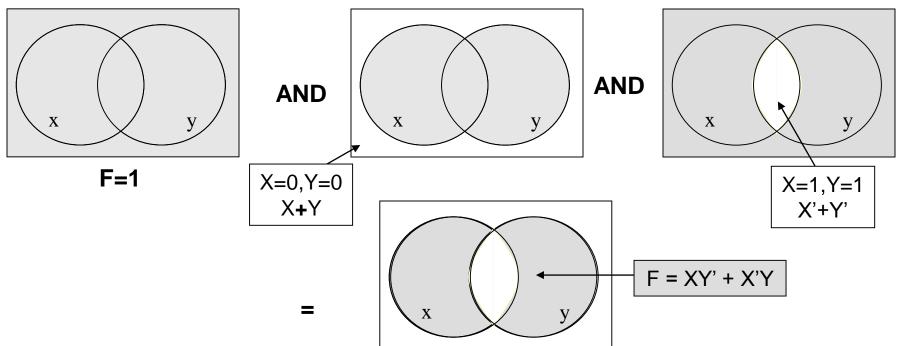
Only one region OFF and all others ON



Product of Maxterms

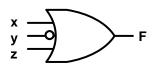
 To compose a function we can AND the maxterms from the function's OFF-Set

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	0



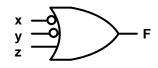
Checkers / Decoders

- An OR gate only outputs '0' for 1 combination
 - That combination can be changed by adding inverters to the inputs
 - We can think of the OR gate as "checking" or "decoding" a specific combination and outputting a '0' when it matches.



OR gate decoding (checking for) combination 010

Х	Υ	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

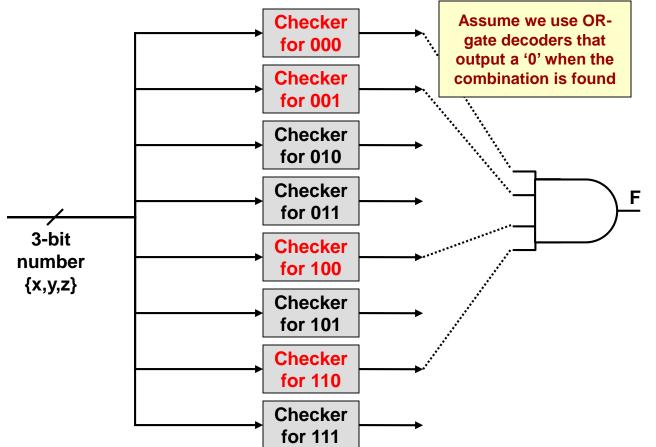


OR gate decoding (checking for) combination 110

X	Υ	Z	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Finding Equations/Circuits

 Given a function and checkers (called decoders) for each combination, we just need to AND together the checkers where F = 0



x	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
			•

LOGIC FUNCTION NOTATION

Canonical Sums

We OR together all the minterms where F = 1
 - (Σ = SUM or OR of all the minterms)

$$F = m_2 + m_3 + m_5 + m_7$$

Canonical Sum:

$$F = \Sigma_{xvz}(2,3,5,7)$$

List the minterms where F is 1.

	X	Y	Z	F
\mathbf{m}_{0}	0	0	0	0
m_1	0	0	1	0
m_2^-	0	1	0	1
m_3^-	0	1	1	1
m_4	1	0	0	0
m_5	1	0	1	1
m_6	1	1	0	0
m_7	1	1	1	1

Canonical Products

We AND together all the maxterms where F = 0

$$\mathbf{F} = \mathbf{M}_0 \bullet \mathbf{M}_1 \bullet \mathbf{M}_4 \bullet \mathbf{M}_6$$

Canonical Product:

$$F = \Pi_{xyz}(0,1,4,6)$$

List the maxterms where F is 0.

	X	Y	Z	F
\mathbf{M}_{0}	0	0	0	0
\mathbf{M}_{1}°	0	0	1	0
\mathbf{M}_{2}^{-}	0	1	0	1
\mathbf{M}_{3}^{-}	0	1	1	1
M_4	1	0	0	0
$\mathbf{M}_{5}^{\mathbf{I}}$	1	0	1	1
M_6	1	1	0	0
\mathbf{M}_{7}	1	1	1	1

Canonical Form Practice

•
$$G=\sum_{XYZ}($$
) = $\prod_{XYZ}($

•
$$B = \sum_{X,Y,Z} (5,6,7)$$

$$\bullet$$
 $F =$

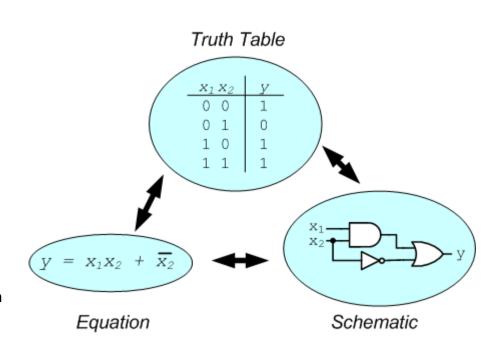
X	Υ	Z	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Х	Υ	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Logic Functions

- A logic function maps input combinations to an output value ('1' or '0')
- 3 possible representations of a function
 - Equation
 - Schematic
 - Truth Table
- Can convert between representations
- Truth table is only unique representation*

 ^{*} Canonical Sums/Products (minterm/maxterm) representation provides a standard equation/schematic form that is unique per function



Unique Representations

- Canonical => Same functions will have same representations
- Truth Tables along with Canonical Sums and Products specify a function uniquely
- Equations/circuit schematics are NOT inherently canonical

Truth Table

Canonical Sum

$$P = \sum_{x,y,z} (2,3,5,7)$$

ON-Set of P (minterms)

Yields SOP equation, AND-OR circuit Canonical Product

$$P = \prod_{x,y,z} (0,1,4,6)$$

OFF-Set of P (maxterms)

Yields POS equation, OR-AND circuit

Boolean Algebra Terminology

- SOP (Sum of Products) Form: An SOP expression is a logical sum (OR) of product terms.
 - Correct Examples: $[x' \cdot y' \cdot z + w + a' \cdot b \cdot c]$, $[w + x' \cdot z \cdot y + y'z]$
 - Incorrect Examples: $[x' \cdot y \cdot z + w \cdot (a+b)]$, $[x \cdot y + (y' \cdot z)']$
- POS (Product of Sums) Form: A POS expression is a logical product (AND) of sum terms.
 - Correct Examples: $[(x+y'+z) \cdot (w'+z) \cdot (a)]$, $[z' \cdot (x+y) \cdot (w'+y)]$
 - Incorrect Examples: $[x' + y \cdot (x+w)]$, $[(x+y) \cdot (x+z)']$

Check Yourself

Expression	SOP / POS / Both / Neither
$W^{\bullet}X^{\bullet}(Y^{\bullet}Z)' + XY'Z + W$	
xy+xz+(w'yz)	
(w+y'+z)(w+x)	
(w+y)x(w'+z)	
w'y + w'y + xy'	
w+x+y	

Check Yourself

Expression	SOP / POS / Both / Neither
$W^{\bullet}X^{\bullet}(Y^{\bullet}Z)' + XY'Z + W$	Neither (Can't have complements of sub-expressionsonly literal)
xy+xz+(w'yz)	SOP (parentheses are unnecessary)
(w+y'+z)(w+x)	POS
(w+y)x(w'+z)	POS (a single literal is a sum term)
wy + wy + xy'	SOP (redundancy doesn't matter)
w+x+y	Both (individual literals are both a product and sum term)

2- and 3-variable Theorems

BOOLEAN ALGEBRA AGAIN

2 & 3 Variable Theorems

Т8	XY+XZ = X(Y+Z)	Т8'	(X+Y)(X+Z) = X+YZ
Т9	X + XY = X	Т9'	X(X+Y) = X
T10	XY + XY' = X	T10'	(X+Y)(X+Y')=X
T11	XY + X'Z + YZ = XY + X'Z	T11'	(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)

T8' Proof

- The police are looking for drunk drivers. They can arrest a person if his breath test is positive OR if they find an open container in the car and the contents are alcoholic.
 - Arrest = Breath + OpenContainer ContentsAlcoholic
- By T8'
 - Arrest = (Breath + OpenContainer)(Breath + ContentsAlcoholic)

	`			<i>,</i> ,			,
В	0	С	O•C	B+O•C	B+O	B+C	(B+O)(B+C)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

© Mark Redekopp, All rights reserved

Boolean Algebra Terminology

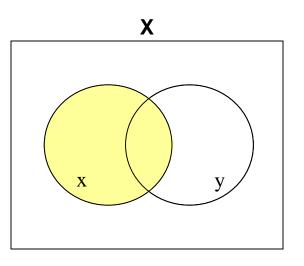
- Literal: A literal is an instance of a single variable or its complement.
 - Correct Examples: x, x', y, ALARM, (LON)'
 - Incorrect Examples: x+y, x'•y (these are expressions)
- Product Term: A single literal or a logical product (AND'ing) of two or more literals.
 - Correct Examples: x'•y'•z, w'•x'•y, w•x'•a'b, c'
 - Incorrect Examples: (x+y)•z•w, (x•y)'
 - Only evaluates to '1' for a single input combination
- Sum Term: A single literal or a logical sum (OR'ing) of two or more literals.
 - Correct Examples: z'+w+y, x + y', x'
 - Incorrect Examples: ab+c, (x + z)'
 - Only evaluates to '0' for a single input combination
- SOP (Sum of Products) Form: An SOP expression is a logical sum (OR) of product terms. (Convert to SOP by distributing fully using T8)
 - Correct Examples: $[x' \cdot y' \cdot z + w + a' \cdot b \cdot c]$, $[w + x' \cdot z \cdot y + y'z]$
 - Incorrect Examples: [x'•y•z+w• (a+b)], [x•y + (y'•z)']
- POS (Product of Sums) Form: A POS expression is a logical product (AND) of sum terms. (Convert to POS by distributing fully using T8')
 - Correct Examples: [(x+y'+z) (w'+z) (a)], [z'•(x+y)•(w'+y)]
 - Incorrect Examples: [(x'+y) + y(x+w)], $[(x+y) \cdot (x+z)']$

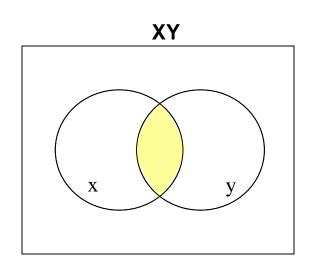
Convert to SOP/POS

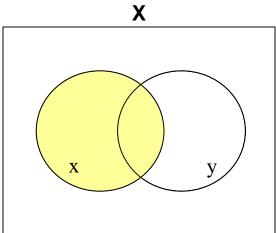
Expression	SOP or POS
x' + y•(x+w) to SOP	
x+y'+zx' to POS	
(XZ + X'Z')(WY + W'Y') to SOP	
X'Y + (X+Y)Z to POS	

T9 Proof

$$X + XY = X$$

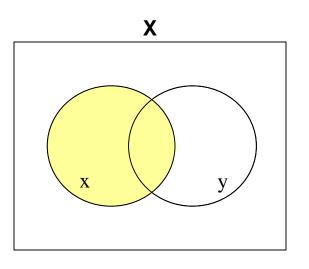


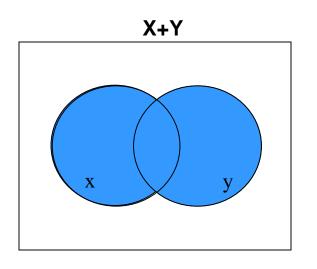


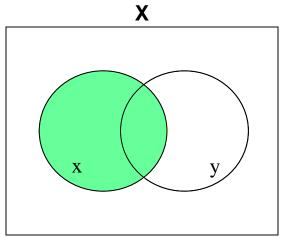


T9' Proof

$$X(X+Y)=X$$

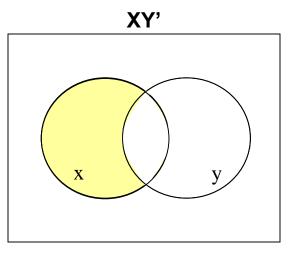


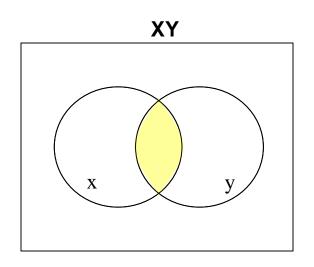


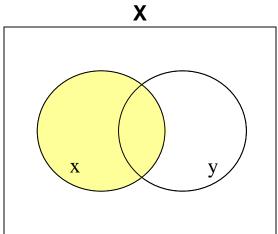


T10 Proof

$$XY' + XY = X$$

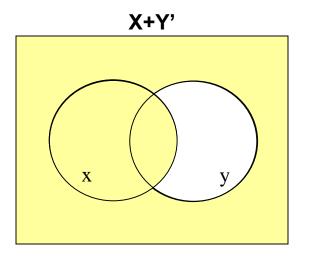


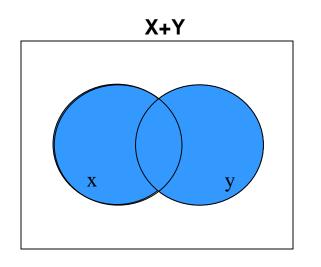


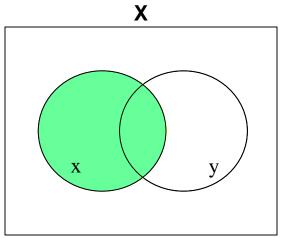


T10' Proof

$$(X+Y')(X+Y)=X$$





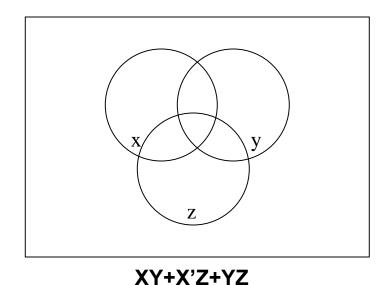


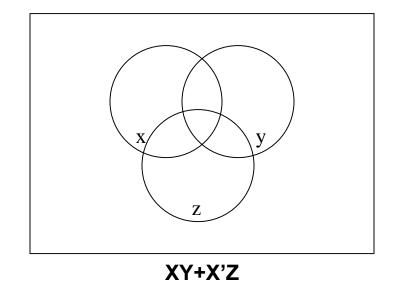
Proof by Other Theorems

T9:	X+XY	=	X	T9':	X(X+Y)	=	Χ	
T40.				T40'.	(V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1			
T10:	XY'+XY	=	X	110:	(X+Y')(X+Y)	=	X	

T11 Proof

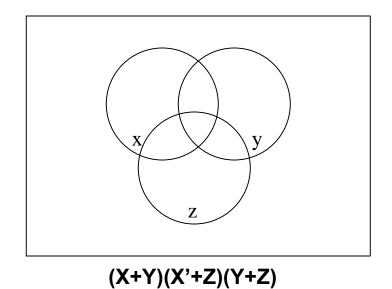
• Proof T11: XY + X'Z + YZ = XY + X'Z

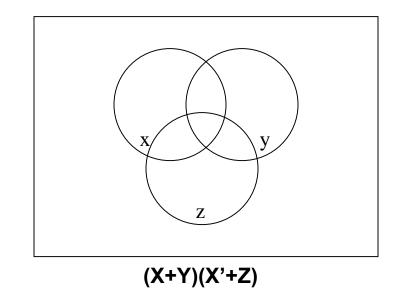




T11' Proof

• Proof T11: (X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)





DeMorgan's Theorem

- Consider the statement "You will get a Good grade if you do your Homework and go to Class"
- When will you get a bad grade?
- Consider the statement:
 "USC will Win if we Play better or UCLA Turns the ball over"
- When will USC lose?

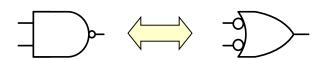
DeMorgan's Theorem

- Inverting output of an AND gate = inverting the inputs of an OR gate
- Inverting output of an OR gate = inverting the inputs of an AND gate

A function's inverse is equivalent to inverting all the inputs and changing AND to OR and vice versa

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

$$\overline{\mathbf{A} \cdot \mathbf{B}}$$



$$\overline{A} + \overline{B}$$

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

$$\overline{A+B}$$

$$\overline{A} \cdot \overline{B}$$

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem

$$F = (\overline{X} + Y) + \overline{Z} \bullet (Y + W)$$

To find F', invert both sides of the equation and then use DeMorgan's theorem to simplify...

$$\overline{F} = (\overline{X} + Y) + \overline{Z} \cdot (Y + W)$$

$$\overline{F} = (\overline{X} + Y) \cdot (\overline{Z} \cdot (Y + W))$$

$$\overline{F} = (\overline{X} \cdot \overline{Y}) \cdot (\overline{Z} + (\overline{Y} + W))$$

$$\overline{F} = (X \cdot \overline{Y}) \cdot (Z + (\overline{Y} \cdot \overline{W}))$$

Generalized DeMorgan's Theorem

$$F'(X_1,...,X_n,+,\bullet) = F(X_1,...,X_n,\bullet,+)$$

To find F', swap AND's and OR's and complement each literal. However, you must maintain the original order of operations.

Note: This parentheses doesn't matter (we are just OR'ing X', Y, and the following subexpression)

$$F = (\overline{X} + Y) + \overline{Z} \bullet (Y + W)$$

$$F = \overline{X} + Y + (\overline{Z} \bullet (Y + W))$$

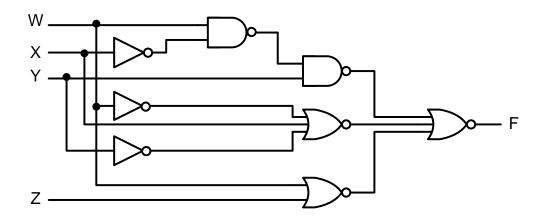
Fully parenthesized to show original order of ops.

$$\overline{F} = X \cdot \overline{Y} \cdot (Z + (\overline{Y} \cdot \overline{W}))$$

AND's & OR's swapped Each literal is inverted

DeMorgan's Theorem Example

 Cancel as many bubbles as you can using DeMorgan's theorem then convert to either SOP or POS.



OLD LECTURE 5

Unique Representations

- Canonical => Same functions will have same representations
- Truth Tables along with Canonical Sums and Products specify a function uniquely
- Equations/circuit schematics are NOT inherently canonical

Truth Table

Canonical Sum

$$P = \sum_{x,y,z} (2,3,5,7)$$

rows where P=1

Yields SOP equation, AND-OR circuit Canonical Product

$$P = \prod_{x,y,z} (0,1,4,6)$$

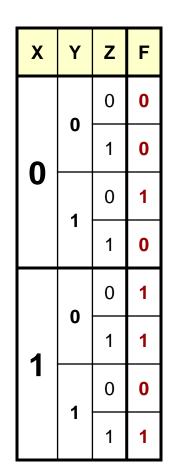
rows where P=0

Yields POS equation, OR-AND circuit

Binary Decision Diagram

- Graph (binary tree) representation of logic function
- Vertex = Variable/Decision
- Edge = Variable value (T / F)

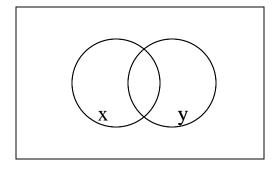
Х	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

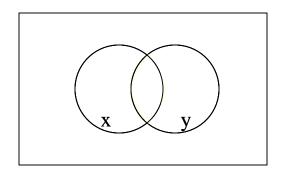




Venn Diagrams Practice

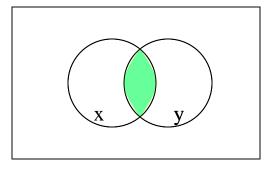
$$F = (X \cdot Y)'$$



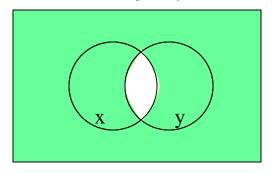


Venn Diagrams Answer

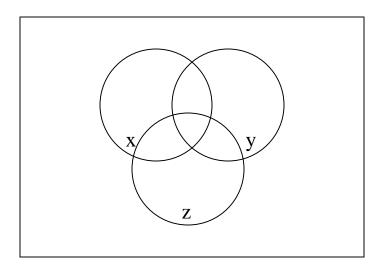
$$F = (X \cdot Y)'$$



$$F = (X \cdot Y)'$$



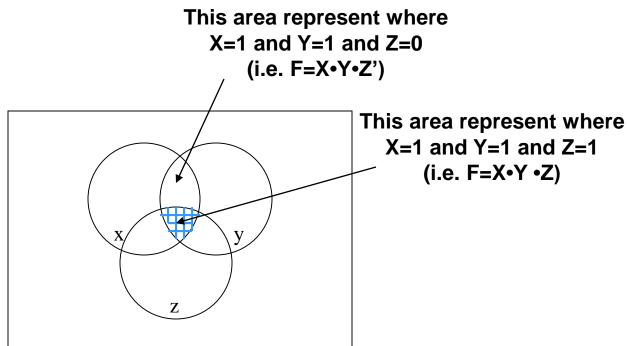
- All the same rules apply
- Since there are 3-variables, we must have 8 disjoint regions (1 for each combination / minterm / maxterm)



 Each area represents a different combination of X, Y, and Z

This area represent where X=1 and Y=1 and Z=0 (i.e. F=X•Y•Z')

 Each area represents a different combination of X, Y, and Z



 Each area represents a different combination of X, Y, and Z

