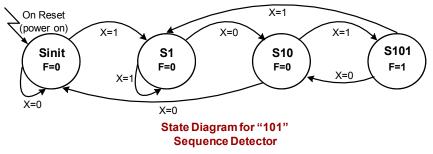


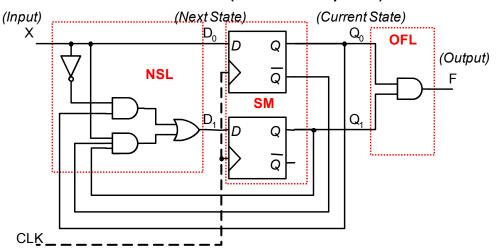
Introduction to Digital Logic

Lecture 20: State Machine Design



State Machine Review

State Diagrams


- 1. States
- 2. Transition Conditions
- 3. Outputs

State Machines require sequential logic to remember the current state (w/ just combo logic we could only look at the current value of X, but now we can take 4 separate actions when X=0)

State Machine

- 1. State Memory => FF's
 - n-FF's => 2ⁿ states
- Next State Logic (NSL)
 - combinational logic
 - logic for FF inputs
- 3. Output Function Logic (OFL)
 - MOORE: f(state)
 - MEALY: f(state + inputs)

State Machine Analysis Review

- 6 Steps to analyze
 - Excitation Equations
 - Eqn's for FF inputs
 - Transition Equations $(Q_i^* = ??)$
 - Use characteristic equation of FF and substitute excitation equations for the FF inputs
 - Output Equations
 - Transition/Output Table
 - Make a table showing all combinations of current state and external inputs and then what each of the next state and output values will be for each of those combinations

RS-FF: Q* = S + R'Q

JK-FF: Q* = JQ' + K'Q

- State Name Assignment
 - Symbolic names replace binary codes
- Draw the State Diagram

State Machine Design

 State machine design involves taking a problem description and coming up with a state diagram and then designing a circuit to implement that operation

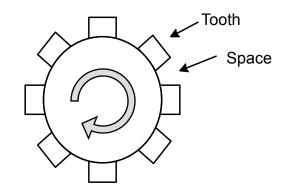
State Machine Design

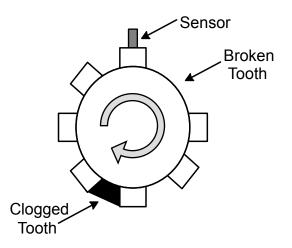
- Coming up with a state diagram is nontrivial
- Requires creative solutions
- Designing the circuit from the state diagram is done according to a simple set of steps

Solving Problems w/ State Diagrams

- To come up w/ a state diagram to solve a problem
 - Write out an algorithm or series of steps to solve the problem
 - Each step in your algorithm will usually be one state in your state diagram
 - Ask yourself what past inputs need to be remembered and that will usually lead to a state representation

6 Steps of State Machine Design

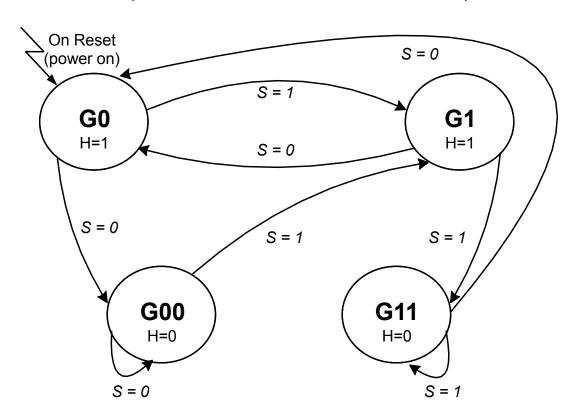

- 1. State Diagram
- 2. Transition/Output Table
- 3. State Assignment
 - Determine the # of FF's required
 - Assign binary codes to replace symbolic names
- 4. Choose FF type / Excitation Table
- 5. K-Maps for NSL and OFL
 - One K-Map for every FF input
 - One K-Map for every output of OFL
- 6. Draw out the circuit



Fly Wheel Example

- Determine the functionality (or "health" of a fly wheel
- Healthy if teeth and spaces alternate
- Unhealthy if tooth breaks off (i.e. 2 consecutive spaces) or if a space gets clogged (i.e. 2 consecutive teeth)
- Sensor, S, outputs 1 when it sees a tooth, 0 when it sees a space

Healthy Fly Wheel


Unhealthy Fly Wheel

Fly Wheel Example

 Design a state machine to check if sensor produces two 0's in a row (i.e. 2 consecutive spaces) or two 1's in a row (i.e. 2 consecutive teeth)

- •G1 = Got 1 consecutive '1' ...healthy
- •G0 = Got 1 consecutive '0'...healthy
- •G11 = Got 2 "1's" in a row...unhealthy
- •G00 = Got 2 "0's" in a row...unhealthy

Transition Output Table

Convert state diagram to transition/output table

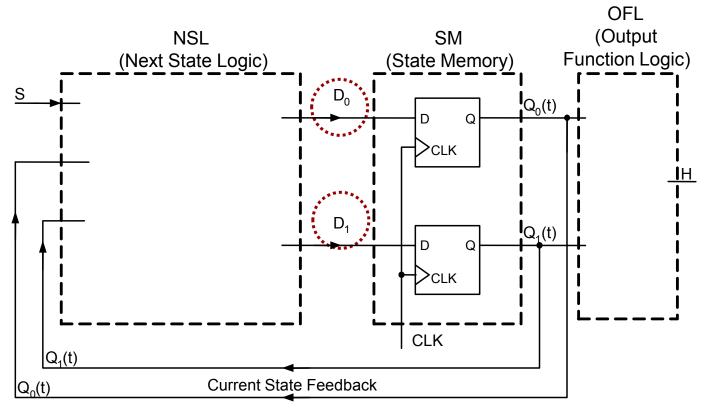
					Next S	tate		
Curre	nt Stat	е	S	3 = 0		S	= 1	Output
State			State			State		Н
G0			G00			G1		1
G11			G0			G11		0
G1			G0			G11		1
G00			G00			G1		0

State Assignment

- 4 States => 2 Flip-Flops (Q₁Q₀)
- Make up binary codes for each state

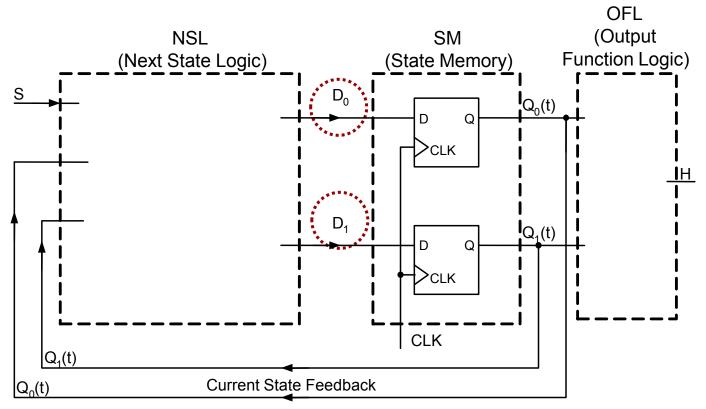
					Next S	tate			
Curre	nt Stat	е	S	3 = 0		S	= 1		Output
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	State	Q ₁ *	Q ₀ *	Н
G0	0	0	G00	1	0	G1	1	1	1
G11	0	1	G0	0	0	G11	0	1	0
G1	1	1	G0	0	0	G11	0	1	1
G00	1	0	G00	1	0	G1	1	1	0

Pick Flip-Flop Type


- We know we need 2 FF's
- Pick D-, JK-, or SR-FF's
 - D-FF's are the easiest to do design with but can sometimes yield large NSL
 - JK-FF's are good choices and usually yield small NSL but make finding the NSL more tedious

Excitation Table

 Once you've selected your FF type you have to produce logic for the inputs to the FF's (D₁,D₀)...these are the excitation equations



Excitation Table

- Using your transition table you know what you want Q* to be, but how can you make that happen?
- For D-FF's Q* will be whatever D is at the edge

Excitation Table

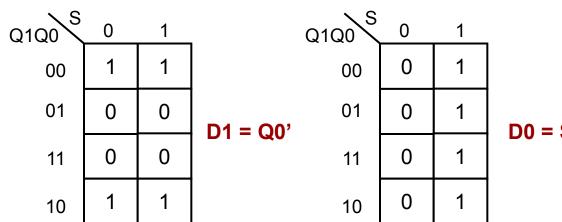
 In a D-FF Q* will be whatever D is, so if we know what we want Q* to be just make sure that's what the D input is

					Next S	tate			
Curre	nt Stat	е	S	S = 0		S	= 1		Output
State	Q ₁	Q_0	State	D ₁	D ₀	State	D ₁	D ₀	Н
G0	0	0	G00	1	0	G1	1	1	1
G11	0	1	G0	0	0	G11	0	1	0
G1	1	1	G0	0	0	G11	0	1	1
G00	1	0	G00	1	0	G1	1	1	0

Karnaugh Maps

Now need to perform K-Maps for D1, D0, and H

Curro	at Sta	ŧ.			Next S	tate			Output
Curre	ni Sia	ıe	S	= 0		S	= 1		Output
State	Q_1	Q_0	State	D_1	D_0	State	D ₁	D_0	Н
G0	0	0	G00	1	0	G1	1	1	1
G11	0	1	G0	0	0	G11	0	1	0
G1	1	1	G0	0	0	G11	0	1	1
G00	1	0	G00	1	0	G1	1	1	0

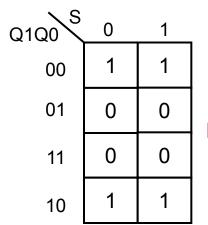


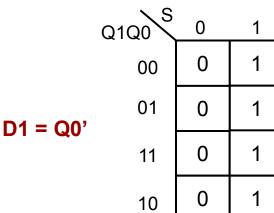
Karnaugh Maps

Now need to perform K-Maps for D1, D0, and H

Curre	nt Sta	to			Next S	tate			Output
Curre	ni Sia	le	S	= 0		S	= 1		Output
State	Q_1	Q_0	State	D_1	D_0	State	D_1	D_0	Н
G0	0	0	G00	1	0	G1	1	1	1
G11	0	1	G0	0	0	G11	0	1	0
G1	1	1	G0	0	0	G11	0	1	1
G00	1	0	G00	1	0	G1	1	1	0

D0 = S





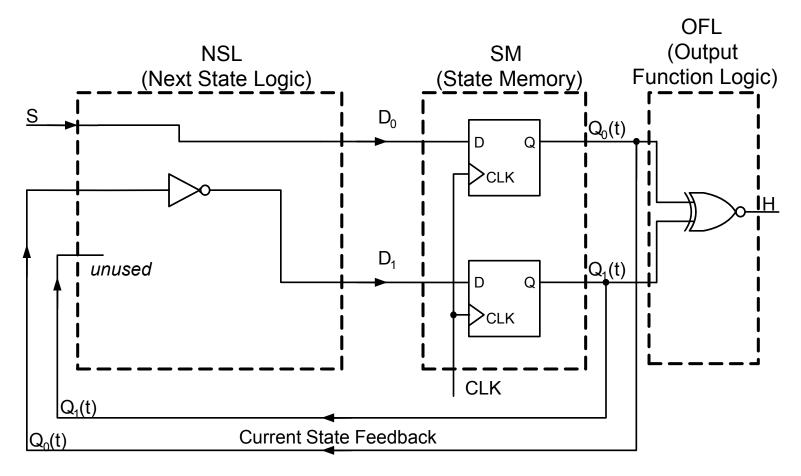
Karnaugh Maps

Now need to perform K-Maps for D1, D0, and H

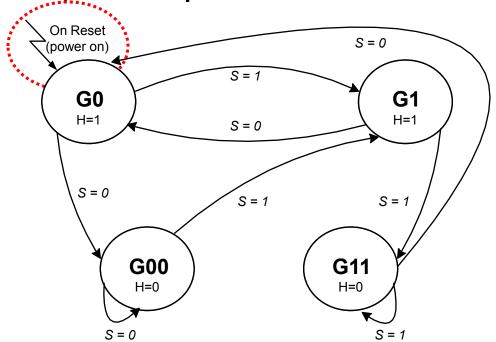
Curro	at Sta	to			Next S	tate			Output
Curre	ni Sia	ıe	S	= 0		S	= 1		Output
State	Q_1	Q_0	State	D ₁	D ₀	State	D ₁	D_0	Н
G0	0	0	G00	1	0	G1	1	1	1
G11	0	1	G0	0	0	G11	0	1	0
G1	1	1	G0	0	0	G11	0	1	1
G00	1	0	G00	1	0	G1	1	1	0

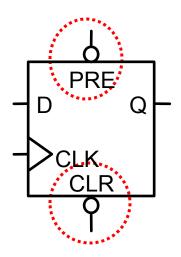
Q0 Q1 0 1
0 1 0
1 0 1

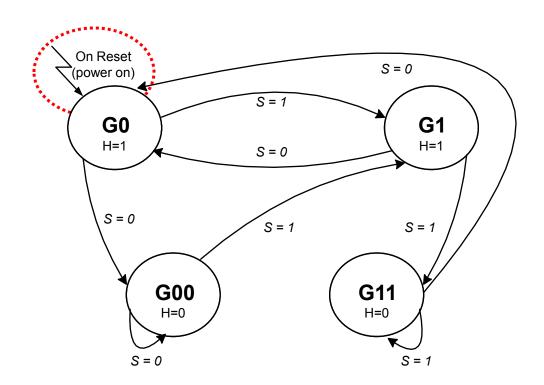
D0 = S


 $H = Q_1'Q_0' + Q1Q0$ = $Q_1 XNOR Q_0$

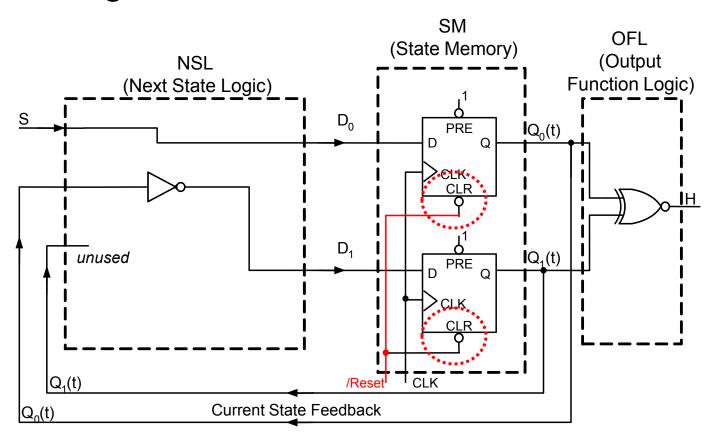
Implementing the Circuit

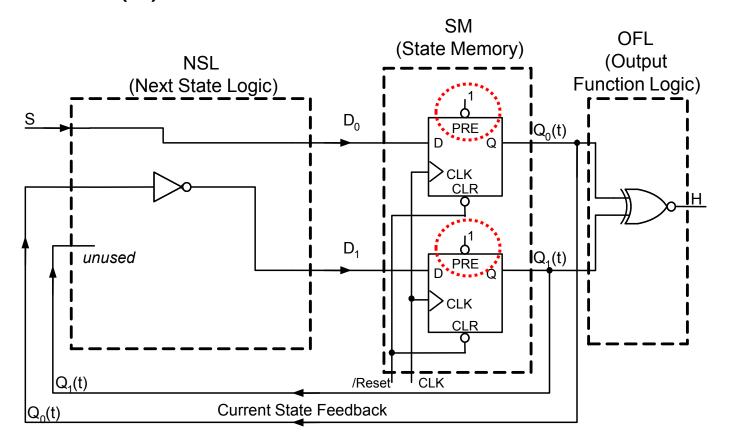

Implements the fly wheel "health" monitor

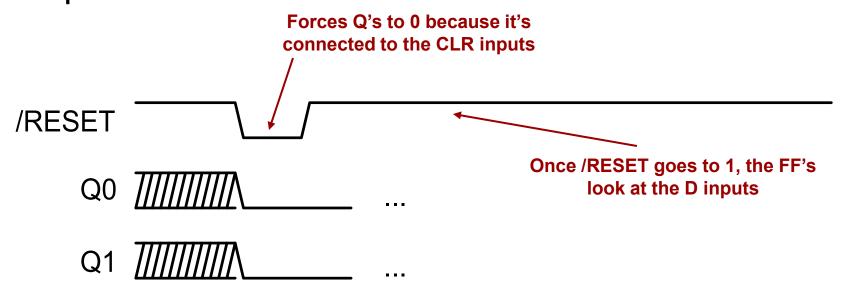

- How can we make the machine start in G0 on reset (or power on?)
- Flip-flops by themselves will initalize to a random state (1 or 0) when power is turned on


- Use the CLEAR and PRESET inputs on our flipflops in the state memory
 - When CLEAR is active the FF initializes Q=0
 - When PRESET is active the FF initializes Q=1

 We assigned G0 the binary code Q₁Q₀=00 so we must initialize our Flip-Flop's to 00


- To help us initialize our FF's use a RESET signal
- RESET signal (active-low) is produced for us
- It starts at Active (0) when power turns on and then goes to Inactive (1) for the rest of time
- When it's active use it to initialize the FF's and then it will go inactive for the rest of time and the FF's will work based on their inputs


 Use the /CLR inputs of your FF's along with the /RESET signal to initialize them to 0's


 We never want to initialize to 1 so tie /PRESET to inactive (1)

 When /RESET is activated Q's initialize to 0 and then when it goes back to 1 the Q's look at the D inputs

Implementation with JK FF's

- Go back to step 4
- Come up with a new excitation table for the inputs of the JK FF's

 Find what values of J and K are required to get the necessary transition (Q -> Q*)

Cu	rren	t							Nex	t State)						0
St	tate				;	S = 0							S = 1				Output
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J₁	K ₁	J _o	K ₀	Н
G0	0	0	G00	1	1	?	?			G1	0	1					1
G1	0	1	G0	0	0					G11	1	0					1
G00	1	1	G00	1	1					G1	0	1					0
G11	1	0	G0	0	0					G11	1	0					0

What value of J_1 and K_1 will cause Q1 to transition from 0 to 1

 Use the Application Table for the JK FF to fill in the values for what J and K should be

Q	Q*	J	K	
0	0	0	д	J=0,K=0 => remember J=0, K=1 => Reset
0	1	1	d	J=1,K=0 => Set J=1,K=1 => Toggle
1	0	d	1	J=0,K=1 => Reset J=1,K=1 => Toggle
1	1	d	0	J=0,K=0 => remember J=1,K=0 => Set

 Use the application table to find the values of J and K necessary for the desired transitions (Q -> Q*)

Cu	rren	t							Nex	t State)						Outrout
St	tate				,	S = 0							S = 1				Output
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J _o	K ₀	н
G0	0	0	G00	1	1	1	d			G1	0	1					1
G1	0	1	G0	0	0					G11	1	0					1
G00	1	1	G00	1	1					G1	0	1					0
G11	1	0	G0	0	0					G11	1	0					0

To make this transition happen

$$J_1 = 1, K_1 = d$$

 Use the application table to find the values of J and K necessary for the desired transitions (Q -> Q*)

Cu	rren	t							Nex	t State)						Output
St	tate				,	S = 0							S = 1				Output
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J₁	K ₁	J ₀	K ₀	Н
G0	0	0	G00	1	1	1	d	1	d ≉	G1	0	1					1
G1	0	1	G0	0	0		/			G11	1	0					1
G00	1	1	G00	1	1					G1	0	1					0
G11	1	0	G0	0	Q					G11	1	0					0

To make this transition happen $J_0 = 1$, $K_0 = d$

 Use the application table to find the values of J and K necessary for the desired transitions (Q -> Q*)

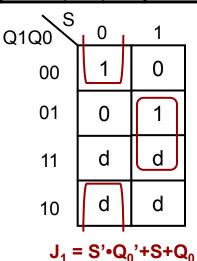
Cu	rren	t							Nex	t State)						0
St	tate				;	S = 0							S = 1				Output
State	Q ₁	\mathbf{Q}_{0}	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J _o	K ₀	н
G0	0	0	G00	1	1	1	d	1	d	G1	0	1					1
G1	0	1	G0	0	0	0	d 4			G11	1	0					1
G00	1	1	G00	1	1					G1	0	1					0
G11	1	0	G0	6	0					G11	1	0					0

To make this transition happen

$$J_1 = 0, K_1 = d$$

Fill in the rest of the table

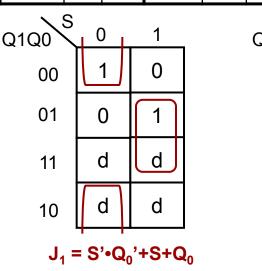
Cu	rren	t							Nex	t State)						0
S	tate				,	S = 0							S = 1				Output
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	н
G0	0	0	G00	1	1	1	d	1	d	G1	0	1	0	d	1	d	1
G1	0	1	G0	0	0	0	d	d	1	G11	1	0	1	d	d	1	1
G00	1	1	G00	1	1	d	0	d	0	G1	0	1	d	1	d	0	0
G11	1	0	G0	0	0	d	1	0	d	G11	1	0	d	0	0	d	0

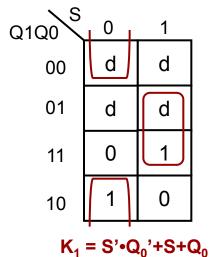


K-Maps

Find logic for each FF input by using K-Maps

Current		Next State																
State			S = 0								S = 1							
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	Н	
G0	0	0	G00	1	1	1	d	1	d	G1	0	1	0	d	1	d	1	
G1	0	1	G0	0	0	0	d	d	1	G11	1	0	1	d	d	1	1	
G00	1	1	G00	1	1	d	0	d	0	G1	0	1	d	1	d	0	0	
G11	1	0	G0	0	0	d	1	0	d	G11	1	0	d	0	0	d	0	

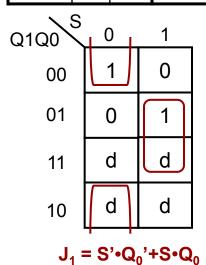


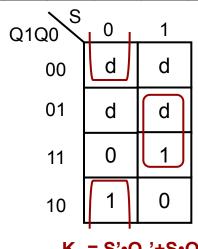


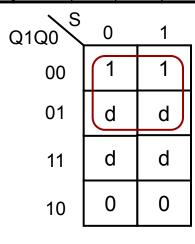
K-Maps

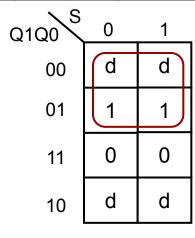
Find logic for each FF input by using K-Maps

Current		Next State																
State			S = 0								S = 1							
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	Н	
G0	0	0	G00	1	1	1	d	1	d	G1	0	1	0	d	1	d	1	
G1	0	1	G0	0	0	0	d	d	1	G11	1	0	1	d	d	1	1	
G00	1	1	G00	1	1	d	0	d	0	G1	0	1	d	1	d	0	0	
G11	1	0	G0	0	0	d	1	0	d	G11	1	0	d	0	0	d	0	

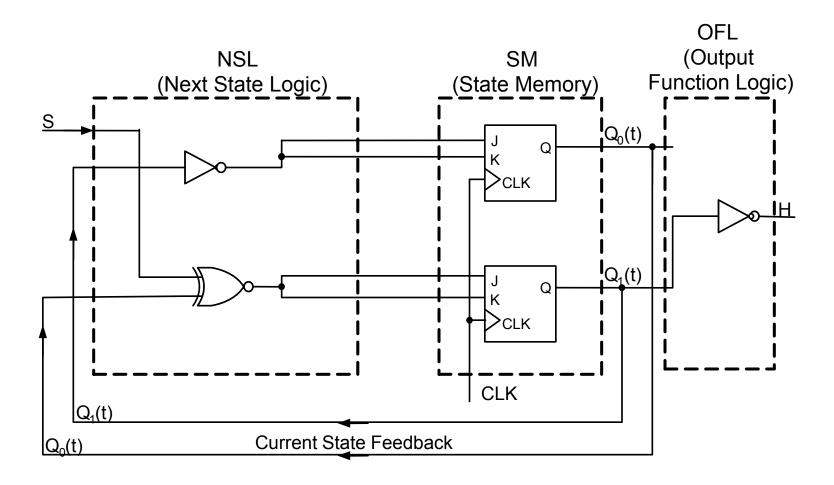





K-Maps


Find logic for each FF input by using K-Maps

Current		Next State																
State			S = 0								S = 1							
State	Q ₁	Q_0	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J _o	K ₀	State	Q ₁ *	Q ₀ *	J ₁	K ₁	J ₀	K ₀	Н	
G0	0	0	G00	1	1	1	d	1	d	G1	0	1	0	d	1	d	1	
G1	0	1	G0	0	0	0	d	d	1	G11	1	0	1	d	d	1	1	
G00	1	1	G00	1	1	d	0	d	0	G1	0	1	d	1	d	0	0	
G11	1	0	G0	0	0	d	1	0	d	G11	1	0	d	0	0	d	0	



$$J_0 = Q_1'$$

Fly Wheel JK-FF Implementation

