

Introduction to Digital Logic

Lecture 19: State Machines State Machine Analysis

• With latches and flip-flops we can come up with an equation for the next value of Q (Q*) in terms of the current value of Q and the inputs

Function Table (Q^{*} listed in terms of Q) Truth Table

(Q* in terms of 0 or 1)

• With latches and flip-flops we can come up with an equation for the next value of Q (Q*) in terms of the current value of Q and the inputs

Function Table (Q^{*} listed in terms of Q) Truth Table

(Q* in terms of 0 or 1)

- For an SR-Latch make a truth table with S,R, and Q and show the next value of Q*
- The use a K-Map to find an equation for Q^*
- This equation indicates what the next value of Q will be

Q* = S + R"Q

- For a D-Latch make a truth table with D, and Q and show the next value of Q*
- You may use a K-Map but we can eyeball it
- This equation indicates what the next value of Q will be

Q* = D

- For a JK-FF make a truth table with J,K, and Q and show the next value of Q*
- The use a K-Map to find an equation for Q^*
- This equation indicates what the next value of Q will be

Q* = JQ" + K"Q

State Machines

- Provide the "brains" or control for electronic and electromechanical systems
- Implement a set of steps (or algorithm) to control or solve a problem
- **Goal is to generate output values at specific times**
- Combine Sequential and Combinational logic elements
	- Sequential Logic to remember what step (state) we're in
		- Encodes everything that has happened in the past
	- Combinational Logic to produce outputs and find what state to go to next
		- Generates outputs based on what state we're in and the input values
- Use state diagrams (a.k.a. flowcharts) to specify the operation of the corresponding state machine

Stay in the initial state until there is enough money (coins) and the door is closed

We move through the states based on the conditions. Outputs get asserted when the machine is in that state and the transition is true.

Move to the Fill state when there is enough money (coins) and the door is closed

Stay in the Fill state until it is full…also set the Water Valve Open output to be true

Move to the Agitate state after it is full

State Machines

- Use sequential and combinational logic to implement a set of steps (i.e. an algorithm)
- Goal is to produce outputs at specific points of time
	- Combinational logic alone cannot do that because the outputs will change as soon as the inputs change (no notion of time)

State Diagrams

- Used to show operation or function of a state machine
- Like a flowchart but called a state diagram
- 3 parts
	- States
	- Transitions
	- Outputs

State Diagram for a Washing Machine

State Diagrams

- One transition is made at each clock edge
	- Based on the current state and the conditions associated w/ the transitions

State Diagram for a Washing Machine

Another State Diagram Example

• "101" Sequence Detector should output F=1 when the sequence 101 is found in consecutive order

Another State Diagram Example

• "101" Sequence Detector should output F=1 when the sequence 101 is found in consecutive order

© Mark Redekopp, All rights reserved

Another State Diagram Example

• "101" Sequence Detector should output F=1 when the sequence 101 is found in consecutive order

State Machines

- State Machines can be broken into 3 sections of logic
	- State Memory (SM)
		- Just FF's to remember the *current state*
	- Next State Logic (NSL)
		- Combo logic to determine the next state
		- Essentially implements the transition conditions
	- Output Function Logic (OFL)
		- Combo logic to produce the outputs

State Machine

NEXT STATE

State Machines

• State Machines can be classified according to how the outputs are produced

– If *Outputs = f(current state, external inputs)*… MEALY Machine

– If *Outputs = f(current state)*… MOORE Machine

Mealy Machine

In a Mealy Machine the outputs depend not only on the current state but the external inputs

Moore Machine

• In a Moore Machine the outputs only depend on the current state

The inputs do not feed into the OFL, thus Moore Machine

State Machines

• Below is a circuit implementing a state machine, notice how it breaks into the 3 sections

State Machine Analysis

• In state machine analysis our goal is to take a circuit and figure out the state diagram that it implements

Convert…

Circuit Circuit C

State Machine Analysis

- 6 Steps to analyze
	- Excitation Equations
		- (eqn's for FF inputs)
	- Transition Equations
		- (use characteristic equation of FF and substitute excitation equations for the FF inputs)
	- Output Equations
	- Transition/Output Table
		- Make a table showing all combinations of current state and external inputs and then what each of the next state and output values will be for each of those combinations
	- State Name Assignment
		- (Symbolic names replace binary codes)
	- Draw the State Diagram

Excitation Equations

Write equations for all FF inputs

- $D_0 = X$
- $D_1 = X^*Q_0 +$ XQ_1Q_0 '

Transition Equations

- Come up with equations for the next value of the Q's (use characteristic equation $Q^* = D$)
- $Q_0^* = D_0 = X$
- $Q_1^* = D_1 = X'Q_0 + XQ_1Q_0'$

Output Equations

Equations for all outputs

• $F = Q_1 Q_0$

Notice that this is a Moore Machine since the outputs depend on only the current state

- Make a table of the current state, next state, and outputs
- Use the previous equations to fill out the transition output table

$$
Q_0^* = X
$$

$$
Q_1^* = X'Q_0 + XQ_1Q_0'
$$

$$
F = Q_1Q_0
$$

Because this is a Moore Machine, we can make a separate column for F apart from the values of X

Table Format

- Make a table of the current state, next state, and outputs
- Use the previous equations to fill out the transition output table

 $Q_0^* = X$

 $Q_1^* = X'Q_0 + XQ_1Q_0'$ $F = Q_1 Q_0$

- Make a table of the current state, next state, and outputs
- Use the previous equations to fill out the transition output table

$$
Q_0^* = X
$$

Q1 * = X"Q⁰ + XQ1Q⁰ "

 $F = Q_1 Q_0$

- Make a table of the current state, next state, and outputs
- Use the previous equations to fill out the transition output table

$$
\mathbf{Q_0}^* = \mathbf{X}
$$

$$
Q_1^* = X'Q_0 + XQ_1Q_0'
$$

 $F = Q_1 Q_0$

- Make a table of the current state, next state, and outputs
- Use the previous equations to fill out the transition output table

If current state $(Q_1Q_0) = 00$ **and X = 0 then we"ll stay in state 00**

If current state $(Q_1Q_0) = 00$ **and X = 1 then we"ll go to state 01**

State Name Assignment

- Just give a symbolic name to each state (i.e. $00 = SA$, $01 = SB$, etc.)
- In this case use the following names...

We call state 01 = S1 Replace 01 with S1

State Diagram

• Translate table to State Diagram

State Diagram

• This state diagram implements the "101" sequence detector

State Machine Analysis

- Consider the following circuit
- We now use JK FF's and a Mealy output

State Machine Analysis

Excitation Equations

- $JO = KO = Up$
- $J1 = K1 = Up \cdot Q_0$

Transition Equations (char. eqn for JK FF: $Q^* = JQ' + K'Q$)

• $Q_0^* = Up \cdot Q_0^* + Up \cdot Q_0^*$

•
$$
Q_1^* = Up \cdot Q_0 \cdot Q_1' + (Up \cdot Q_0) \cdot Q_1
$$

= Up \cdot Q_1' \cdot Q_0 + Up' \cdot Q_1 + \cdot Q_1 Q_0'

Output Equations

• R = Up•Q₁•Q₀ (Mealy output)

Mealy outputs must be shown for each sub column of the inputs

$$
Q0^* = Up \cdot Q0' + Up' \cdot Q0
$$

$$
Q1^* = Up \cdot Q1' \cdot Q0 + Up' \cdot Q1 + \cdot Q1Q0'
$$

$$
R = Up \cdot Q1 \cdot Q0
$$

Notice that…

- •When Up=1, we count up
- •When Up=0 we stay in the current state
- •Rollover = 1 only when we're about to rollover from S3 to S0