USC Viterbi

School of Engineering

Introduction to Digital Logic

Lecture 13:
Demuxes
Adders
Overflow
Carry-Lookahead Adders

USC Viterbi

School of Engineering

DEMULTIPLEXERS

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Demultiplexers

« Perform opposite function of multiplexers
« Pass the input to one selected output

* In general
— 1 input
— 2" outputs
— n select bits
/ Input gets
S1 So Do D, | D, D3 Dol O/passed to the
0 0 D 0 0 0 D,}— D selected output
D — 1x4
o|l1]l]0|DJ|]O|O D Demux D 0‘:/ All qthet[_outputs
are inactive
1 OJ]O | O | D]|O D.— O
S g °
1 1 O] 0] 0| D 0

01

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

=
|
W)
i
N
O
|
=
o
)
|
o o o o
O
o

—{p 1x4 1 1x4
I | — D
Demux D, 0 DM{ADZ Demux D,f— 0
D.— O D, —
S 3 S 3 D — O
1S, 1S, S s, 3
01 11 00

© Mark Redekopp, All rights reserved

USC Viterbi

Demultiplexer Design

1-to-4 Demux

D—e

AND Gates acting as
barrier gates

2-to-4 Decoder

© Mark Redekopp, All rights reserved

USC Viterbi

Demultiplexer Design

S0 Sl SO’ Sl,

¢ + D,
o
: Dl

1-to-4 Demux

USC Viterbi

School of Engineering

Demultiplexer Design

S0 Sl SO, Sl,

|
1 ‘—A—D Do

Notice D runs to all
4 output AND gates

I—‘ >0 L J
S, o | Decoding of select bits

1-to-4 Demux

© Mark Redekopp, All rights reserved

USC Viterbi

Demultiplexer Design

S, S, S, S,

o “1 | 1
? Q—A— 0 I:)O 0
Notice D runs to all 1 :
4 output AND gates !
¢ it 0 D2 0
| 0 D 0
[‘ 3
>
0 S, Y P e ‘Decoding of select bits

1-to-4 Demux

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Demultiplexers and Decoders

« Demultiplexers are actually just decoders w/ an
enable (must have an enable)

S0 Sl SD’ Sl’

Data — Do, Enable == o
L -
L -

input E

|

0, 1o,
|

0, 1 o,

/«-\\ /«-\\
/ /
\
!5 : o (fsb)g !)
| iISelect Qits off Demux = Binary inputs of :
! ,'dz Decoders | ,d?
\ S { v A b
\ ! \ 1
_7 L/
1-to-4 Demux 2-to-4 Decoder w/ Enable

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Mux Active Levels

« We don't think of mux inputs/outputs as active or inactive

* Instead we count how many inversions “a single path”
hits from input to output (don’t count total inversions) and

list the mux as “inverting” (odd # of inversions) or non-
Inverting (even # of inversions)

— o — I O O lo

Y Y Y
— It S — I S O = ® I S
Non-Inverting Inverting Mux Inverting Mux Non-Inverting

Mux

Mux
© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Demux Active Levels

Non-Inverting Inverting Inverting Non-Inverting
Demux Demux Demux Demux

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

ADDERS

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Half Adders

« Addition is done in columns 1¥
— Inputs are the bit of X,Y 0110 = x
— Outputs are the Sum Bit and
Carry-Out (C,,,) + 0111 =
* Design a Half-Adder (HA) 1101,
circuit that takes in X and Y =um
and outputs S and C_, L
X Y [C, S X Y
o 0|0 0 0 —[CRE
Adder
0 1 0 1 S
1 0 |0 1 '
1 1 1 0 1

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Adder Intro

« Design a circuit to add two 4-bit numbers,
X[3:0] and Y[3:0]
— How many inputs?
— Can we use K-Maps or Minterms or decoders + an
OR gate, etc?

0110
+ 0111
1101

I
>3

I
<

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Half Adders

« We'd like to use one

adder circuit for each éi%o .
column of addition -
* Problem: + ORL =
— No place for Carry-out 1101
of last adder circuit
. 0 1
« Solution f 11 b
— Redesign adder circuit X o
to include an input for 1+ Cou A}ﬁ; 0+ CoutAIfﬂefr
the carry S S
T v

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cout Cin
« Add a Carry-In ;@/
input(C,,) 011b = X
* New circuit is called a + o1l =
Full Adder (FA)
110
X Y Gy |G S
0 1
0 00 |0 0 ! !
0O 0 1 0 1 X Y
0O 1 O 0 1 1‘—CoutFuH C.l—o0
O 1 1 1 0 Adder
1 0 O 0 1 S
1 0 1 |1 0 '
1 1 O 1 0 0
1 1 1 1 1

USC Viterbi

School of Engineering

Addition — Full Adders

* Find the minimal 2-level implementations for Cout and S...

X Y Gy |G S
0O 0 O 0 0
0O 0 1 0 1
0O 1 0 0 1
0O 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Full Adder Logic

« S=XxorY xor Cin
— Recall: XOR is defined as true
when ODD number of inputs are x
true...exactly when the sum bit 51%3
should be 1

e Cout=XY + XCin+ Ycin

— Carry when sumis 2 or more (i.e. s)—
when at least 2 inputs are 1) X —

D
— Circuit is just checking all o
combinations of 2 inputs Ci —D—

|||||

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

0110
+ 0111
! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full 4 Full 4 Full 4 Full
«—C C. | C C. | C C. | C C. [—
OUtAddelr " OUtAdder " OUtAdder " OUtAdder "
S S S S
' ' ' '

© Mark Redekopp, All rights reserved

USC \flterbl

School of Engineering

Addition — Full Adders

* Connect bits of top number to X inputs

0110

+ 0111
0 1 1 0
! ! ! ! ! ! ! !
X Y X Y X Y X Y

Full 4 Full 4 Full 4 Full
«—C Ci [C Ci, ¢ C Ci, ¢ C Ci, [~
OUtAddelr OUtAdder OUtAdder OUtAdder
S S S S

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

« Connect bits of bottom number to Y inputs

0110 = X

+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y

Full Full Full Full
«—C C C C. C C. C C. [—
OUtAddelr " OUtAdder " OUtAdder " OUtAdder "
S S S S

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

» Be sure to connect first C,, to O

0110 = X
+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full Full Full Full
«—C C C C C C. C C.l«—20
OUtAddelr " OUtAdder " OUtAdder " OUtAdder "
S S S S
' ' ' '

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

01100
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0) 1
| | | | | | | |
X Y X Y X Y X Y
40_ C Full C. ! C Full C. ! C Full C v C Full C. l—0
“Adder “adder “CAdder " “CAdder "
S S S S
| | | |

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

01100
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0 1
} | } | } |
X Y X Y X Y
40_ Cout Pl Cin - Cout il Cin - Cout il Cin ’ 0
Adder Adder Adder
S S S
v v v

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

0 1@0
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0 1
} | } | } |
X Y X Y X Y
40_ Cout Pl Cin - Cout il Cin - ’ Cout il Cin — 0
Adder Adder Adder
S S S
v v v

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

0@0 0
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0 1
} | } | } |
X Y X Y X Y
40_ Cout Pl Cin - - Cout il Cin ’ Cout il Cin — 0
Adder Adder Adder
S S S
v v v

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Addition — Full Adders

 Use 1 Full Adder for each column of addition

pI1L00
0110 =X
+ 0111 =Y
1101
0 0 1 1 1 1 0 1
} | } | } |
X Y X Y X Y
’ - Cout il Cin - Cout il Cin ’ Cout il Cin — 0
Adder Adder Adder
S S S
v v v

© Mark Redekopp, All rights reserved

USC \flterbl

School of Engineering

Performing Subtraction w/ Adders

 To subtract

© Mark Redekopp, All rights reserved

0101 =X 0101
— Flip bits of Y _ 0011 =Y & + 1100
—Add 1 0010 1
0010
} | } | } | } |
X Y X Y X Y X Y
— C,, Full C, | Cout Full C, | o Full C. | Cout Full C,
Adder Adder Adder Adder
S S S S
| | | |

USC \flterbl

School of Engineering

Performing Subtraction w/ Adders

» To subtract 0101 = X 0101
L - 0011 =y & + 1100
— Fllp bits of Y 0010 1
_Add 1 0010
0 0 1 1
0 1 0 1
! ?1 ! X ! % ! %
X Y X Y X Y X Y
—] C Full C C Full C C Full C C Full C —
“Adder *“Adder *“Adder *“Adder
S S S S

© Mark Redekopp, All rights reserved

USC \flterbl

School of Engineering

Performing Subtraction w/ Adders

» To subtract 0101 = X 0101
— _ 0011 =Y & + 1100
— Flip bits of Y 0010 1
_Add 1 0010
0 0 1 1
0 1 0 1
! 3?1 ! 3?1 ! 3?0 ! Sz)
X Y X Y X Y X Y
—C Full C C Full C C Full C C Full C — 1
' Adder ' Adder ' Adder ' Adder
S S S S

© Mark Redekopp, All rights reserved

USC \flterbl

School of Engineering

Performing Subtraction w/ Adders

» To subtract ool = X i
g _ 0011 =Y & + 1100
— Flip bits of Y 0010 1
_Add 1 0010
0 0 f 1
0 1 0 1
l ?1 ! 3?1 ! SKJ ! Si
X Y X Y X Y XX
Bl P c. "o Ful c. ° | o Ful c. "o Ful C b1
' Adder ' Adder ' Adder " Adder
S S S =
l l l :

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

OVERFLOW

edekopp, All rights reserved

USC Viterbi

School of Engineering

Overflow

» Overflow occurs when the result of an
arithmetic operation is too large to be
represented with the given number of bits

— Unsigned overflow occurs when adding or
subtracting unsigned numbers

— Signed (2’s complement overflow) overflow
occurs when adding or subtracting 2's
complement numbers

USC Viterbi

School of Engineering

Unsigned Overflow

Overflow occurs when you cross
this discontinuity
+15

10 +7 =17 i

With 4-bit unsigned numbers we
can only represent 0 — 15. Thus,
we say overflow has occurred.

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

5+7=+12
6 + -4 =-10

With 4-bit 2’s complement
numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

Overflow occurs when you cross this
discontinuity

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Testing for Overflow

 Most fundamental test

— Check if answer is wrong (i.e. Positive + Positive
yields a negative)

« Unsigned overflow test
— If carry-out of final position equals ‘1’

« Signed (2's complement) overflow test

— Only occurs if two positives are added and result is
negative or two negatives are added and result is
positive

— Alternate test: If carry-in and carry-out of final position
are different

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Testing for Unsigned Overflow

* Unsigned Overflow test
— Unsigned Addition: If final carry-out = 1

1011 1011
+ 0110 + 0011

USC Viterbi

School of Engineering

Testing for Unsigned Overflow

* Unsigned Overflow test
— Unsigned Addition: If final carry-out = 1

111 0011
_ - 1011 | -~ 1011
Final carry-out = 1, Final carry-out =0,
thus overflow + 0110 thusnooverflow + Q011
0001 1110

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Testing for 2’'s Comp. Overflow

« 2's Complement Overflow Occurs If...
— Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

— Test 2: If carry-in to MSB position and carry-out of
MSB position are different

0101 (5) 1100 (-4)
+ 0110 (6) + 1001 (-7)
0011 (3) 1110 (-2)

+ 0010 (2) + 1010 (-6)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Testing for 2’'s Comp. Overflow

« 2's Complement Overflow Occurs If...
— Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

— Test 2: If carry-in to MSB position and carry-out of
MSB position are different

01 10
_ - 0101 (5) | - 1100 (-4)
Carry-in to MSB and Carry-in to MSB and
carry-out of MSB + 0110 (6) carry-out of MSB + 1001 (-7)

position are position are

different...Overflow! 1011 (_5) different...Overflow! 0101 (+5)

00 11
| <" o011 (3) -7 1110 (-2)
Carry-in to MSB and Carry-in to MSB and carry-

carry-out of MSB position + 0010 (2) out of MSB position are 4+ 1010 (—6)

are same...No Overflow! same...No Overflow!

0101 (5) 1000 (-8)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Checking for Overflow

* Produce additional outputs to indicate if
unsigned (UOV) or sighed (SOV)
overflow has occurred

! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full 4 Full 4 Full 4 Full
«—C C. | C C. | C C. | C C. [—
OUtAdder " OlJtAdder " OL‘tAdder " OthAdder "
S S S S

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

ADDER DELAY

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

« A chain of full adders presents an interesting timing
analysis problem

« To correctly compute its own Sum and Carry-out, each

full adder requires the carry-out bit from the previous full
adder

« Because hardware works in parallel, the full adders
further down the chain may momentarily produce the

wrong outputs because the carry has not had time to
propagate to them

! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full B ull B ull B ull
«—C C. | C C. | C C. | C C.l—20
OUtAdder z ZAdder ~— ZAdder ~— ZAdder
S S S S

' ' ' '

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Timing Example

« Assume that we were adding one set of inputs
and then change to a new set of inputs:

Old inputs: New inputs: il

1111 =X

+ 0001 =Y
0000

1 0 0 1

b b

X Y X Y

0 c_ kRl ¢ 0 c Fl - [0o
e OUtAddr n Ou'[Add n
S S S S

© Mark Redekopp, All rights reserve

USC \flterbl

Timing
« At the time just before we enter the new
iInput values, all carries are O’s

0000

0010 =X]
Time
+ 0001 =Y -1
0011
Old inputs:
0 0 0 0 1 0 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
0 0 0 0
Full Full Full Full
—C C C C. C C. C C.l—20
OUtAdder " OUtAdder " OUtAdder " OUtAdder "
S S S S

© Mark Redekopp, All rights reserve

USC Viterbi

Timing
 Now we enter the new inputs and all the FA's
starting adding their respective inputs

1111
1111 = X :
Time
+ 0001 =Y 0
0000
1 0 1 0 1 0) 1 1
| | | | | | | |
X Y X Y X Y X Y
40_ Full ~ v Full ~ v Full ~ v Full ¢~ l— 0
OUtAdder N OUIAdder N OUtAdder n OUtAdder N
S S S S
' ' ' '

Due to propagation delay, the carries are still from the old inputs

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Timing

 Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111
1111 =X :
Time
+ 0001 =Y 1
0000
1 0 1 0 1 0 1 1
! ! ! ! ! !
X Y X Y X Y
40_ C Full C. | v C Full C. | v C Full C. ! 0
“Adder “Adder “Adder
S S S
' ' '
1 1 1 0

Now the carries are all based off the new inputs

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

* The carry is “rippling” through each adder

1111
1111 =X Time
+ 0001 =Y 2
0000
1 0 1 o) 1 0) 1 1
| | | |
X Y X Y
40_ Cout Fml Cin ’ Cout il Cin - 0
Adder Adder
S S
| |
1 1 0 0

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

* The carry is “rippling” through each adder

1111
1111 = X Time
+ 0001 =Y 3
0000
1 0 1 o) 1 0 1 1
} |
X Y
40_ Cout Full Cin i O
Adder
S
v
1 0 0 0

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Timing

* Only after the carry propagates through all the adders is
the sum valid and correct

1111
1111 = X Time
+ 0001 =Y 4
0000
1 0 1 0 1 0 1 1

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

"Ripple-Carry” Adder

time

« The longest path through

a chain of full adders is C1 J\\‘ Carry ripples through
the carry path

Cc2 /
« We say that the carry N
“ripples” through the 3 /\‘
adder ca P
1 0 1 0 1 0 1 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
1 1 1 1
D Cout) Cln Cout ol Cin < Cout ol Cin Cout el Cin — 0
C4 Add C3 Adder C2 Add C]_ Add CO
S S S S

© Mark Redekopp, All rights reserve

USC Viterbi

School of Engineering

Ripple Carry Adder Delay

* An n-bit ripple carry adder has a worst
case delay proportional to n (i.e. n-bits =>
n columns of addition => n-full adders)

1 0 1 0 1 0 1 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
. Full . Full . Full . Full
«—C C C C C C C C.l—20
OUtAdd " n OUtAdder n OUtAdde n OLItAdder n
S S S S
v v v v

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Glitches

* Transient, incorrect output values due to
differing arrival times of gate inputs

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Output Glitches

« Delay of the carry
causes glitches on
the sum bits

« Glitch = momentarily,
Incorrect output value

S3

Inputs chz:inge

Glitch = “momentary,
)/ incorrect output value”

Correct carry

early
0—-1 0-0
! ! ! !
X Y late X Y
Full 0—-1 Full
—C C. | C C
OUtAdder n OUtAdde n
S S
' '
SS
0—1—-0

© Mark Redekopp, All rights reserved

from finally arrives
0010 + 0001 so that
to correct sum
1111 + 0001 will be
generated
| } |
X Y X
Full ! Full
C C, C C,
OU'[Adder n Ou'[Adder n
S S
! !

USC Viterbi

School of Engineering

Critical Path

 Critical Path = Longest possible delay path

Assume t,,, = 5 ns,

tcarry: 4 ns
| | | |
X Y X Y X Y X Y
16 ns | 12ns | 8ns | 4ns _
+«— COo FA ClI |erreenrennd] CO FA Ci lqerensrennns CO FA Ci lqeeeeesemnnss Co FA Ci le—

S_ S S S
l l l

17 ns 13 ns 9ns 5ns

D REELY Critical Path

USC Viterbi

School of Engineering

Ripple Carry Adders

* Ripple-carry adders (RCA) are slow due to
carry propagation
— At least 2 levels of logic per full adder

~
~§
-~
§-
) (%] - -

L - — — — —— — — | —

USC Viterbi

School of Engineering

Fast Adders

« Rather than calculating one carry at a time and passing it
down the chain, can we compute a group of carries at
the same time

* To do this, let us define some new signals for each
column of addition:

— p; = Propagate: This column will propagate a carry-in (if there is
one) to the carry-out.
p; is true when A, or B;is 1 =>p, = A, + B,

— 0; = Generate: This column will generate a carry-out whether or
not the carry-in is ‘1’
g;is true when A,and B;is 1 =>¢g,= A, * B,

« Using these signals, we can define the carry-out (c;,,) as:
Cirr = 0i T DG

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Carry Lookahead Logic

» Define each carry in terms of p;, g; and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

e] =
¢ C2 =
e C3 =
e c4 =

USC Viterbi

School of Engineering

Carry Lookahead Logic

» Define each carry in terms of p;, g; and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

* C1 =9, PeCy

* C2=0; +P;C; =0; +P19p + P1P:Co
e C3=...

e c4=..

USC Viterbi

School of Engineering

Carry Lookahead Analogy

« Consider the carry-chain like a long tube broken
Into segments. Each segment is controlled by a
valve (propagate signal) and can insert a fluid
Into that segment (generate signal)

* The carry-out of the diagram below will be true if
gl is true or plis true and goO is true, or p1, pO
and cl is true

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Co

Carry-Lookahead

Logic (CLL)

SN N N AN PR N N D

cal

© Mark Redekopp, All rights reserved

S2

S1 SO

USC Viterbi

School of Engineering

» Use carry-lookahead L Jr o ‘l]
logic to generate all the

carries in one shot and ST} - STET}
then create the sum © 53 oz 52 g ¢ @ w0

g3 p3 g2 p2 gl p1 g0 p0 €O

« Example 4-bit CLA
shown below

|
|
|
|
|
| Carry-Lookahead
|
|
|
|
|

Logic (CLL)
ca c3 cz (o
A3 B3 A2 B2 A1B1 AD BO
83 s2 B[3:0] |S1 S0
c4 S[3:0]

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Carry Lookahead Adder

« Use carry-lookahead
logic to generate all the
carries in one shot and
then create the sum

« Example 4-bit CLA
shown below

© Mark Redekopp, All rights reserved

A[3:0] B[3:.0] co
|ﬁ4__+_—4__“_1
A3 B3 AZ BZ AD BO
A3 B3 AZ E!Z A1 E!1 AD BO
PG
g3 p3 92 p2 gt p! g0 pO

g3 p3 g2 p2 gl p1 g0 p0 €O

Logic (CLL)

|
|
|
|
|
|
ROBOFORC) :
:
|
|

A3 B3 AZB2 Al B1 AOQ BO

§2 B[30] %
L ——

c4 @ S[3:0]

|
|
|
|
|
| Carry-Lookahead
|
|
|
|
|

USC Viterbi

School of Engineering

4-bit Adders

« 7415283 chip implements a 4-bit adder
using CLA methodology

A,AAA, = A
+ B,B,B,B, = B
S,S;S,S;S, = S

I A

A3 B3 A2 BZ Al Bl 0 ~0

+— Cout 74L.S283 Cin [—
SB S2 S1 S0

o

USC Viterbi

School of Engineering

16-Bit CLA

« At this point we should probably stop as we have a 5-input gate in
our equation

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0] co

\l/ \l/ C12 \l/ \l/ C8 \l/ \L C4 \l/ \L J
[z s g
W@ Wl Wl Wl

C16 S[15:12] S[11:8] S[7:4] S[3:0]
16-bit RCA Delay = 16*2 = 32 gate delays
Delay of the above adder design = 3+2+2+4 = 11 gates

Let us improve by looking ahead at a higher level to
produce C16, C12, C8, C4 in parallel

Define P and G as the overall Propagate and Generate
WTrtts s (i signals for a set of 4 bits

between the equation P=p3ep2eplepl
for G here and C4 on

the previous slides G = g3 + p3eg2 + p3ep2egl + p3ep2eplegl

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

16-bit CLA Closer Look

Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns
propagates:

— PO =p3e p2 epl ¢p0

— Pl =p7e p6 ep5 ep4

— P2 =plle pl0 ep9 p8

— P33 =pl5e pl4 epl3 epl?2
Each 4-bit CLA generates a carry if any column generates and the more significant
columns propagate

— G0 =03 + (p3 ¢g2) + (p3 ep2 ¢g1)+(p3 ep2 epl «g0)

— G3=gl5 + (p15 egl4) + (p15 epl4d egl3)+(pl5 epls epl3 egl2)
The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

— (C4) =>C1 = GO + (PO «c0)

— (C16) =>C4 =G3 + (P3 ¢G2) + (P3 eP2 ¢G1) +(P3 e P2 ¢ P1 ¢ GO)+ (P3 eP2 ¢P1 ¢P0 cO)
These equations are exactly the same CLL logic we derived earlier

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

16-Bit CLA

« Understanding 16-bit CLA hierarchy...

é‘(:15

s CLL

CO

C12 C8

s CLL pc CLL

<{| pg CLL

C4

c3 p2 g2 c2 pl gl

CLL

cl p0 g0

cO

C16 \L \l/

© Mark Redekopp, All rights reserved

Delay =

= Delay in producing pi,qgi
____=Delay in producing Pi*,Gi*
____=Delay in producing C4,C8,C12,C16
____=Delay in producing c15
____=Delay in producing S15

USC Viterbi

School of Engineering

64-Bit CLA

 We can reuse the same CLL logic to build a 64-bit CLA CO
0 QOO0 QOO0 L0+ 0000+ (0000 000 EDDD (000 (000 (000 (000 0000+ 000+ (000 - 00g

c63 s35

< < <
C60 |C56 [C52 C44 ([C40 |C36 Cc28 |C24 [C20 C12 C8 [C4
pg CLL < pg CLL < pg CLL <1 | pg CLL <
L\LL\L C48 J/Jﬂ C32 \1\1 C16 J/J ﬂ
p3 g3 c3 p2 g2 c2 pl gl cl p0 g0
— c4 N CLL co <

____ = Delay in producing pi*,gi*

____=Delay in producing Pj**,Gj**

= Delay in producing C48

= Delay in producing C60

= Delay in producing C63

= Delay in producing S63
Total Delay

= ____ = Delay in producing S63

Is the delay in producing s63 the same as in s35?
= ____ = Delay in producing S2

=____ = Delay in producing SO

© Mark Redekopp, All rights reserved

