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Introduction to Digital Logic 

Lecture 13:  

Demuxes 

Adders 

Overflow 

Carry-Lookahead Adders 
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DEMULTIPLEXERS 
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Demultiplexers 

• Perform opposite function of multiplexers 

• Pass the input to one selected output 

• In general 

– 1 input 

– 2n outputs 

– n select bits 
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Demultiplexers 
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Demultiplexer Design 
1-to-4 Demux 
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Demultiplexer Design 
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Demultiplexer Design 

1-to-4 Demux 

Notice D runs to all 

4 output AND gates 
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Demultiplexer Design 

1-to-4 Demux 

Notice D runs to all 

4 output AND gates 
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Demultiplexers and Decoders 

• Demultiplexers are actually just decoders w/ an 

enable (must have an enable) 

1-to-4 Demux 2-to-4 Decoder w/ Enable 

Select bits of Demux Binary inputs of 

Decoders 
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Mux Active Levels 

• We don’t think of mux inputs/outputs as active or inactive 

• Instead we count how many inversions “a single path” 

hits from input to output (don’t count total inversions) and 

list the mux as “inverting” (odd # of inversions) or non-

inverting (even # of inversions) 
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Demux Active Levels 
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ADDERS 
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Addition – Half Adders 

• Addition is done in columns 
– Inputs are the bit of X, Y 

– Outputs are the Sum Bit and 
Carry-Out (Cout) 

• Design a Half-Adder (HA) 
circuit that takes in X and Y 
and outputs S and Cout  

  0110 

+ 0111 

1101 

 = X  

 = Y 

 

110 

Half  

Adder 

X Y 

S 

Cout 

Cout 

Sum 

0 1 

1 

0 

X Y Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 
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Adder Intro 

• Design a circuit to add two 4-bit numbers, 
X[3:0] and Y[3:0] 
– How many inputs? 

– Can we use K-Maps or Minterms or decoders + an 
OR gate, etc? 

  0110 

+ 0111 

1101 

 = X  

 = Y 
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Addition – Half Adders 

• We’d like to use one 

adder circuit for each 

column of addition 

• Problem: 

– No place for Carry-out 

of last adder circuit 

• Solution 

– Redesign adder circuit 

to include an input for 

the carry 

  0110 

+ 0111 

1101 

 = X  
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Addition – Full Adders 

• Add a Carry-In 

input(Cin) 

• New circuit is called a 

Full Adder (FA) 
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Addition – Full Adders 

• Find the minimal 2-level implementations for Cout and S… 

X Y Cin Cout S 

 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Full Adder Logic 

• S = X xor Y xor Cin 

– Recall:  XOR is defined as true 

when ODD number of inputs are 

true…exactly  when the sum bit 

should be 1 

• Cout = XY + XCin + Ycin 

– Carry when sum is 2 or more (i.e. 

when at least 2 inputs are 1) 

– Circuit is just checking all 

combinations of 2 inputs 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Addition – Full Adders 

• Connect bits of top number to X inputs 
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Addition – Full Adders 

• Connect bits of bottom number to Y inputs 
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Addition – Full Adders 

• Be sure to connect first Cin to 0 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Addition – Full Adders 

• Use 1 Full Adder for each column of addition 
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Performing Subtraction w/ Adders 

• To subtract 

– Flip bits of Y 

– Add 1 
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Performing Subtraction w/ Adders 

• To subtract 

– Flip bits of Y 

– Add 1 
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Performing Subtraction w/ Adders 

• To subtract 

– Flip bits of Y 

– Add 1 
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Performing Subtraction w/ Adders 

• To subtract 

– Flip bits of Y 

– Add 1 
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OVERFLOW 
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Overflow 

• Overflow occurs when the result of an 

arithmetic operation is too large to be 

represented with the given number of bits 

– Unsigned overflow occurs when adding or 

subtracting unsigned numbers 

– Signed (2’s complement overflow) overflow 

occurs when adding or subtracting 2’s 

complement numbers 
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Unsigned Overflow 

0000 
0001 

0010 

0011 

0100 

0101 
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1111 
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1011 
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+8 
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+12 

+13 

+14 

+15 

Overflow occurs when you cross 

this discontinuity  

10 

Plus 7 

10 + 7 = 17 

With 4-bit unsigned numbers we 

can only represent 0 – 15.  Thus, 

we say overflow has occurred. 
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2’s Complement Overflow 

0000 
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Overflow occurs when you cross this 

discontinuity  

-6 + -4 = -10 

With 4-bit 2’s complement 

numbers we can only represent  

-8 to +7.  Thus, we say overflow 

has occurred. 

5 + 7 = +12 
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Testing for Overflow 

• Most fundamental test  
– Check if answer is wrong (i.e. Positive + Positive 

yields a negative)  

• Unsigned overflow test 
– If carry-out of final position equals ‘1’ 

• Signed (2’s complement) overflow test 
– Only occurs if two positives are added and result is 

negative or two negatives are added and result is 
positive 

– Alternate test:  if carry-in and carry-out of final position 
are different 
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Testing for Unsigned Overflow 

• Unsigned Overflow test 

– Unsigned Addition:  If final carry-out = 1 

1011 

+ 0110 

 

1011 

+ 0011 
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Testing for Unsigned Overflow 

• Unsigned Overflow test 

– Unsigned Addition:  If final carry-out = 1 

1011 

+ 0110 

0001 

1011 

+ 0011 

1110 

1 1 1 

Final carry-out = 1, 

thus overflow 

1 1 0 

Final carry-out = 0, 

thus no overflow 

0 
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Testing for 2’s Comp. Overflow 

• 2’s Complement Overflow Occurs If… 

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos. 

– Test 2: If carry-in to MSB position and carry-out of 

MSB position are different 

0101 

+ 0110 

 

(5) 

(6) 

 

1100 

+ 1001 

 

(-4) 

(-7) 

 

0011 

+ 0010 

 

(3) 

(2) 

 

1110 

+ 1010 

 

(-2) 

(-6) 
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Testing for 2’s Comp. Overflow 

• 2’s Complement Overflow Occurs If… 

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos. 

– Test 2: If carry-in to MSB position and carry-out of 

MSB position are different 

0101 

+ 0110 

1011 

1 0 

Carry-in to MSB and 

carry-out of MSB 

position are 

different…Overflow! 

(5) 

(6) 

(-5) 

1100 

+ 1001 

0101 

0 1 

Carry-in to MSB and 

carry-out of MSB 

position are 

different…Overflow! 

(-4) 

(-7) 

(+5) 

0011 

+ 0010 

0101 

0 0 

Carry-in to MSB and 

carry-out of MSB position 

are same…No Overflow! 

(3) 

(2) 

(5) 

1110 

+ 1010 

1000 

1 1 

Carry-in to MSB and carry-

out of MSB position are 

same…No Overflow! 

(-2) 

(-6) 

(-8) 
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Checking for Overflow 

• Produce additional outputs to indicate if 

unsigned (UOV) or signed (SOV) 

overflow has occurred 

Full  

Adder 

X Y 
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Cout 
Full  

Adder 
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Cout 
Full  
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Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
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ADDER DELAY 
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Timing 

• A chain of full adders presents an interesting timing 
analysis problem 

• To correctly compute its own Sum and Carry-out, each 
full adder requires the carry-out bit from the previous full 
adder 

• Because hardware works in parallel, the full adders 
further down the chain may momentarily produce the 
wrong outputs because the carry has not had time to 
propagate to them 

Full  

Adder 

X Y 

Cin 

S 

Cout 0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
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Timing Example 
• Assume that we were adding one set of inputs 

and then change to a new set of inputs: 

0000 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 

0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

0 0 0 

1 

0 

1 

0 

0 

0 

0 

0 

  1111 

+ 0001 

0000 

 = X  

 = Y 

 

1111 Old inputs: New inputs: 

Old inputs: 

  0010 

+ 0001 

0011 

 = X  

 = Y 

 

0 1 0 0 
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Timing 
• At the time just before we enter the new 

input values, all carries are 0’s 
0000 

Full  

Adder 

X Y 

Cin 

S 

Cout 0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

Time 

-1 

1 

0 

1 

0 

0 

0 

0 

0 

New inputs: 

Old inputs: 

1 0 0 0 

  0010 

+ 0001 

0011 

 = X  

 = Y 

 

0 1 0 0 
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Timing 
• Now we enter the new inputs and all the FA’s 

starting adding their respective inputs 
1111 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 

0 Full  

Adder 

X Y 

Cin 
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Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

0 0 0 

Time 

0 

0 0 0 0 

New inputs: 

Due to propagation delay, the carries are still from the old inputs 

  1111 

+ 0001 

0000 

 = X  

 = Y 

 

1 1 1 1 
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Timing 

• Each adder computes from the current inputs (notice the 
sum of 1110 is incorrect at this point) 

1111 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 

0 

1 
0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

0 

1 

0 

0 

1 

0 

0 

1 

0 

Time 

1 

Now the carries are all based off the new inputs 

  1111 

+ 0001 

0000 

 = X  

 = Y 

 
1 1 1 1 
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Timing 

• The carry is “rippling” through each adder 
1111 

Full  

Adder 

X Y 
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S 

Cout 
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0 Full  

Adder 

X Y 

Cin 
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1 

0 

1 

0 

0 

1 

0 
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  1111 

+ 0001 

0000 

 = X  

 = Y 

 
1 1 1 1 
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Timing 

1111 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 

0 

1 
0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

0 

0 

1 

0 

0 

1 

0 

1 

0 

Time 

3 

• The carry is “rippling” through each adder 

  1111 

+ 0001 

0000 

 = X  

 = Y 

 
1 1 1 1 
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Timing 

• Only after the carry propagates through all the adders is 
the sum valid and correct 

  1111 

+ 0001 

0000 

 = X  

 = Y 

 

1111 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 1 

0 

1 
0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 

1 0 

0 

1 

1 0 

0 

1 

1 0 

0 

1 

Time 

4 



© Mark Redekopp, All rights reserved 

“Ripple-Carry” Adder 

• The longest path through 

a chain of full adders is 

the carry path 

• We say that the carry 

“ripples” through the 

adder 

Full  

Adder 

X Y 

Cin 

S 

Cout 
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0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  
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0 

1 

1 0 

0 

1 
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0 

1 

C1 C2 C3 C4 C0 

C1

C2

C3

C4

Carry ripples through

time 
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Ripple Carry Adder Delay 

• An n-bit ripple carry adder has a worst 

case delay proportional to n (i.e. n-bits => 

n columns of addition => n-full adders) 

Full  

Adder 

X Y 

Cin 

S 

Cout 

1 1 
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1 
0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 
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S 
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Adder 

X Y 

Cin 

S 

Cout 

1 0 

0 

1 

1 0 

0 

1 

1 0 

0 
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Glitches 

• Transient, incorrect output values due to 

differing arrival times of gate inputs 
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Output Glitches 

• Delay of the carry 

causes glitches on 

the sum bits 

• Glitch = momentarily, 

incorrect output value 

Full  

Adder 

X Y 

Cin 

S 

Cout 
1 

0 Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
Full  

Adder 

X Y 

Cin 

S 

Cout 
1 

0→1 

0→1→0 

S3

Glitch = “momentary, 

incorrect output value”

Inputs change 

from

0010 + 0001 

to 

1111 + 0001

Correct carry 

finally arrives 

so that 

correct sum 

will be 

generated

0→1 

early 

late 

S3 

0→0 
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Critical Path 

• Critical Path = Longest possible delay path 

X Y 

S 

Ci Co 

X Y 

S 

Ci Co FA FA 

X Y 

S 

Ci Co 

X Y 

S 

Ci Co FA FA 

Critical Path 

Assume tsum = 5 ns, 

              tcarry= 4 ns 

4 ns 8 ns 12 ns 

17 ns 

16 ns 

13 ns 9 ns 5 ns 
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Ripple Carry Adders 

• Ripple-carry adders (RCA) are slow due to 

carry propagation 

– At least 2 levels of logic per full adder 

 

2 1 3 4 5 6 
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Fast Adders 

• Rather than calculating one carry at a time and passing it 

down the chain, can we compute a group of carries at 

the same time 

• To do this, let us define some new signals for each 

column of addition: 

– pi = Propagate:  This column will propagate a carry-in (if there is 

one) to the carry-out.  

pi is true when Ai or Bi is 1 => pi = Ai + Bi  

– gi = Generate:  This column will generate a carry-out whether or 

not the carry-in is ‘1’ 

gi is true when Ai and Bi is 1 => gi = Ai • Bi  

• Using these signals, we can define the carry-out (ci+1) as: 

ci+1 = gi + pici 
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Carry Lookahead Logic 

• Define each carry in terms of pi, gi and the 

initial carry-in (c0) and not in terms of carry 

chain (intermediate carries: c1,c2,c3,…) 

• c1 =  

• c2 = 

• c3 = 

• c4 = 
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Carry Lookahead Logic 

• Define each carry in terms of pi, gi and the 

initial carry-in (c0) and not in terms of carry 

chain (intermediate carries: c1,c2,c3,…) 

• c1 = g0 + p0c0 

• c2 = g1 + p1c1 = g1 + p1g0 + p1p0c0 

• c3 = … 

• c4 = … 
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Carry Lookahead Analogy 

• Consider the carry-chain like a long tube broken 

into segments. Each segment is controlled by a 

valve (propagate signal) and can insert a fluid 

into that segment (generate signal) 

• The carry-out of the diagram below will be true if 

g1 is true or p1 is true and g0 is true, or p1, p0 

and c1 is true 
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CLA4
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Carry Lookahead Adder 

• Use carry-lookahead 

logic to generate all the 

carries in one shot and 

then create the sum 

• Example 4-bit CLA 

shown below 
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Carry Lookahead Adder 

• Use carry-lookahead 

logic to generate all the 

carries in one shot and 

then create the sum 

• Example 4-bit CLA 

shown below 

1 

3 3 

4 

1 

3 3 
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4-bit Adders 

• 74LS283 chip implements a 4-bit adder 

using CLA methodology 
A3A2A1A0 

+ B3B2B1B0 
S4S3S2S1S0 

 = A 

 = B 

 = S 

A3 B3 A2 B2 A1 B1 A0 B0 

Cin Cout 

S3 S2 S1 S0 

74LS283 
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16-Bit CLA 

• At this point we should probably stop as we have a 5-input gate in 

our equation 

 

16-bit RCA Delay = 16*2 = 32 gate delays 

Delay of the above adder design = 3+2+2+4 = 11 gates 

Let us improve by looking ahead at a higher level to 

produce C16, C12, C8, C4 in parallel 

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0] 

S[15:12] S[11:8] S[7:4] S[3:0] C16 

C4 C8 C12 

C0 

7 3 5 
11 

Define P and G as the overall Propagate and Generate 

signals for a set of 4 bits 

P = p3  p2  p1  p0 

G = g3 + p3g2 + p3p2g1 + p3p2p1g0  

PG PG PG PG 

What’s the difference 

between the equation 

for G here and C4 on 

the previous slides 
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16-bit CLA Closer Look 

• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns 

propagates: 

– P0 = p3 p2 p1 p0 

– P1 = p7 p6 p5 p4 

– P2 = p11 p10 p9 p8 

– P3 = p15 p14 p13 p12 

• Each 4-bit CLA generates a carry if any column generates and the more significant 

columns propagate 

– G0 = g3 + (p3 g2) + (p3 p2 g1)+(p3 p2 p1 g0) 

– … 

– G3 = g15 + (p15 g14) + (p15 p14 g13)+(p15 p14 p13 g12) 

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as: 

– (C4) =>C1 = G0 + (P0 c0) 

– … 

– (C16) => C4 = G3 + (P3 G2) + (P3 P2 G1) +(P3  P2  P1  G0)+ (P3 P2 P1 P0 c0) 

• These equations are exactly the same CLL logic we derived earlier 
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16-Bit CLA 

• Understanding 16-bit CLA hierarchy… 

 

CLL CLL CLL CLL 

C16 

C4 C8 C12 

C0 

Delay =  

= ___ = Delay in producing pi,gi 

= ___ = Delay in producing Pi*,Gi* 

= ___ = Delay in producing C4,C8,C12,C16 

= ___ = Delay in producing c15  

= ___ = Delay in producing S15  

P 

CLL 
p3 g3 

c4 

p2 g2 c3 p1 g1 c2 p0 g0 c1 

c0 

P* G* 

G P G P G P G 
G 

c15 
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64-Bit CLA 

• We can reuse the same CLL logic to build a 64-bit CLA 

 

= ___ = Delay in producing S63 

Is the delay in producing s63 the same as in s35? 

= ___ = Delay in producing S2 

= ___ = Delay in producing S0 

CLL CLL CLL CLL 

C16 C32 C48 

P 

CLL 
p3 g3 

c4 

p2 g2 c3 p1 g1 c2 p0 g0 c1 
c0 

P* G* 

G P G P G P G 
G 

C52 C56 C60 

c63 

C36 C40 C44 C20 C24 C28 C4 C8 C12 

C0 

s35 

= ___ = Delay in producing pi*,gi* 

= ___ = Delay in producing Pj**,Gj** 

= ___ = Delay in producing C48 

= ___ = Delay in producing C60 

= ___ = Delay in producing C63 

= ___ = Delay in producing S63 

= _____ Total Delay 


