
© Mark Redekopp, All rights reserved

Introduction to Digital Logic

Lecture 13:

Demuxes

Adders

Overflow

Carry-Lookahead Adders

© Mark Redekopp, All rights reserved

DEMULTIPLEXERS

© Mark Redekopp, All rights reserved

Demultiplexers

• Perform opposite function of multiplexers

• Pass the input to one selected output

• In general

– 1 input

– 2n outputs

– n select bits

D

0 1

0

D

0

0

All other outputs

are inactive

S1 S0 D0 D1 D2 D3

0 0 D 0 0 0

0 1 0 D 0 0

1 0 0 0 D 0

1 1 0 0 0 D

Input gets

passed to the

selected output

1 x 4
Demux

D 0

S 1 S 0

D 1

D 2

D 3

D

© Mark Redekopp, All rights reserved

Demultiplexers

1 x 4

Demux

D
0

S
1 S

0

D
1

D
2

D
3

D1

0 1

0

1

0

0

1 x 4

Demux

D
0

S
1 S

0

D
1

D
2

D
3

D0

1 1

0

0

0

0

1 x 4

Demux

D
0

S
1 S

0

D
1

D
2

D
3

D1

0 0

1

0

0

0

© Mark Redekopp, All rights reserved

Demultiplexer Design
1-to-4 Demux

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

D1

AND Gates acting as

barrier gates

2-to-4 Decoder

D0

D3

D2

D

© Mark Redekopp, All rights reserved

Demultiplexer Design

S
0

D
0

D
1

D
2

D
3

D

S
0

S
1

S
0
’ S

1
’

S
1

1-to-4 Demux

© Mark Redekopp, All rights reserved

Demultiplexer Design

1-to-4 Demux

Notice D runs to all

4 output AND gates

S
0

D
0

D
1

D 2

D
3

D

S
0

S
1

S
0
’ S

1
’

S 1
Decoding of select bits

© Mark Redekopp, All rights reserved

Demultiplexer Design

1-to-4 Demux

Notice D runs to all

4 output AND gates

S
0

D
0

D
1

D 2

D
3

D

S
0

S
1

S
0
’ S

1
’

S 1
Decoding of select bits 0

1

1
1

D

0

0

0

0

0

0

© Mark Redekopp, All rights reserved

Demultiplexers and Decoders

• Demultiplexers are actually just decoders w/ an

enable (must have an enable)

1-to-4 Demux 2-to-4 Decoder w/ Enable

Select bits of Demux Binary inputs of

Decoders

=

Data

input

Enable

input

S
0

D
0

D
1

D
2

D
3

D

S
0

S
1

S
0
’ S

1
’

S
1

A

D 0

D 1

D 2

D 3

E

A B A ’ B ’

B (msb)

© Mark Redekopp, All rights reserved

Mux Active Levels

• We don’t think of mux inputs/outputs as active or inactive

• Instead we count how many inversions “a single path”

hits from input to output (don’t count total inversions) and

list the mux as “inverting” (odd # of inversions) or non-

inverting (even # of inversions)

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

Non-Inverting

Mux

Inverting Mux Inverting Mux Non-Inverting

Mux

© Mark Redekopp, All rights reserved

Demux Active Levels

Non-Inverting

Demux

Inverting

Demux

Inverting

Demux

Non-Inverting

Demux

S

D0

D1

D

S

D0

D1

D

S

D0

D1

D

S

D0

D1

D

© Mark Redekopp, All rights reserved

ADDERS

© Mark Redekopp, All rights reserved

Addition – Half Adders

• Addition is done in columns
– Inputs are the bit of X, Y

– Outputs are the Sum Bit and
Carry-Out (Cout)

• Design a Half-Adder (HA)
circuit that takes in X and Y
and outputs S and Cout

 0110

+ 0111

1101

 = X

 = Y

110

Half

Adder

X Y

S

Cout

Cout

Sum

0 1

1

0

X Y Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

© Mark Redekopp, All rights reserved

Adder Intro

• Design a circuit to add two 4-bit numbers,
X[3:0] and Y[3:0]
– How many inputs?

– Can we use K-Maps or Minterms or decoders + an
OR gate, etc?

 0110

+ 0111

1101

 = X

 = Y

© Mark Redekopp, All rights reserved

Addition – Half Adders

• We’d like to use one

adder circuit for each

column of addition

• Problem:

– No place for Carry-out

of last adder circuit

• Solution

– Redesign adder circuit

to include an input for

the carry

 0110

+ 0111

1101

 = X

 = Y

110

Half

Adder

X Y

S

Cout

0 1

1

0 Half

Adder

X Y

S

Cout

1 1

0

1

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Add a Carry-In

input(Cin)

• New circuit is called a

Full Adder (FA)

 0110

+ 0111

1101

 = X

 = Y

110

Full

Adder

X Y

Cin

S

Cout

Cout Cin

0 1

0

1 0

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Find the minimal 2-level implementations for Cout and S…

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

© Mark Redekopp, All rights reserved

Full Adder Logic

• S = X xor Y xor Cin

– Recall: XOR is defined as true

when ODD number of inputs are

true…exactly when the sum bit

should be 1

• Cout = XY + XCin + Ycin

– Carry when sum is 2 or more (i.e.

when at least 2 inputs are 1)

– Circuit is just checking all

combinations of 2 inputs

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

 0110

+ 0111

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Connect bits of top number to X inputs

 0110

+ 0111

Full

Adder

X Y

Cin

S

Cout

0

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1 0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Connect bits of bottom number to Y inputs

 0110

+ 0111

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1 1 1 0 0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Be sure to connect first Cin to 0

 0110

+ 0111

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1 1 1 0 0

0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

 0110

+ 0111

1101

 = X

 = Y

01100

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

 0110

+ 0111

1101

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

01100

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0

1

1

1

1

0

1

0

01100

 0110

+ 0111

1101

 = X

 = Y

0 1 1 0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0

1

1

1

1

0

1

0

01100

 0110

+ 0111

1101

 = X

 = Y

0 1 1 0

© Mark Redekopp, All rights reserved

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

S

1

0

1

1

1

1

0

1

0

01100

Cin Cout

 0110

+ 0111

1101

 = X

 = Y

0 1 1 0

© Mark Redekopp, All rights reserved

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

 0101

- 0011

0010

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

 0101

+ 1100

1

0010

© Mark Redekopp, All rights reserved

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

 0101

- 0011

0010

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

 0101

+ 1100

1

0010

1 0 1 0

1 1 0 0

0 0 1 1

© Mark Redekopp, All rights reserved

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

 0101

- 0011

0010

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

 0101

+ 1100

1

0010

1 0 1 0

1 1 0 0

0 0 1 1

1

© Mark Redekopp, All rights reserved

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

 0101

- 0011

0010

 = X

 = Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

 0101

+ 1100

1

0010

1 0 1 0

1 1 0 0

0 0 1 1

1

0 1 0 0

1 1 0 1

© Mark Redekopp, All rights reserved

OVERFLOW

© Mark Redekopp, All rights reserved

Overflow

• Overflow occurs when the result of an

arithmetic operation is too large to be

represented with the given number of bits

– Unsigned overflow occurs when adding or

subtracting unsigned numbers

– Signed (2’s complement overflow) overflow

occurs when adding or subtracting 2’s

complement numbers

© Mark Redekopp, All rights reserved

Unsigned Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8
+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross

this discontinuity

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we

can only represent 0 – 15. Thus,

we say overflow has occurred.

© Mark Redekopp, All rights reserved

2’s Complement Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8
-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this

discontinuity

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent

-8 to +7. Thus, we say overflow

has occurred.

5 + 7 = +12

© Mark Redekopp, All rights reserved

Testing for Overflow

• Most fundamental test
– Check if answer is wrong (i.e. Positive + Positive

yields a negative)

• Unsigned overflow test
– If carry-out of final position equals ‘1’

• Signed (2’s complement) overflow test
– Only occurs if two positives are added and result is

negative or two negatives are added and result is
positive

– Alternate test: if carry-in and carry-out of final position
are different

© Mark Redekopp, All rights reserved

Testing for Unsigned Overflow

• Unsigned Overflow test

– Unsigned Addition: If final carry-out = 1

1011

+ 0110

1011

+ 0011

© Mark Redekopp, All rights reserved

Testing for Unsigned Overflow

• Unsigned Overflow test

– Unsigned Addition: If final carry-out = 1

1011

+ 0110

0001

1011

+ 0011

1110

1 1 1

Final carry-out = 1,

thus overflow

1 1 0

Final carry-out = 0,

thus no overflow

0

© Mark Redekopp, All rights reserved

Testing for 2’s Comp. Overflow

• 2’s Complement Overflow Occurs If…

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

– Test 2: If carry-in to MSB position and carry-out of

MSB position are different

0101

+ 0110

(5)

(6)

1100

+ 1001

(-4)

(-7)

0011

+ 0010

(3)

(2)

1110

+ 1010

(-2)

(-6)

© Mark Redekopp, All rights reserved

Testing for 2’s Comp. Overflow

• 2’s Complement Overflow Occurs If…

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

– Test 2: If carry-in to MSB position and carry-out of

MSB position are different

0101

+ 0110

1011

1 0

Carry-in to MSB and

carry-out of MSB

position are

different…Overflow!

(5)

(6)

(-5)

1100

+ 1001

0101

0 1

Carry-in to MSB and

carry-out of MSB

position are

different…Overflow!

(-4)

(-7)

(+5)

0011

+ 0010

0101

0 0

Carry-in to MSB and

carry-out of MSB position

are same…No Overflow!

(3)

(2)

(5)

1110

+ 1010

1000

1 1

Carry-in to MSB and carry-

out of MSB position are

same…No Overflow!

(-2)

(-6)

(-8)

© Mark Redekopp, All rights reserved

Checking for Overflow

• Produce additional outputs to indicate if

unsigned (UOV) or signed (SOV)

overflow has occurred

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

© Mark Redekopp, All rights reserved

ADDER DELAY

© Mark Redekopp, All rights reserved

Timing

• A chain of full adders presents an interesting timing
analysis problem

• To correctly compute its own Sum and Carry-out, each
full adder requires the carry-out bit from the previous full
adder

• Because hardware works in parallel, the full adders
further down the chain may momentarily produce the
wrong outputs because the carry has not had time to
propagate to them

Full

Adder

X Y

Cin

S

Cout 0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

© Mark Redekopp, All rights reserved

Timing Example
• Assume that we were adding one set of inputs

and then change to a new set of inputs:

0000

Full

Adder

X Y

Cin

S

Cout

1

0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0 0 0

1

0

1

0

0

0

0

0

 1111

+ 0001

0000

 = X

 = Y

1111 Old inputs: New inputs:

Old inputs:

 0010

+ 0001

0011

 = X

 = Y

0 1 0 0

© Mark Redekopp, All rights reserved

Timing
• At the time just before we enter the new

input values, all carries are 0’s
0000

Full

Adder

X Y

Cin

S

Cout 0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

Time

-1

1

0

1

0

0

0

0

0

New inputs:

Old inputs:

1 0 0 0

 0010

+ 0001

0011

 = X

 = Y

0 1 0 0

© Mark Redekopp, All rights reserved

Timing
• Now we enter the new inputs and all the FA’s

starting adding their respective inputs
1111

Full

Adder

X Y

Cin

S

Cout

1

0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0 0 0

Time

0

0 0 0 0

New inputs:

Due to propagation delay, the carries are still from the old inputs

 1111

+ 0001

0000

 = X

 = Y

1 1 1 1

© Mark Redekopp, All rights reserved

Timing

• Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

1

0

0

1

0

0

1

0

Time

1

Now the carries are all based off the new inputs

 1111

+ 0001

0000

 = X

 = Y

1 1 1 1

© Mark Redekopp, All rights reserved

Timing

• The carry is “rippling” through each adder
1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

1

0

0

1

0

Time

2

 1111

+ 0001

0000

 = X

 = Y

1 1 1 1

© Mark Redekopp, All rights reserved

Timing

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

0

1

0

1

0

Time

3

• The carry is “rippling” through each adder

 1111

+ 0001

0000

 = X

 = Y

1 1 1 1

© Mark Redekopp, All rights reserved

Timing

• Only after the carry propagates through all the adders is
the sum valid and correct

 1111

+ 0001

0000

 = X

 = Y

1111

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

Time

4

© Mark Redekopp, All rights reserved

“Ripple-Carry” Adder

• The longest path through

a chain of full adders is

the carry path

• We say that the carry

“ripples” through the

adder

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

C1 C2 C3 C4 C0

C1

C2

C3

C4

Carry ripples through

time

© Mark Redekopp, All rights reserved

Ripple Carry Adder Delay

• An n-bit ripple carry adder has a worst

case delay proportional to n (i.e. n-bits =>

n columns of addition => n-full adders)

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

© Mark Redekopp, All rights reserved

Glitches

• Transient, incorrect output values due to

differing arrival times of gate inputs

© Mark Redekopp, All rights reserved

Output Glitches

• Delay of the carry

causes glitches on

the sum bits

• Glitch = momentarily,

incorrect output value

Full

Adder

X Y

Cin

S

Cout
1

0 Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
1

0→1

0→1→0

S3

Glitch = “momentary,

incorrect output value”

Inputs change

from

0010 + 0001

to

1111 + 0001

Correct carry

finally arrives

so that

correct sum

will be

generated

0→1

early

late

S3

0→0

© Mark Redekopp, All rights reserved

Critical Path

• Critical Path = Longest possible delay path

X Y

S

Ci Co

X Y

S

Ci Co FA FA

X Y

S

Ci Co

X Y

S

Ci Co FA FA

Critical Path

Assume tsum = 5 ns,

 tcarry= 4 ns

4 ns 8 ns 12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

© Mark Redekopp, All rights reserved

Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to

carry propagation

– At least 2 levels of logic per full adder

2 1 3 4 5 6

© Mark Redekopp, All rights reserved

Fast Adders

• Rather than calculating one carry at a time and passing it

down the chain, can we compute a group of carries at

the same time

• To do this, let us define some new signals for each

column of addition:

– pi = Propagate: This column will propagate a carry-in (if there is

one) to the carry-out.

pi is true when Ai or Bi is 1 => pi = Ai + Bi

– gi = Generate: This column will generate a carry-out whether or

not the carry-in is ‘1’

gi is true when Ai and Bi is 1 => gi = Ai • Bi

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = gi + pici

© Mark Redekopp, All rights reserved

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the

initial carry-in (c0) and not in terms of carry

chain (intermediate carries: c1,c2,c3,…)

• c1 =

• c2 =

• c3 =

• c4 =

© Mark Redekopp, All rights reserved

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the

initial carry-in (c0) and not in terms of carry

chain (intermediate carries: c1,c2,c3,…)

• c1 = g0 + p0c0

• c2 = g1 + p1c1 = g1 + p1g0 + p1p0c0

• c3 = …

• c4 = …

© Mark Redekopp, All rights reserved

Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken

into segments. Each segment is controlled by a

valve (propagate signal) and can insert a fluid

into that segment (generate signal)

• The carry-out of the diagram below will be true if

g1 is true or p1 is true and g0 is true, or p1, p0

and c1 is true

© Mark Redekopp, All rights reserved

CLA4

C4

A3 B3 A2 B2 A1 B1 A0 B0

C1C2C3C4

C
a

rr
y
-L

o
o

k
a

h
e

a
d

L
o

g
ic

 (
C

L
L

)
P

G
g0 p0g1 p1g2 p2g3 p3

C0

S3 S2 S1 S0

© Mark Redekopp, All rights reserved

Carry Lookahead Adder

• Use carry-lookahead

logic to generate all the

carries in one shot and

then create the sum

• Example 4-bit CLA

shown below

© Mark Redekopp, All rights reserved

Carry Lookahead Adder

• Use carry-lookahead

logic to generate all the

carries in one shot and

then create the sum

• Example 4-bit CLA

shown below

1

3 3

4

1

3 3

© Mark Redekopp, All rights reserved

4-bit Adders

• 74LS283 chip implements a 4-bit adder

using CLA methodology
A3A2A1A0

+ B3B2B1B0
S4S3S2S1S0

 = A

 = B

 = S

A3 B3 A2 B2 A1 B1 A0 B0

Cin Cout

S3 S2 S1 S0

74LS283

© Mark Redekopp, All rights reserved

16-Bit CLA

• At this point we should probably stop as we have a 5-input gate in

our equation

16-bit RCA Delay = 16*2 = 32 gate delays

Delay of the above adder design = 3+2+2+4 = 11 gates

Let us improve by looking ahead at a higher level to

produce C16, C12, C8, C4 in parallel

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0] C16

C4 C8 C12

C0

7 3 5
11

Define P and G as the overall Propagate and Generate

signals for a set of 4 bits

P = p3 p2 p1 p0

G = g3 + p3g2 + p3p2g1 + p3p2p1g0

PG PG PG PG

What’s the difference

between the equation

for G here and C4 on

the previous slides

© Mark Redekopp, All rights reserved

16-bit CLA Closer Look

• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns

propagates:

– P0 = p3 p2 p1 p0

– P1 = p7 p6 p5 p4

– P2 = p11 p10 p9 p8

– P3 = p15 p14 p13 p12

• Each 4-bit CLA generates a carry if any column generates and the more significant

columns propagate

– G0 = g3 + (p3 g2) + (p3 p2 g1)+(p3 p2 p1 g0)

– …

– G3 = g15 + (p15 g14) + (p15 p14 g13)+(p15 p14 p13 g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 c0)

– …

– (C16) => C4 = G3 + (P3 G2) + (P3 P2 G1) +(P3 P2 P1 G0)+ (P3 P2 P1 P0 c0)

• These equations are exactly the same CLL logic we derived earlier

© Mark Redekopp, All rights reserved

16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4 C8 C12

C0

Delay =

= ___ = Delay in producing pi,gi

= ___ = Delay in producing Pi*,Gi*

= ___ = Delay in producing C4,C8,C12,C16

= ___ = Delay in producing c15

= ___ = Delay in producing S15

P

CLL
p3 g3

c4

p2 g2 c3 p1 g1 c2 p0 g0 c1

c0

P* G*

G P G P G P G
G

c15

© Mark Redekopp, All rights reserved

64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= ___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing S2

= ___ = Delay in producing S0

CLL CLL CLL CLL

C16 C32 C48

P

CLL
p3 g3

c4

p2 g2 c3 p1 g1 c2 p0 g0 c1
c0

P* G*

G P G P G P G
G

C52 C56 C60

c63

C36 C40 C44 C20 C24 C28 C4 C8 C12

C0

s35

= ___ = Delay in producing pi*,gi*

= ___ = Delay in producing Pj**,Gj**

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= ___ = Delay in producing C63

= ___ = Delay in producing S63

= _____ Total Delay

