
© Mark Redekopp, All rights reserved

Introduction to Digital Logic

Lecture 11:

Cascading Decoders

Implementing Functions w/ Decoders

Encoders & Priority Encoders

© Mark Redekopp, All rights reserved

Building Larger Functions/Circuits

• Scalability issues

– K-Maps: Up to 6 inputs

– Decoders: 6-8 inputs

• But larger decoders can be built from smaller ones

– Multiplexers: Can be decomposed to multiple levels

• Use Shannon’s Theorem

– Memories: 12-13 inputs (4K – 8K rows)

• Building Block Methodology

– Decompose circuits into smaller units

– Design the smaller units using any of the above methods

– Use those smaller circuits as building blocks to construct

arbitrarily large functions/circuits

© Mark Redekopp, All rights reserved

Combinational Building Blocks

• Fundamental blocks that other

combinational structures can be built from

– Decoders

– Encoders

– Multiplexers

– Demultiplexers

– Adders (Multipliers)

– Comparators

– Shifters

© Mark Redekopp, All rights reserved

Decoders

• A decoder is a building block that:

– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding

output

– Individual outputs for EVERY input combination (i.e. 2n outputs)

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB) 1 output for each

combination of the

input number

3-bit binary

number

3-to-8 Decoder

© Mark Redekopp, All rights reserved

Enables

• Exactly one output is active at all times

• It may be undesirable to always have an active output

• Add an extra input (called an enable) that can

independently force all the outputs to their inactive values

Y

X

D0

D1

D2

D3

2-to-4 Decoder

1

0

0

1

0

0

One output

will always

be active

Y

X

D0

D1

D2

D3
E

Enable
Will force all outputs

to 0 when E = 0

(i.e. not enabled)

© Mark Redekopp, All rights reserved

Enables

1

0

0

0

0

0

Y

X

D0

D1

D2

D3
E

Enable

0

When E=0,

inputs is

ignored

1

0

0

1

0

0

Y

X

D0

D1

D2

D3
E

Enable

1

Since E=1,

outputs will

function normally

Since E=0,

all outputs = 0

When E=1,

inputs will cause the

appropriate output to

go active

© Mark Redekopp, All rights reserved

Implementing Enables

• Original 2-to-4 decoder

B

A

D0

D1

D2

D3

E

When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

A’ A B’ B

© Mark Redekopp, All rights reserved

Enables

• Enables can be implemented by connecting it

to each AND gate of the decoder

B

A

D0

D1

D2

D3

E

When E=0, 0 AND anything = 0

When E=1, 1 AND anything = that anything, which was the normal

decoding logic

A’ A B’ B

© Mark Redekopp, All rights reserved

Active-hi vs. Active-low

• Active-hi convention

– 1 = on/true/active

– 0 = off/false/inactive

• Active-low convention

– 0 = on/true/active

– 1 = off/false/inactive

• To convert between conventions

– INVERT!!!

© Mark Redekopp, All rights reserved

Why Active-low

• Some digital circuits are better at “sinking”

(draining/sucking) electric current than

“sourcing” (producing) current

© Mark Redekopp, All rights reserved

Active-Lo Outputs

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

0

1

1

1

1

© Mark Redekopp, All rights reserved

Active-Lo Outputs

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

Active-Lo Enable

1

0

0

0

0

When E=inactive (inactive means 1), Outputs turn off (off means 0)

When E=active (active means 0), Selected outputs turn on (on means 1)

© Mark Redekopp, All rights reserved

Active-Lo Enable

When E=inactive (inactive means 1), Outputs turn off (off means 0)

When E=active (active means 0), Selected outputs turn on (on means 1)

© Mark Redekopp, All rights reserved

Active-Lo Enable

1

1

1

1

1

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

Active-Lo Enable

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

Decoder w/ Multiple Enables

• When a decoder has multiple enables, all

enables must be active for the decoder to be

enabled

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB)

E

/G2

/G1

3 Enables

/G1 must equal 0

/G2 must equal 0

and E must equal 1

Overall

enable

/G1
/G2

E

© Mark Redekopp, All rights reserved

Implementing Logic Functions

• F = ΣMNO(2,3,4,6)

 = m2 + m3 + m4 + m6

• Since decoders are just

minterm generators,

just OR together the

appropriate minterms

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB) F

M

N

O

© Mark Redekopp, All rights reserved

Implementing Logic Functions

• F = ΣMNO(2,3,4,6)

 = m2 + m3 + m4 + m6

• If we have active-low

outputs just invert back

to active-hi

• OR gate becomes

NAND gate

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB) F

1

1

0

1

1

1

1

1

1

0

1

1

Add another level

of bubbles to

cancel the active-

low outputs

OR => NAND

Key: w/ active-lo outputs use NAND gates

© Mark Redekopp, All rights reserved

Decoder/Logic Function Summary

• To produce F…

Active-hi

outputs

Active-lo

outputs

Fewer

minterms in F

Implement F

with OR gate

Implement F

with NAND gate

Fewer

minterms in F’

Implement F’

with NOR gate

Implement F’

with AND gate

© Mark Redekopp, All rights reserved

Building Larger Decoders

• Using the “building-block methodology”, cascade

smaller decoders to build larger ones

• We’ll use stages of decoders

– Start at the last stage (outputs) using as many small

decoders as necessary to make the desired number

(i.e. 2n) of outputs

– Connect enables of one stage to outputs of previous

stage

– All decoders in a stage should decode the same bit(s)

of the input [usually MSB to first stage, LSB to last]

© Mark Redekopp, All rights reserved

Cascading Decoders

• Connect outputs of first stage to enables of next stage

• Usually, MSB’s are connected to the first stage, LSB’s
to the following stages

Stage 1 Stage 2

2-to-4 decoder

D
0

D
1

A

E

D
0

D
1

A

E

D 0

D 1

A

E

Y

D
0

D
1

D 2

D 3

© Mark Redekopp, All rights reserved

Cascading Decoders

• Connect outputs of first stage to enables of next stage

• Usually, MSB’s are connected to the first stage, LSB’s
to the following stages

Stage 1 Stage 2

Overall Enable

2-to-4 decoder

MSB in connects

to 1st stage

4 ouputs
D

0

D
1

A

E

D
0

D
1

A

E

D 0

D 1

A

E

X

Y

Y
E

D
0

D
1

D 2

D 3

© Mark Redekopp, All rights reserved

Cascading Decoders

• To understand how this works think of the

process of elimination

– Given a 2-bit number X,Y (X = MSB)

– If I tell you X=1, what are the possible numbers we

can have…2 or 3

– If I then tell you Y=0, then you know the number is 2

• By decoding one bit at a time we can eliminate

half of the possibilities until we get down to the

actual number

© Mark Redekopp, All rights reserved

Cascading Decoders

E X Y D0 D1 D2 D3

0 x x 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

D
0

D
1

A

E

D
0

D
1

A

E

D 0

D 1

A

E

X=1

Y=0

Y=0
E=1

D
0

D
1

D 2

D 3

Example:

X=1,Y=0

= 0

= 0

= 1

= 0

0

1

w/ X=1 we can narrow it down to

D2 or D3…and you see that the

lower decoder in the second

stage is the one that is enabled

© Mark Redekopp, All rights reserved

Cascading Decoders

E X Y D0 D1 D2 D3

0 x x 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

D
0

D
1

A

E

D
0

D
1

A

E

D 0

D 1

A

E

X=1

Y=0

Y=0
E=1

D
0

D
1

D 2

D 3

Example:

X=1,Y=0

= 0

= 0

= 1

= 0

0

1

The top decoder is disabled so its

outputs are forced to 0

The bottom decoder decodes the Y

bit and outputs its D0 (really D2)

© Mark Redekopp, All rights reserved

Rules for Making Larger Decoders

• Rule 1: Outputs of one stage should

connect to the enables of the next stage

• Rule 2: All decoders in a stages should

decode the same bit(s)

– Usually, the MSB is connected to the first

stage and LSB to the last stage

© Mark Redekopp, All rights reserved

Build a 3-to-8 Decoder

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D

D
A

E

D

D
A

E

D 0

D 1

A

E

D 0

D 1

A

E

A 0

A 1

A 2

D 0

D 1

D 2

D 3

D 4

D 6

D 5

D 7

© Mark Redekopp, All rights reserved

Cascading Decoders

G A2 A1 A0 Active

Output

0 X X X None

1 0 0 0 D0

1 0 0 1 D1

1 0 1 0 D2

1 0 1 1 D3

1 1 0 0 D4

1 1 0 1 D5

1 1 1 0 D6

1 1 1 1 D7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Once a decoder gets

disabled all the

following will be

disabled

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

A 0

A 1

A 2

G

D 0

D 1

D 2

D 3

D 4

D 6

D 5

D 7

A 1

A 1

A 0

A 0

A 0

A 0

A 2

© Mark Redekopp, All rights reserved

Cascading Decoders

G A2 A1 A0 Active

Output

0 X X X None

1 0 0 0 D0

1 0 0 1 D1

1 0 1 0 D2

1 0 1 1 D3

1

1

0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

1

0

1

1

Decode the MSB…possible combos = 4-7

1
0

1

0

0

0

0

0

0

Outputs 0 – 3 are

disable (ruled out)

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

A 0

A 1

A 2

G

D 0

D 1

D 2

D 3

D 4

D 6

D 5

D 7

A 1

A 1

A 0

A 0

A 0

A 0

A 2

© Mark Redekopp, All rights reserved

Cascading Decoders

G A2 A1 A0 Active

Output

0 X X X None

1 0 0 0 D0

1 0 0 1 D1

1 0 1 0 D2

1 0 1 1 D3

1

1
0

0 D4

1 1 D5

1 1 0 D6

1 1 1 D7

1

0

1

1

Decode the A1 …possible combos = 5-6

1
0

1

0

0

0

0

0

0

0

1

0

1

0

0

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

A 0

A 1

A 2

G

D 0

D 1

D 2

D 3

D 4

D 6

D 5

D 7

A 1

A 1

A 0

A 0

A 0

A 0

A 2

© Mark Redekopp, All rights reserved

Cascading Decoders

G A2 A1 A0 Active

Output

0 X X X None

1 0 0 0 D0

1 0 0 1 D1

1 0 1 0 D2

1 0 1 1 D3

1

1
0

0 D4

1 1 D5

1 1 0 D6

1 1 1 D7

1

0

1

1

Decode the LSB…combo = 5

1
0

1

0

0

0

0

0

0

Outputs 0 – 3 are

disabled (ruled out)

0

1

0

1

1
1

0

0

1

1

1
0

0

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

D 0

D 1

A

E

A 0

A 1

A 2

G

D 0

D 1

D 2

D 3

D 4

D 6

D 5

D 7

A 1

A 1

A 0

A 0

A 0

A 0

A 2

© Mark Redekopp, All rights reserved

Build a 3-to-8 Decoder

B

A

E1

/E2

/Y0

/Y1

/Y2

/Y3

B

A

E1

/E2

/Y0

/Y1

/Y2

/Y3

X1

X0

X2

2-to-4

Decoder

2-to-4

Decoder

© Mark Redekopp, All rights reserved

SIMPLE & PRIORITY

ENCODERS

© Mark Redekopp, All rights reserved

Encoders

• Opposite function of decoders

• Takes in 2n inputs and produces an n-bit

number

0

0

0

0

1

0

0

0

0

0

1

One active

input

That number input

gets encoded in

binary

410

Binary

Encoder

I1

I2
Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Encoders

• Assumption: Only one input will be active

at a time

1

0

0

0

0

0

0

0

0

0

0

One active

input

That number input

gets encoded in

binary

010

Binary

Encoder

I1

I2
Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Encoders

• What’s inside an encoder?

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Deriving equations for Y0, Y1, Y2 is made simpler

because of the assumption that only 1 input can be

active at a time. Rather than having 256 rows in our

truth table we only have 8

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Encoders

• What’s inside an encoder?

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Y2 = 1 when I4 = 1 or I5 = 1 or I6 = 1 or I7 = 1…

Y2 = I4 + I5 + I6 + I7

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Encoders

• What’s inside an encoder?

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Y2 = I4 + I5 + I6 + I7

Y1 = I2 + I3 + I6 + I7

Y0 = I1 + I3 + I5 + I7

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Encoders

• A simple binary encoder can be made with

just OR gates

I1
I3
I5
I7

I2
I3
I6
I7

I4
I5
I6
I7

Y0

Y1

Y2

© Mark Redekopp, All rights reserved

Problems

• There is a problem…

– Our assumption is that only 1 input can be

active at a time

– What happens if 2 or more inputs are active

or if 0 inputs are active

© Mark Redekopp, All rights reserved

2 or More Active Inputs

• What if I5 and I2 are

active at the same time?

– Substitute values into

equation

• Output will be ‘111’ = 7

• Output is neither 2 nor 5,

it’s something different,

7

0

0

1

0

0

1

0

0

1

1

1

Y2 = I4 + I5 + I6 + I7

Y1 = I2 + I3 + I6 + I7

Y0 = I1 + I3 + I5 + I7

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

0 Active Inputs

• What if no inputs are active?
– Substitute values into equation

• Output will be ‘000’ = 0

• Problem: ‘000’ means that input 0 was active
– Can’t tell the difference between when ‘000’ means input 0 was

active or no inputs was active

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

© Mark Redekopp, All rights reserved

Priority Encoders

• Fix the 2 problems seen above

• Problem of more than 2 active inputs
– Assign priority to inputs and only encode the highest priority active input

• Problem of zero active inputs
– Create an extra output to indicate if any inputs are active

– We will call this output the “Valid” output (/V)

0

0

1

0

0

1

0

0

0

1

0

1

0

Don’t worry about

this input, just

leave it active

If multiple inputs are

active only the highest

priority active input

(I5) is encoded

Highest

priority

Lowest

priority

Y2

I0

I1

I2

I3

I4

I5

I6

I7

EI

/V

Y0

Y1 Priority
Encoder

/ V = Valid (a.k.a

/EO=Enabled Output)

is active if ANY inputs

are active

© Mark Redekopp, All rights reserved

Priority Encoders

• Fix the 2 problems seen above

• Problem of more than 2 active inputs
– Assign priority to inputs and only encode the highest priority active

input

• Problem of zero active inputs
– Create an extra output to indicate if any inputs are active

0

0

0

0

0

0

0

0

0

0

0

0

1

Highest

priority

Lowest

priority

No inputs are active
Output is still 000 but

/V tells us that this is

not because I0 was

active

Y2

I0

I1

I2

I3

I4

I5

I6

I7

EI

/V

Y0

Y1 Priority
Encoder

/ V = Valid (a.k.a

/EO=Enabled Output)

is inactive if no inputs

are active

© Mark Redekopp, All rights reserved

Encoder Application: Interrupts

• I/O Devices in a computer need to request attention from the
CPU…they need to “interrupt” the processor

• CPU cannot have a dedicated line to each I/O device (too many
inputs and outputs) plus it can only service one device at a time

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTR INTR

© Mark Redekopp, All rights reserved

Encoder Application: Interrupts

• Solution: Priority Encoder

• /INT input of CPU indicates SOME device is requesting
attention

• INT_ID inputs identify who is requesting attention

Y2

I0
I1
I2
I3
I4
I5
I6
I7

EI
/V

Y0

Y1 Priority
Encoder

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTR INTR

/INT

INT_ID

0

0

0

0

0

© Mark Redekopp, All rights reserved

Encoder Application: Interrupts

• Example: Sound and Network request interrupt at the
same time

• Network is highest priority and is encoded

• After network is handled, sound will cause interrupt

Y2

I0
I1
I2
I3
I4
I5
I6
I7

EI
/V

Y0

Y1 Priority
Encoder

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTR INTR

/INT

INT_ID

1

1
0

0

0
0
0

0

0 0

0

1

1

3

=

© Mark Redekopp, All rights reserved

Multiplexers

• Along with adders, multiplexers are most used building
block

• 2n data inputs, n select bits, 1 output

• A multiplexer (“mux” for short) selects one data input and
passes it to the output

4-to-1 Mux

2n data inputs

n select bits

1 output

D
0

D
1

D
2

D
3 S

1

S
0

Y

© Mark Redekopp, All rights reserved

Multiplexers

1 0

0

1

1

0

1

(D2)
Thus, D2 is selected

and passed to the

output

Select bits = 102 = 210.
1

2

D 0

D 1

D 2

D 3 S 1

S 0

Y

© Mark Redekopp, All rights reserved

Multiplexers

1 0

0

1

0

0

0

D2 is being selected and passed.

So if it changes the output

changes as well.

(D2)

D 0

D 1

D 2

D 3 S 1

S 0

Y

© Mark Redekopp, All rights reserved

Multiplexers

0 0

Thus, D0 is selected

and passed to the

output

Select bits = 002 = 010.
1

2

0

1

0

0

0

(D0)

D 0

D 1

D 2

D 3 S 1

S 0

Y

© Mark Redekopp, All rights reserved

Building a Mux

• To build a mux
– Decode the select bits and include the corresponding

data input.

– Finally OR all the first level outputs together.

S1S0 = 01

1

0

1

0

1

0

1

0

I
0

I 1

I 2

I 3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

I1

0

0

0

I1

I1

1

1

© Mark Redekopp, All rights reserved

Building a Mux

• To build a mux
– Decode the select bits and include the corresponding

data input.

– Finally OR all the first level outputs together.

S1S0 = 11

1

1

1

1

1

1

1

1

I
0

I 1

I 2

I 3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

0

0

0

I3

I3

I3

1

1

© Mark Redekopp, All rights reserved

Adding Enables to Muxes

• When Enable = inactive, Y = inactive

• When Enable = active, normal mux

1 0

/E = inactive forces

output to 0

0

1

1 0

/E = active allows

normal mux function

I2

0

I2

I1

I0

I3

D
0

D
1

D
2

D
3

S
1

S
0

Y

/E

D
0

D
1

D
2

D
3

S
1

S
0

Y

/E

© Mark Redekopp, All rights reserved

Adding Enables to Muxes

I 0

I 1

I 2

I 3

S
1

S
0

Y

S
1

S
0

S
1

S
0

S
1

S
0

/E 1 0

0

0

0

0

0

0

0

0

© Mark Redekopp, All rights reserved

Building Wide Muxes

• So far muxes only have

single bit inputs…

– I0 is only 1-bit

– I1 is only 1-bit

• What if we still want to

select between 2 inputs

but now each input is a

4-bit number

• Use a 4-bit wide 2-to-1

mux I1

I0

S

Y

I0

I1

Y

S

Pass all 4 bits

of I0 or I1

When we select I0

or I1 we want all

4-bits of that

input to be

passed

1-bit wide 2-to-1

mux

4-bit wide 2-to-1

mux

A

B

© Mark Redekopp, All rights reserved

Building Wide Muxes

• To build a 4-bit wide 2-to-1
mux, use 4 separate 2-to-1
muxes

• When S=0, all muxes pass
their I0 inputs which means
all the A bits get through

• When S=1, all muxes pass
their I1 inputs which means
all the B bits get through

• In general, to build an m-bit
wide n-to-1 mux, use m
individual (separate) n-to-
1 muxes

I 1

Y

S

I 0

I 1

Y

S

I 0

I 1

Y

S

I 0

I 1

Y

S

I 0

B0

A0

A1

A2

A3

B1

B2

B3

S

Y0

Y1

Y2

Y3

A0

B0

A1

B1

A2

B2

A3

B3

