USC Viterbi

School of Engineering

Introduction to Digital Logic

Lecture 11:
Cascading Decoders
Implementing Functions w/ Decoders
Encoders & Priority Encoders

© Redekopp, All rights reserved

USC Viterbi

School of Engineering

Building Larger Functions/Circuits

« Scalability issues
— K-Maps: Up to 6 inputs
— Decoders: 6-8 inputs
« But larger decoders can be built from smaller ones

— Multiplexers: Can be decomposed to multiple levels
« Use Shannon’s Theorem

— Memories: 12-13 inputs (4K — 8K rows)
« Building Block Methodology
— Decompose circuits into smaller units

— Design the smaller units using any of the above methods

— Use those smaller circuits as building blocks to construct
arbitrarily large functions/circuits

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Combinational Building Blocks

 Fundamental blocks that other
combinational structures can be built from
— Decoders
— Encoders
— Multiplexers
— Demultiplexers
— Adders (Multipliers)
— Comparators
— Shifters

USC Viterbi

School of Engineering

Decoders

« A decoder is a building block that:
— Takes in an n-bit binary number as input

— Decodes that binary number and activates the corresponding
output

— Individual outputs for EVERY input combination (i.e. 2" outputs)

3-t0-8 Decoder

DO [—

D1 |—

3-bit binary | % ®® Ez: 1 output for each
number — Y L combination of the

—{ x vsB) Input number
D5 |—
D6 |—

D7 |—

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Enables

« Exactly one output is active at all times
« It may be undesirable to always have an active output

« Add an extra input (called an enable) that can
Independently force all the outputs to their inactive values

Do — O) DO
177 o1 - 1 | One output -1’ o1 L
D3 — O D3 |~
J ?\
2-to-4 Decoder Enable N

Will force all outputs
toOwhenE=0
(i.e. not enabled)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Enables

.
- po — O
1Y .
When E=0,) b1 - O , Since E=0,
Inputs is 01y p2 - O [all outputs =0
ignored (™ D3 |- 0
E J
O]
Enable
. A
WhenE=1, (, _1, oo~ O
inputs will cause the D1 = 1 , Since E=1,
appropriate output to 01y p2 — O [outputs will
go active ps |— 0 | function normally
J
1 T
Enable

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Implementing Enables

* Original 2-to-4 decoder

r|>o_x 3_ DO

- !) o1
[P = o
=) o

E —
When E=0, force all outputs =0
When E=1, outputs operate as they did originally

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Enables

« Enables can be implemented by connecting it
to each AND gate of the decoder

A’ A B’ B

DO

D1

D2

D3

sfslsls

When E=0, 0 AND anything =0

When E=1, 1 AND anything = that anything, which was the normal
decoding logic

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Active-hi vs. Active-low

o Active-hi convention
— 1 = on/true/active
— 0 = off/false/inactive

e Active-low convention
— 0 = on/true/active
— 1 = off/false/inactive

« To convert between conventions
— INVERTH!

© Redekopp, All rights reserved

USC Viterbi

School of Engineering

Why Active-low

« Some digital circuits are better at “sinking”
(draining/sucking) electric current than
“sourcing” (producing) current

USC Viterbi

School of Engineering

r|}0_1 ; o1
L;E ! 1 __:)0_1
s mmny b

' '-—}1

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

LSB

>
r{>c :

Y Yy Y

M5B
L
L —
E

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Active-Lo Enable

LSB

B
M5B

14|>c

When E=inactive (inactive means 1), Outputs turn off (off means 0)

W_DO_‘I' o
1—|>t.

When E=active (active means 0), Selected outputs turn on (on means 1)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

\ T
LSB i - ._:)_
; L FE-
MSB | | ._D—

—>

When E=inactive (inactive means 1), Outputs turn off (off means 0)

When E=active (active means 0), Selected outputs turn on (on means 1)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Active-Lo Enable

LSB 1 __:)0_ 1
' I '_} .
[T -——))_ 1

B
M5B

>

When E=inactive (inactive means 1), Outputs turn off (off means 1)

>
l—{>c.

When E=active (active means 0), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

: "
LSB — = o
a D
MSB [L,

— >

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Decoder w/ Multiple Enables

 When a decoder has multiple enables, all
enables must be active for the decoder to be

enabled
DO [—
D1 |—
—] z (LSB) b2I—
D3 |—
—v
1/ :
3 Enables —=%WMSB) = E
/Gl mustequal 0 ;_djg1 e DS — L __. overall |
/G2 must equal O i___—C/Gz D6 |— /Gé :8)‘enab|e
and E mustequall *— E / o7l ¢

.....
--

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Implementing Logic Functions

« F=2,,,0(2,3,4,6)
« Since decoders are just

minterm generators, 0 — z (sB) Dz%i
D3
Y

just OR together the N — Ny
appropriate minterms s
D6

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Implementing Logic Functions

* F — ZMNO(2,3,4,6)

“m,+m,+m,+m e
2 3 4 6 1
1 ¢“-...'0

 If we have active-low
outputs just invert back [0\ ztse

to active-hi LMY o
 OR gate becomes B e
NAND gate 6 3

D7 O+

Add another level
of bubbles to
cancel the active-
low outputs

Key: w/ active-lo outputs use NAND gates

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Decoder/Logic Function Summary

 To produce F...

Active-hi Active-lo
outputs outputs
Fewer Implement F Implement F

minterms in F | with OR gate | with NAND gate

Fewer | Implement F’ Implement F’
minterms in F’ | with NOR gate | with AND gate

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Building Larger Decoders

« Using the “building-block methodology”, cascade
smaller decoders to build larger ones

« We'll use stages of decoders

— Start at the last stage (outputs) using as many small
decoders as necessary to make the desired number
(i.e. 2") of outputs

— Connect enables of one stage to outputs of previous
stage

— All decoders in a stage should decode the same bit(s)
of the input [usually MSB to first stage, LSB to last]

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

« Connect outputs of first stage to enables of next stage

« Usually, MSB'’s are connected to the first stage, LSB'’s
to the following stages

Stage 1 Stage 2

D, [T D

—HA
E Dl_-Dl

D~
HA

£ Dl— DO—-D2

Y A
E D,[1Ds

2-t0-4 decoder

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

« Connect outputs of first stage to enables of next stage

« Usually, MSB'’s are connected to the first stage, LSB'’s
to the following stages

Stage 1 Stage 2
1~)
D,[TDo
YA
E Dl_-Dl
MSB in connects D | > 4 ouputs
to 1ststage 0
X 7 A
£ D, M DO—-D2
Y HA
E L
Overall Enable — e Pai7Pbs

2-t0-4 decoder

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

* To understand how this works think of the
process of elimination
— Given a 2-bit number X,Y (X = MSB)

— If | tell you X=1, what are the possible numbers we
can have...2 or 3

— If I then tell you Y=0, then you know the number is 2
* By decoding one bit at a time we can eliminate

half of the possibilities until we get down to the
actual number

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

Example:
X=1,Y=0

w/ X=1 we can narrow it down to
D, or D;...and you see that the
lower decoder in the second
stage is the one that is enabled

DO—DO=
Y=0 4 A
E| X |Y|Do|D1|D2|D3 = DyD,=0
0 X X 0 0 0 0
0
1/10|l0]l1]l0]|0]oO0 D, '
110l 1lo|l1]o0o]|o0]| X1A
MNu D [D,=1
1|1]o0lolol1]o0 = 1 of 2
Y=0 4 A
1l1(12]lofo|o|1]| B g DiDs=0

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

Example:
X=1,Y=0

The top decoder is disabled so its
outputs are forced to O

The bottom decoder decodes the Y

bit and outputs its D, (really D)
Do[~D =
0 0
Y=0 — A
E| X |Y|D0o|D1|D2|D3 = DiD,=0
0 X X 0 0 0 0
0
1/lo0lol1lolo]o D, |
110l 1lo|l1]o0o]|o0]| X1A
D. —D.=1
1l1]loflolol1]o E 1 Dol 2
Y=0 4 A
1|1|1f|ofjoflo|1] B g D D:=0

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Rules for Making Larger Decoders

* Rule 1: Outputs of one stage should
connect to the enables of the next stage

* Rule 2: All decoders in a stages should
decode the same bit(s)

— Usually, the MSB is connected to the first
stage and LSB to the last stage

USC Viterbi

& > |

D,

Dy

Dy
D
D D
D,
D
D .
D,
DO [
D, | Ds
Ds
D,
D, D

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

& > |

Once a decoder gets
disabled all the

D,

D,

D,

following will be o
disabled 0
A 0
E Dy
AY)—
0
A— A i 0 ——
E P
1
Ab_
0
Do
A—1A 0
E D
I %—

© Mark Redekopp, All rights reserved

)

&

>

P

RlRr|lRPr|RPr|RPR[R|R|R|O

R|lRr|R|IRP|O|O|lO|O|X

R lRr|O|O|lFR|IFR|O|O| X

R |O|lRrR|O|lR|O|FRL|O|X

USC Viterbi

School of Engineering

Cascading Decoders

Decode the MSB...possible combos = 4-7

1A tputs 0 — 3 0L >
utputs U — o are D .
A o
0 =4— disable (ruled out) A=A ollo | © | Az | A | Ao | Active
Al 0 E D Output
|
. %0 0| X | X | X | None
e > ole 1 To oo D
B A— A Do ol| o 0
. 50 Y 10|01 D,
A A o= — 110]1]0 D,
E ! D,
— 7 1 D, 110]1]1 D,
A—A D,
c - 1 0|0 D,
G
L ala P 1 0|1 Dy
_ D D, 1
| D, 1 1|0 D,
A—1A D,
e D 1 1|1 D,
|

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

Decode the A, ...possible combos = 5-6

1 A_O_ 0 D,
oAl a—]n Tollo | G 1A | AL | A | Active
Al 0 E D Output
|
. %0 ; 0| X | X | X | None
e *1]0]|0|0| D
1 A— A Do O D, 0
. 50 e D 1/0]|0]1 D,
A A = — 110|110 D,
E ¢ D,
T 1 als Dy 11011 D,
_ N
D,
= 0 D L 'E - 0 . =
- Dy 11 1|0 Dy
A— A O|| o,
1 e D 1 1|1 D,
|

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Cascading Decoders

Decode the LSB...combo =5

1
o 0l| D
utputs 0 — 3 are D :
Ay 1 o
0 =— disabled (ruled out) A=A ollo. | © | A2 | A | Ao | Active
Al 0 E D Output
|
AlgA %0 0| X | X | X None
e ol 1 Tolo] o D
1 Abl— A Do O D, 0
. 50 = D 110011 D,
A A e — 110|110 D,
E ! D,
—— 7 1 1 Dy 110|111 D,
A—A Ds
1 e D 1 0 D,
1 - 0 Do ' 1 0 1 D
A—1A 5 0 0 5 1 5
- Dy] 1 110 D
A A 0[] b,
1 e D 1 1|1 D,
|

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Build a 3-t0-8 Decoder

/YO—
1B
] 2-to-4 Y 1l—
Decoder
—1/E2
X0 _ Y3
X1 —
| /YO
X2 — B
] 2-to-4 /Yl—
Decoder
/B2 /Y3

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

SIMPLE & PRIORITY
ENCODERS

USC Viterbi

School of Engineering

Encoders

* Opposite function of decoders
« Takes in 2" inputs and produces an n-bit

number

0 — 10

0 —I1

0 — 12

One active 0 —13

input 1 —14

0o — 15

0 —16

0 — 17

YO

Binary
Encoder vy1

Y2

© Mark Redekopp, All rights reserved

That number input
gets encoded in
binary

USC Viterbi

School of Engineering

Encoders

* Assumption: Only one input will be active

at a time
1 —10
0 — 11
0 — 12 YO—0
One active 0 — 13 Eilcrzlsgl)(/ar That number input
input 0 —4 14 Y1— 0 gets encoded in
0 — 15 binary
0o —|16 Y2— 0
0O —I7 Oy

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoders

« \What’s inside an encoder?

o [b [t] {0 [g [1 Y, | Y| Y,
1/o0lo|lolo|o|o]|oflo|lo]|oO —10
ol1]lololo]ofololo]o]1] 1 YOl—
ojoj1j0f{o0jo0jo0ojo0ojof{1¢{o0 L ::2,) Binary
olo|lo|l1|lo]lo|o|o|lOo|1]1 _ |4 Encoder yi—
o|lololo|1]o|lo]|ofl1]lo]oO s
olo|lojojo|l1|lo]|o]|1]0]21 —1i6 Y2r—
olo|lojlojolo|l1]|o]|1]1]0 —17
olo|lojlojolo|lo|1]|1]1]1

Deriving equations for Yy, Y,, Y, is made simpler
because of the assumption that only 1 input can be
active at a time. Rather than having 256 rows in our

truth table we only have 8

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoders

« \What’s inside an encoder?

o [b [t] {0 [g [1 Y, | Y| Y,
1/o0lo|lolo|o|o]|oflo|lo]|oO —10
ol1]lololo]ofololo]o]1] 1 YOl—
ojoj1j0f{o0jo0jo0ojo0ojof{1¢{o0 L ::2,) Binary
olo|lo|l1|lo]lo|o|o|lOo|1]1 _ |4 Encoder yi—
o|lololo|1]olo]|ofl1]lo]oO s
ololojojo|l1|lo]|o]|1]0]1 —li6 Y2r—
o|lojlolo|ofo|l1]|oflrl1]oO —17
o|lojlolo|ofo|lo|1|l1|1]1

Y,=1lwhenl,=1orlg=21orlg=21orl,=1...

Y,=14+I15+16 + 17

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoders

« \What’s inside an encoder?

o [b [t] {0 [g [1 Y, | Y| Y,
1/o0lo|lolo|o|o]|oflo|lo]|oO —10
ol1]lololo]ofololo]o]1] 1 YOl—
ojoj1j0f{o0jo0jo0ojo0ojof{1¢{o0 L ::2,) Binary
olo|lo|l1|lo]lo|o|o|lOo|1]1 _ |4 Encoder yi—
o|lololo|1]o|lo]|ofl1]lo]oO s
olo|lojojo|l1|lo]|o]|1]0]21 —1i6 Y2r—
olo|lojlojolo|l1]|o]|1]1]0 —17
olo|lojlojolo|lo|1]|1]1]1

Y,=14+15+16 + 17

Y, =12+13+16+17

Yo=11+13+15+17

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoders

* A simple binary encoder can be made with
just OR gates

1
3
17
12

16
|7

14
15 Y2
|16

I'7

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Problems

* There is a problem...

— Our assumption is that only 1 input can be
active at a time

— What happens if 2 or more inputs are active
or if O inputs are active

© Mark Redekopp, All rights reserved

USC ’d’lterbl

School of Engineering

2 or More Active Inputs

« Whatif I5 and |12 are
active at the same time?

— Substitute values into
equation

* Output will be 111" =7

« Qutput Is neither 2 nor 5,

it's something different,
7

10

11 1

|3 Binary
" Encoder y1}— 1

15

I'7

Y,=14+I5+16 + 17
Y =12+I13+16+17
Yo=11+13+I5+17

USC Viterbi

School of Engineering

O Active Inputs

« What if no inputs are active?
— Substitute values into equation

* Qutput will be ‘000" =0
* Problem: ‘000" means that input O was active

— Can't tell the difference between when ‘000’ means input O was
active or no inputs was active

0 —0 L —o

0 —n S O —n S
0 —2 YO O % 0 —p Yo— 0 %
0 —|;3 Binary : 0 —13 Binary :
0 4 Encoder yi|—+- 0 0 — {1 Encoder y1—=- 0

0 —I5 0 —I5
0o —16 Yo 0 0o —16 Yo 0
0 —17 ' 0 —17 '

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Priority Encoders

* Fix the 2 problems seen above
* Problem of more than 2 active inputs

— Assign priority to inputs and only encode the highest priority active input
* Problem of zero active inputs

— Create an extra output to indicate if any inputs are active

— We will call this output the “Valid” output (/V)

0 —lo
0 —n S
If multiple inputs are 1 — 2 Yo— 1%
active only the highest 0 — 13 :
priority active input 0 — 14 Priority Y1+ O i
(15) is encoded 1 — 15 Encoder :
0 —16 v2i— 17
0 17 . - 5
| R N — /V=Valid (aka
Domtworryabout %0 " Bl /[EO=Enabled Output)
this Input, just is active if ANY inputs
leave it active are active

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Priority Encoders

» Fix the 2 problems seen above

* Problem of more than 2 active inputs
— Assign priority to inputs and only encode the highest priority active
Input
* Problem of zero active inputs
— Create an extra output to indicate if any inputs are active

0 —o
0 —n S
_ _ 0 —12 vo—~ 0% Output is still 000 but
No Inputs are active 0 —13 : IV tells us that this is
0 — 14 Priority Y1+ O : not because 10 was
0o —115 Encoder : active
0 —116 v2i— 0
0 17 N * ;
g N “——_ /V=Valid(aka
____________ El. /EO=Enabled Output)
IS inactive if no inputs
are active

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoder Application: Interrupts

» |/O Devices in a computer need to request attention from the
CPU...they need to “interrupt” the processor

« CPU cannot have a dedicated line to each I/O device (too many
Inputs and outputs) plus it can only service one device at a time

Sound USB
Ctrl.
Processor
INTR INTR
‘ (CPU)

INTR INTR
Network Key-
Card board

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoder Application: Interrupts

« Solution: Priority Encoder

« /INT input of CPU indicates SOME device is requesting
attention

« INT_ID inputs identify who is requesting attention

Sound USB
Ctrl.
Processor
INTR INTR
0 — 0 (CPU)
12 YO
S|l By, va }
INTR INTR 0 —li6 Y2
0 n/ o—— /INT
Network Key- 0 qEI
Card board

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Encoder Application: Interrupts

- Example: Sound and Network request interrupt at the
same time

* Network is highest priority and is encoded
« After network is handled, sound will cause interrupt

Sound USB
Ctrl.
3
Processor
INTR INTR I
0 0 —lo (CPU)
1 11 1
12 YO
1 13 Priority ! INT ID
0 0 — :‘5" Encoder Y1 0 -
INTR 0 16 Y2
0 =17
N o——q /INT
Key- 0 9El 0
board

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Multiplexers

. ﬁllonlg with adders, multiplexers are most used building
oC

« 2" data inputs, n select bits, 1 output

« A multiplexer ("mux” for short) selects one data input and
passes it to the output

4-t0-1 Mux

2" data inputs { YI— 1 output

n select bits

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

0 —DO\
1 D,
Y 1
@Thus, D2 is selected 1 — Dz/' (D)
and passed to the 2
Output 0 — D, s, S,
10
@

Select bits = 10, = 2.

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Multiplexers

(D2)

D2 is being selected and passed.
So if it changes the output
changes as well.

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

® Y 0

Thus, DO is selected g —{p, (D)
and passed to the 0
Output 0 —bpD

00
@

Select bits = 00, = 04.

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Building a Mux

 To build a mux

— Decode the select bits and include the corresponding
data input.

— Finally OR all the first level outputs together.
£ \

o
o
NN

0
D
1
S]_SO - Ol O Sl
D

/c I
bY

|
2150 /Q

0SS
5 S \ ©

1

H—)

© Mark Redekopp, All rights reserved

USC Viterbi

School of Engineering

Building a Mux

 To build a mux

— Decode the select bits and include the corresponding
data input.

— Finally OR all the first level outputs together.

0 1S, /‘a_/
1S

\ O
TS DL

S,S, = 11 .S —
D

5 IR

3
1S 1
180_/_4—/

© Mark Redekopp, All rights reserved

USC \flterbl

School of Engine

Addlng Enables to Muxes

« When Enable = inactive, Y = Inactive
 When Enable = active, normal mux

_N lo —N
— D, i —p,
— D, 2 — b,
— D l; — D
3 s 3 s
S, 2 s >0
1—E ‘ 0 —E ‘
10 10
/E = inactive forces /E = active allows

output to 0 normal mux function
© Mark Redekopp, All rights

USC Viterbi

School of Engineering

lo

I1

P

I3

©SLOO

Ol LO

-]

g H) U

Y

0

USC Viterbi

School of Engineering

Building Wide Muxes

« So far muxes only have
single bit inputs...
— Iy is only 1-bit
— 1, is only 1-bit

« What if we still want to
select between 2 inputs
but now each input is a
4-bit number

« Use a 4-bit wide 2-to-1
Mmux

© Mark Redekopp, All rights reserved

—lL s

1-bit wide 2-to-1

w

mux
e — o
Pass all 4 bits <_.__., ° —
ofljorl, X ™. Y|
e P

4-bit wide 2-to-1
mux

When we select |,
or I, we want all
4-bits of that
input to be
passed

USC Viterbi

School of Engineering

e To build a 4-bit wide 2-to-1
mux, use 4 separate 2-to-1
muxes

« When S=0, all muxes pass
their 1, inputs which means
all the A bits get through

 When S=1, all muxes pass
their 1, inputs which means
all the B bits get through

* In general, to build an m-bit
wide n-to-1 mux, use m
Individual (separate) n-to-
1 muxes

© Mark Redekopp, All rights reserved

AO —

Al —

A2 —

A3 —

— YO

Y1

— Y2

— Y3

