Unit 1

Integer Representation

Skills & Outcomes

* You should know and be able to apply the
following skills with confidence

— Convert an unsigned binary number to and from
decimal

— Understand the finite number of combinations
that can be made with n bits

— Convert a signed (2's complement system) binary
number to and from decimal

— Convert bit sequences to and from hexadecimal
— Predict the outcome & perform casting operations

DIGITAL REPRESENTATION

Information Representation

* All information in a computer system is represented as
bits
— Bit = (Binary digit) =0or 1

* Asingle bit is can only represent 2 values so to

represent a wider variety of options we use a
sequence of bits (e.g. 11001010)

— Commonly sequences are 8-bits (aka a "byte"), 16-, 32- or
64-bits

e Kinds of information

— Numbers, text, code/instructions, sound, images/videos

Interpreting Binary Strings

* Given a sequence of 1’s and O’s, you need to know the
representation system being used, before you can
understand the value of those 1’s and O’s.

* Information (value) = Bits + Context (System)

01000001 =17
Unsigned
Binary system A~) ASCII
(O)= x86 Assembly system
Instruction @
1 \
65 decimal L ‘A nsc
inc %ecx

(Add 1 to the ecx register)

e USCViterbi

School of Engineering

Binary Representation Systems

* Integer Systems * Codes
— Unsigned — Text
« Unsigned (Normal) binary * ASCIl / Unicode
— Signed — Decimal Codes
 Signed Magnitude BCD (Binary Coded Decimal)
« 2’s complement / (8421 Code)

* Excess-N*
* 1’scomplement*

* Floating Point

— For very large and small
(fractional) numbers

* = Not covered in this class

— ()5 Viterbf "
Data Representation

e |n C/C++ variables can be of different types and sizes
— Integer Types on 32-bit (64 bit) architectures

char unsigned char byte
short unsigned short 2 16 word
int/int32_tt unsigned / uint32_t t 4 32 double word
long unsigned long 4 (8) 32 (64) double (quad) word
long long /int64 t*+ unsigned long long / uint64 t + 8 64 quad word
char* - 4 (8) 32 (64) double (quad) word
int* - 4 (8) 32 (64) double (quad) word

T = defined in stdint.h

— Floating Point Types

float single

double 8 64 double

OVERVIEW

Using power-of-2 place values

UNSIGNED BINARY TO DECIMAL

Number Systems

* Unsigned binary follows the rules of positional number systems
* A positional number systems consist of

1. A base (radix) r

2. r coefficients [0 to r-1]

e Humans: Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9
e Computers: Binary (Base 2): 0,1

 Human systems for working with computer systems (shorthand
for human to read/write binary)

— Octal (Base 8):0,1,2,3,4,5,6,7
— Hexadecimal (Base 16): 0-9,A,B,C,D,E,F (athruF =10 thru 15)

e USCViterbi@

School of Engineering

Anatomy of a Decimal Number

* A number consists of a string of explicit coefficients (digits).

* Each coefficient has an implicit place value which is a power
of the base.

* The value of a decimal number (a string of decimal
coefficients) is the sum of each coefficient times it place value

radix
(base)

(934%0 = 9%102 + 3*10" + 4*10° = 934
T

1 L1

I
Implicit place values

I
Explicit coefficients

(3.52),, = 3*¥100 + 5*10'1 + 2*102 = 3.52

Anatomy of an Unsigned Binary Number

e Same as decimal but now the coefficients
are 1 and 0 and the place values are the

powers of 2
Most Significant Least Significant
Digit (MSB) Bit (LSB)
(1011), = 1*23 + Q*22 + 1*21 + 1*20
radix T T T |
(base) |

place values

coefficients = powers of 2

S USC}@F?EIbl@
Binary Examples

(10110001), = 128 + 32 + 16 + 1 = 177,

128 3216 1

e USCViterbi

School of Engineering

General Conversion From Unsigned Base r

to Decimal

 An unsigned number in base r has place
values/weights that are the powers of the base

* Denote the coefficients as: a,

(aa,a,85.248,), = a*r3+a,*r’+a,*ri+a,*r'+a*ri+a,*r?

Left-most digit = Right-most digit =
Most Significant Least Significant
Digit (MSD) Digit (LSD)

N, => Z;(a*r') => Dy,

Number in baser Decimal Equivalent

- USCViterbi@
Examples

(746), = 7*8% + 4*81 + 6*8°
= 448 + 32 + 16 = 486,

(1A5),. = 1¥162 + 10*16% + 5*16°
=256 + 160 + 5 =421,

(AD2), = 10%¥162 + 13*16% + 2*16°
= 2560 + 208 + 2 = (2770),,

"Making change"

UNSIGNED DECIMAL TO BINARY

Decimal to Unsigned Binaryc

 To convert a decimal number, x, to binary:

— Only coefficients of 1 or 0. So simply find place values
that add up to the desired values, starting with larger
place values and proceeding to smaller values and place
a 1in those place values and O in all others

25, = 0 1 1 0 0 1
32 16 8 4 2 1

For 25;, the place value 32 is too large to include so we include
16. Including 16 means we have to make 9 left over. Include 8
and 1.

Decimal to Unsigned Binary

73,2 010 01 00 1

128 64 32 16 8 4 2 1

87, 010 10 1 1 1

145,= 1 00 1 0 0 0 1

06255,= 1 0 1 0 O

S .25 125 .0625 .03125

Decimal to Another Base

e To convert a decimal number, x, to base r:

— Use the place values of base r (powers of r). Starting
with largest place values, fill in coefficients that sum up
to desired decimal value without going over.

75,= 0 4 B hex
256 16 1

The 2" rule

UNIQUE COMBINATIONS

- USCViterbi@
Powers of 2

20=1
21=2
22=4
23=8
24=16
2> =32
2° =64
27 = 128 1024 512 256 128 64 32 16 8 4 2 1
28 =256
29=512
210=1024

Unigue Combinations

* Given n digits of base r, how many unique numbers
can be formed? r"

— What is the range? [0 to r"-1]

100 combinations:

2-digit, decimal numbers (r=10, n=2) 00-99
0-9 0-9
3-digit, decimal numbers (r=10, n=3) 1000 CSJSF’;SS“"”S:
_hit hi — — 16 binations:
4-bit, binary numbers (r=2, n=4) polieiic

0-1 0-1 0-1 0-1

; . 64 combinations:
6-bit, binary numbers 000000-111111

(r=2, n=6)

Main Point: Given n digits of base r, r uniqgue numbers can
be made with the range [0 - (r"-1)]

e USCViterbi@

Range of C Data Types

* For a given integer data type we can find its range by raising 2
to the n, 2" (where n = number of bits of the type)

— For signed representations we break the range in half with half
negative and half positive (0 is considered a positive number by
common integer convention)

[unsigned] char 0 to 255 -128 to +127
2 16 [unsigned] short 0 to 65535 -32768 to +32767
4 32 [unsigned] int 0 to 4,294,967,295 -2,147,483,648 to
+2,147,483,648
8 8 [unsigned] long long 0to 18,446,744,073,709,551,615 -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
4 (8) 32 (64) char* 0 to 18,446,744,073,709,551,615

* How will | ever remember those ranges?
— | wish | had an easy way to approximate those large numbers!

e USCViterbi

School of Engineering

Approximating Large Powers of 2

Often need to find decimal

approximation of a large powers of 2
like 216, 232 etc.

Use following approximations:

— 219=103(1 thousand) = 1 Kilo-

— 2%0=10%(1 million) = 1 Mega-

— 230=10°(1 billion) = 1 Giga-

— 2%0=10%%(1 trillion) = 1 Tera-

For other powers of 2, decompose
into product of 21%0r 22° or 23% and a
power of 2 that is less than 210

— 16-bit word: 64K numbers

— 32-bit dword: 4G numbers

— 64-bit qword: 16 million trillion numbers

216 = 26 x 210
=~ 64 * 103 = 64,000

224 = 24 x 220
=16 * 10°= 16,000,000

228 — 28 * 920
= 256 * 106 = 256,000,000

232 = 22 % 930
=4 *10°= 4,000,000,000

CONVERTING SIGNED NUMBERS TO
DECIMAL

Signed numbers

e Systems used to represent
signed numbers split the
possible binary combinations
in half (half for positive
numbers / half for negative
numbers)

* Generally, positive and
negative numbers are
separated using the MSB

— MSB=1 means negative

— MSB=0 means positive

2’s Complement System

* Normal binary place values except MSB has negative
weight
— MSB of 1 =-2n1

Bit Bit Bit Bit

4-bit oo 0
Unsigned ﬁ> Oto 15
8 4 2 1
Bit Bit Bit Bit
4-bit 3 2 1 0
2’s complement ﬁ> -8 10 +7
-8 4 2 1

Bit Bit Bit Bit Bit Bit Bit Bit
8_b|t 7 6 5 4 3 2 1 0

2’s complement -128 to +127

-128 64 32 16 8 4 2 1

e USCViterbi

School of Engineering

2’s Complement Examples

|—\
o
N[
|—\
I
1
)

4-bit
2’s complement

o
o
=
=
I
+
w

Notice that +3 in 2’s
comp. is the same as
in the unsigned system

oo
N
N
[

o |

&

N

=
I
1

1 0 o0 O o0 O O 1 =-127

8-bit 128 64 32 16 8 4 2 1

2’scomplement o o0 0 1 1 0 0 1 =425

-128 64 32 16 8 4 2 1

Important: Positive numbers have the same representation in 2’s complement
as in normal unsigned binary

2’s Complement Range

e Given n bits...

— Max positive value = 011...11
* Includes all n-1 positive place values

— Max negative value = 100...00
* Includes only the negative MSB place value

Range with n-bits of 2’s complement
-2"™1to +2n1-1]

— Side note — What decimal value is 111...117

* -1y

e USCViterbi

School of Engineering

Unsigned and Signed Variables

* In C, unsigned variables use unsigned binary (normal
power-of-2 place values) to represent numbers

1 0 0 1 0 0 1 1 = +147
128 64 32 16 38 4 2 1

* InC, signed variables use the 2's complement system
(Neg. MSB weight) to represent numbers

1 0 0 1 0 0 1 1 =-109
-128 64 32 16 8 4 2 1

IMPORTANT NOTE

* All computer systems use the 2's complement
system to represent signhed integers!

* So from now on, if we say an integer is signed,
we are actually saying it uses the
2's complement system unless otherwise
specified

— Other systems like "signed magnitude" or
"1's complement” exist but will not be used for
Integers

Zero and Sign Extension

e Extension is the process of increasing the number of bits used
to represent a number without changing its value

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

| Increase a 6-bit number to 8-bit
number by zero extending

2’s complement = Sign Extension (Replicate sign bit):

pos. 011010 = 00011010

Sign bit is just repeated as
many times as necessary

neg. 110011 = 11110011

Zero and Sign Truncation

* Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

Unsigned = Zero Truncation (Remove leading 0’s):

Decrease an 8-bit number to 6-bit

DC{]_]_]_O]_]_ = 111011 number by truncating 0’s. Can't

remove a ‘1’ because value is changed

2’s complement = Sign Truncation (Remove copies of sign bit):

pos. ©0011010 = 011010

Any copies of the MSB can be
removed without changing the

_ numbers value. Be careful not to
neg' mlooll - 10011 change the sign by cutting off

ALL the sign bits.

Shortcuts for Converting Binary to Hexadecimal

SHORTHAND FOR BINARY

e — 5 Viterbi(-2
Binary and Hexadecimal

* Hex is base 16 which is 24
* 1 Hexdigit (?), can represent: O-F (0-15),,

* 4 bits of binary (? ? ? ?), can represent:
0000-1111=0-15,,

 Conclusion...
1 Hex digit = 4 bits

Binary to Hex

 Make groups of 4 bits starting from radix
point and working outward

* Add O’s where necessary
« Convert each group of 4 to an octal digit

000101001110.11 00 01101011.101 0
1 4 E C 6 B A

= 14E.C,, = 6B.A,;

Hex to Binary

* Expand each hex digit to a group of 4 bits

14E.C,, D93.8,,

000101001110.11 0 0 110110010011.1000,

=101001110.11, =110110010011.1,,

e USCViterbi

School of Engineering

Hexadecimal Representation

* Since values in modern computers are many bits, we
use hexadecimal as a shorthand notation (4 bits = 1
hex digit)

— 11010010 = D2 hex or 0xD2 if you write it in C/C++

— 0111011011001011 = 76CB hex or Ox76CB if you write it in
C/C++

Interpreting Hex Strings

 What does the following hexadecimal represent?

e Just like binary, you must know the underlying representation
system being used before you can interpret a hex value

e Information (value) = Hex + Context (System)

— For now, best be is to convert to binary, then translate

0x41 =7
Unsigned
Binary system =) ASCII
(O) x86Assemny system
Instruction
1 \
65 decimal Lo — ‘A rscii
inc %ecx

(Add 1 to the ecx register)

e USCViterbi

Hexadecimal & Sign

If a number is represented in 2's complement (e.g.

10010110) then the MSB of its binary
representation would correspond to:

— 0 = Positive

— 1 = Negative

If that same 2's complement number were viewed
as hex (e.g. 0x96) how could we tell if the
corresponding number is positive or negative?

— MSD of 0-7 = Positive

— MSD of 8-F = Negative

School of Engineering

Hex — Binary — Sign
0 = 0000 = Pos.
1 =0001 = Pos.
2 =0010 = Pos.
3 =0011 = Pos.
4 = 0100 = Pos.
5=0101 = Pos.
6 =0110 = Pos.
7 = 0111 = Pos.
8 =1000 = Neg.
9 =1001 = Neg.
A =1010 = Neg.
B =1011 = Neg.
C=1100 = Neg.
D =1101 = Neg.
E=1110 = Neg.
F=1111 = Neg.

Implicit and Explicit

APPLICATION: CASTING

e USCViterbi

School of Engineering

Implicit and Explicit Casting

e Use your understanding of int main()
unsigned and 2's complementto | .. i - R G
. unsigned short uv = (unsigned short) v;
predICt the OUtPUt printf("v = %d, uv = %u\n", v, uv);
return 0;
* Notes: }
— unsigned short range: 0 to 65535 Expected Output:
— signed short range: -32768 to v T T10000, uv = 5553

+32768

int main()

{
unsigned u = 4294967295u; /* UMax */
int tu = (int) u;
printf("u = %u, tu = %d\n", u, tu);
return 0;

}

Expected Output:

u = 4294967295, tu = -1

- 00000000 USCViterbi
Implicit and Explicit Casting

Use your understanding of zero
and sign extension to predict the
output

School of Engineering

int main()

{
short int v = @xcfc7; /* -12345 */
unsigned short uv = @xcfc7; /* 53191 */
int vi = v; /* ??? */
unsigned uvi = uv; /* ??? */
printf("vi = %x, uvi = %x\n", vi, uvi);
return 9;

}

Expected Output:

vi = ffffcfc7, uvi = cfc7

int main()
{
int x = 53191; /* oxcfc7 */
short sx = Xx;
int y = sx;
char z = Xx;

printf("sx = %d, y = %d ", sx, y);
printf("z = %d\n", z);
return 0;

}

Expected Output:

sx = -12345, y = -12345, z = -57

Advice

* Casting can be done implicitly and explicitly

* Casting from one system to another applies a
new "interpretation" (pair of glasses) on the
same bits

e Casting from one size to another will perform
extension or truncation (based on the system)

