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Unit 1

Integer Representation



1.2

Skills & Outcomes

• You should know and be able to apply the 
following skills with confidence

– Convert an unsigned binary number to and from 
decimal

– Understand the finite number of combinations 
that can be made with n bits

– Convert a signed (2's complement system) binary 
number to and from decimal

– Convert bit sequences to and from hexadecimal

– Predict the outcome & perform casting operations
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DIGITAL REPRESENTATION
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Information Representation

• All information in a computer system is represented as 
bits

– Bit = (Binary digit) = 0 or 1 

• A single bit is can only represent 2 values so to 
represent a wider variety of options we use a 
sequence of bits (e.g. 11001010)

– Commonly sequences are 8-bits (aka a "byte"), 16-, 32- or 
64-bits

• Kinds of information

– Numbers, text, code/instructions, sound, images/videos
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Interpreting Binary Strings

• Given a sequence of 1’s and 0’s, you need to know the 
representation system being used, before you can 
understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

01000001 = ?

65 decimal ‘A’ASCII

inc %ecx
(Add 1 to the ecx register)

Unsigned 

Binary system ASCII 

systemx86 Assembly 

Instruction
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Binary Representation Systems

• Integer Systems
– Unsigned

• Unsigned (Normal) binary

– Signed

• Signed Magnitude

• 2’s complement

• Excess-N*

• 1’s complement*

• Floating Point 
– For very large and small 

(fractional) numbers

• Codes
– Text

• ASCII / Unicode

– Decimal Codes

• BCD (Binary Coded Decimal) 
/ (8421 Code)

* = Not covered in this class
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Data Representation

• In C/C++ variables can be of different types and sizes
– Integer Types on 32-bit (64-bit) architectures

– Floating Point Types

C Type (Signed) C Type (Unsigned) Bytes Bits x86 Name

char unsigned char 1 8 byte

short unsigned short 2 16 word

int / int32_t † unsigned / uint32_t † 4 32 double word

long unsigned long 4 (8) 32 (64) double (quad) word

long long / int64_t † unsigned long long / uint64_t † 8 64 quad word

char* - 4 (8) 32 (64) double (quad) word

int* - 4 (8) 32 (64) double (quad) word

C Type Bytes Bits x86 Name

float 4 32 single

double 8 64 double 

† = defined in stdint.h
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OVERVIEW
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UNSIGNED BINARY TO DECIMAL
Using  power-of-2 place values
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Number Systems

• Unsigned binary follows the rules of positional number systems

• A positional number systems consist of 

1. A base (radix) r

2. r coefficients [0 to r-1]

• Humans:  Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9

• Computers: Binary (Base 2): 0,1

• Human systems for working with computer systems (shorthand 
for human to read/write binary)

– Octal (Base 8): 0,1,2,3,4,5,6,7

– Hexadecimal (Base 16): 0-9,A,B,C,D,E,F (A thru F = 10 thru 15)
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Anatomy of a Decimal Number
• A number consists of a string of explicit coefficients (digits).

• Each coefficient has an implicit place value which is a power 
of the base.

• The value of a decimal number (a string of decimal 
coefficients) is the sum of each coefficient times it place value

Explicit coefficients
Implicit place values

radix 

(base)

(934)10 = 9*102 + 3*101 + 4*100 = 934

(3.52)10 = 3*100 + 5*10-1 + 2*10-2 = 3.52
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Anatomy of an Unsigned Binary Number

• Same as decimal but now the coefficients 
are 1 and 0 and the place values are the 
powers of 2

(1011)2 = 1*23 + 0*22 + 1*21 + 1*20

Least Significant 

Bit (LSB)

Most Significant 

Digit (MSB)

coefficients
place values

= powers of 2

radix 

(base)
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Binary Examples

(1001.1)2 = 8 + 1 + 0.5 = 9.510
.51248

(10110001)2 = 128 + 32 + 16 + 1 = 17710
1632128 1
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General Conversion From Unsigned Base r 
to Decimal

• An unsigned  number in base r has place 
values/weights that are the powers of the base

• Denote the coefficients as: ai

Left-most digit = 

Most Significant 

Digit (MSD)

Right-most digit = 

Least Significant 

Digit (LSD)

Nr => Σi(ai*r
i) => D10

Number in base r Decimal Equivalent

(a3a2a1a0.a-1a-2)r =  a3*r3 + a2*r2 + a1*r1 + a0*r0 + a-1*r-1 + a-2*r-2 
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Examples

(746)8 = 7*82 + 4*81 + 6*80

= 448 + 32 + 16 = 48610

(1A5)16 = 1*162 + 10*161 + 5*160

= 256 + 160 + 5 = 42110

(AD2)16 = 10*162 + 13*161 + 2*160

= 2560 +  208 + 2 = (2770)10
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UNSIGNED DECIMAL TO BINARY
"Making change"
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Decimal to Unsigned Binary

• To convert a decimal number, x, to binary:

– Only coefficients of 1 or 0.  So simply find place values 
that add up to the desired values, starting with larger 
place values and proceeding to smaller values and place 
a 1 in those place values and 0 in all others

16 8 4 2 1

2510 = 1 1 1

32

For 2510 the place value 32 is too large to include so we include 

16.  Including 16 means we have to make 9 left over.  Include 8 

and 1.

0 00
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Decimal to Unsigned Binary

7310=
128 64 32 16 8 4 2 1

.5 .25 .125 .0625 .03125

0    1    0     0    1     0    0    1

0    1    0     1    0     1    1    1

1     0   0     1    0    0     0     1

1    0     1      0     0

8710=

14510=

0.62510=
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Decimal to Another Base

• To convert a decimal number, x, to base r:

– Use the place values of base r (powers of r).  Starting 
with largest place values, fill in coefficients that sum up 
to desired decimal value without going over.

16 1

7510 = 4 B

256

0 hex
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UNIQUE COMBINATIONS
The 2n rule
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Powers of 2

20 = 1
21 = 2
22 = 4
23 = 8

24 = 16
25 = 32
26 = 64

27 = 128
28 = 256
29 = 512

210 = 1024

512 256 128 64 32 16 8 4 2 11024
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Unique Combinations

• Given n digits of base r, how many unique numbers 
can be formed?  rn

– What is the range?  [0 to rn-1]

Main Point:  Given n digits of base r, rn unique numbers can 

be made with the range [0 - (rn-1)]

2-digit, decimal numbers (r=10, n=2)

3-digit, decimal numbers (r=10, n=3)

4-bit, binary numbers (r=2, n=4)

6-bit, binary numbers 

(r=2, n=6)

0-90-9

100 combinations:

00-99

0-10-10-10-1

1000 combinations:

000-999

16 combinations:

0000-1111

64 combinations:

000000-111111
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Range of C Data Types

• For a given integer data type we can find its range by raising 2 
to the n, 2n (where n = number of bits of the type)
– For signed representations we break the range in half with half 

negative and half positive (0 is considered a positive number by 
common integer convention)

• How will I ever remember those ranges? 
– I wish I had an easy way to approximate those large numbers!

Bytes Bits Type Unsigned Range Signed Range

1 8 [unsigned] char 0 to 255 -128 to +127

2 16 [unsigned] short 0 to 65535 -32768 to +32767

4 32 [unsigned] int 0 to 4,294,967,295 -2,147,483,648 to 
+2,147,483,648

8 8 [unsigned] long long 0 to 18,446,744,073,709,551,615 -9,223,372,036,854,775,808 to 
+9,223,372,036,854,775,807 

4 (8) 32 (64) char* 0 to 18,446,744,073,709,551,615
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Approximating Large Powers of 2

• Often need to find decimal 
approximation of a large powers of 2 
like 216, 232, etc.

• Use following approximations:
– 210 ≈ 103 (1 thousand) = 1 Kilo-

– 220 ≈ 106 (1 million) = 1 Mega-

– 230 ≈ 109 (1 billion) = 1 Giga-

– 240 ≈ 1012 (1 trillion) = 1 Tera-

• For other powers of 2, decompose 
into product of 210 or 220 or 230 and a 
power of 2 that is less than 210

– 16-bit word:  64K numbers

– 32-bit dword:  4G numbers

– 64-bit qword: 16 million trillion numbers

216 = 26 * 210

≈ 64 * 103 = 64,000

224 = 24 * 220

≈ 16 * 106 = 16,000,000

228 = 28 * 220

≈ 256 * 106 = 256,000,000

232 = 22 * 230

≈ 4 * 109 = 4,000,000,000
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CONVERTING SIGNED NUMBERS TO 
DECIMAL
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Signed numbers

• Systems used to represent 
signed numbers split the 
possible binary combinations 
in half (half for positive 
numbers / half for negative 
numbers)

• Generally, positive and 
negative numbers are 
separated using the MSB

– MSB=1 means negative

– MSB=0 means positive

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

+-
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2’s Complement System

• Normal binary place values except MSB has negative 
weight
– MSB  of 1 = -2n-1

1248

4-bit 

Unsigned

4-bit 

2’s complement

0 to 15

Bit 

0

Bit 

1

Bit 

2

Bit 

3

124-8

-8 to +7

Bit 

0

Bit 

1

Bit 

2

Bit 

3

8-bit 

2’s complement
163264-128

-128 to +127

Bit 

4

Bit 

5

Bit 

6

Bit 

7

1248

Bit 

0

Bit 

1

Bit 

2

Bit 

3
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2’s Complement Examples

4-bit 

2’s complement

124-8

= -5

8-bit 

2’s complement

1101

124-8

= +31100

163264-128 1248

Notice that +3 in 2’s 

comp. is the same as 

in the unsigned system

124-8

= -11111

0001 1000 = -127

163264-128 1248

1000 1001 = +25

Important:  Positive numbers have the same representation in 2’s complement 

as in normal unsigned binary
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2’s Complement Range

• Given n bits…

– Max positive value = 011…11

• Includes all n-1 positive place values

– Max negative value = 100…00

• Includes only the negative MSB place value

Range with n-bits of 2’s complement

[ -2n-1 to +2n-1–1] 

– Side note – What decimal value is 111…11?

• -110
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Unsigned and Signed Variables

• In C, unsigned variables use unsigned binary  (normal 
power-of-2 place values) to represent numbers

• In C, signed variables use the 2’s complement system 
(Neg. MSB weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = +147

-128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = -109
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IMPORTANT NOTE

• All computer systems use the 2's complement 
system to represent signed integers!

• So from now on, if we say an integer is signed, 
we are actually saying it uses the 
2's complement system unless otherwise 
specified

– Other systems like "signed magnitude" or
"1's complement" exist but will not be used for 
integers
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Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit 

number by zero extending

Sign bit is just repeated as 

many times as necessary

• Extension is the process of increasing the number of bits used 
to represent a number without changing its value
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Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used 
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit 

number by truncating 0’s.  Can’t 

remove a ‘1’ because value is changed

Any copies of the MSB can be 

removed without changing the 

numbers value.  Be careful not to 

change the sign by cutting off 

ALL the sign bits.
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SHORTHAND FOR BINARY
Shortcuts for Converting Binary to Hexadecimal
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Binary and Hexadecimal

• Hex is base 16 which is 24

• 1 Hex digit ( ? )16 can represent: 0-F (0-15)10

• 4 bits of binary (? ? ? ?)2 can represent: 
0000-1111= 0-1510

• Conclusion…
1 Hex digit = 4 bits 
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Binary to Hex

• Make groups of 4 bits starting from radix 
point and working outward

• Add 0’s where necessary

• Convert each group of 4 to an octal digit

101001110.1100 000

= 14E.C16

1 4 E C

1101011.1010 0

= 6B.A16

6 B A
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Hex to Binary

D93.816

110110010011.10002

= 110110010011.12

• Expand each hex digit to a group of 4 bits

14E.C16

101001110.1100 000

= 101001110.112
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Hexadecimal Representation

• Since values in modern computers are many bits, we 
use hexadecimal as a shorthand notation (4 bits = 1 
hex digit)
– 11010010 = D2 hex or 0xD2 if you write it in C/C++ 

– 0111011011001011 = 76CB hex or 0x76CB if you write it in 
C/C++ 
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Interpreting Hex Strings

• What does the following hexadecimal represent?

• Just like binary, you must know the underlying representation 
system being used before you can interpret a hex value

• Information (value) = Hex + Context (System)
– For now, best be is to convert to binary, then translate

0x41 = ?

65 decimal ‘A’ASCII

inc %ecx
(Add 1 to the ecx register)

Unsigned 

Binary system ASCII 

systemx86 Assembly 

Instruction
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Hexadecimal & Sign

• If a number is represented in 2's complement (e.g. 
10010110) then the MSB of its binary 
representation would correspond to:
– 0 = Positive

– 1 = Negative

• If that same 2's complement number were viewed 
as hex (e.g. 0x96) how could we tell if the 
corresponding number is positive or negative?
– MSD of 0-7 = Positive

– MSD of 8-F = Negative

Hex – Binary – Sign
0 = 0000 = Pos.
1 = 0001 = Pos.
2 = 0010 = Pos.
3 = 0011 = Pos.
4 = 0100 = Pos.
5 = 0101 = Pos.
6 = 0110 = Pos.
7 = 0111 = Pos.
8 = 1000 = Neg.
9 = 1001 = Neg.
A = 1010 = Neg.
B = 1011 = Neg.
C = 1100 = Neg.
D = 1101 = Neg.
E = 1110 = Neg.
F = 1111 = Neg.
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APPLICATION: CASTING
Implicit and Explicit 
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Implicit and Explicit Casting

• Use your understanding of 
unsigned and 2's complement to 
predict the output

• Notes:
– unsigned short range: 0 to 65535

– signed short range: -32768 to 
+32768

int main()
{

short int v = -10000; /* 0xd8f0 */
unsigned short uv = (unsigned short) v;
printf("v = %d, uv = %u\n", v, uv);
return 0;

}

int main()
{

unsigned u = 4294967295u;  /* UMax */
int tu = (int) u;
printf("u = %u, tu = %d\n", u, tu);
return 0;

}

v = -10000, uv = 55536

u = 4294967295, tu = -1

Expected Output:

Expected Output:

0
+1

+2

+3

32766

32767
32768

65535

65534

32770

32769

0
+1

+2

+3

32766

32767
-32768

-1

-2

-32776

-32767

2's Complement Unsigned
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Implicit and Explicit Casting

• Use your understanding of zero 
and sign extension to predict the 
output

int main()
{

short int v = 0xcfc7; /* -12345 */
unsigned short uv = 0xcfc7; /* 53191 */
int vi = v; /* ??? */
unsigned uvi = uv; /* ??? */
printf("vi = %x, uvi = %x\n", vi, uvi);
return 0;

}

int main()
{

int x = 53191; /* 0xcfc7 */
short sx = x; 
int y = sx;    
char z = x;

printf("sx = %d, y = %d ", sx, y);
printf("z = %d\n", z);
return 0;

}

vi = ffffcfc7, uvi = cfc7

sx = -12345, y = -12345, z = -57

Expected Output:

Expected Output:
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Advice

• Casting can be done implicitly and explicitly

• Casting from one system to another applies a 
new "interpretation" (pair of glasses) on the 
same bits

• Casting from one size to another will perform 
extension or truncation (based on the system)


