CSCI 104
Hash Tables Intro

Mark Redekopp
David Kempe
Motivation

Suppose a company has a unique 3-digit ID for each of its 1000 employees.

• We want a data structure that, when given an employee ID, efficiently brings up that employee’s record.

How should we implement this?

• An array gives \(O(1) \) access time!

Alright, how do we obtain this runtime when the keys are no longer so nicely ordered or non-integers??
Arrays

- An array maps **integers** to **values**
 - Given i, array[i] returns the value in O(1)

Maps/Dictionaries

- Dictionaries map **keys** to **values**
 - Given key, k, map[k] returns the associated value
 - Key can be anything provided...
 - It has a '<' operator defined for it (C++ map)
 - or some other comparator functor (other languages require something similar)

Arrays associate an integer with some arbitrary type as the value (i.e. the key is always an integer)

```
0 | 1 | 2 | 3 | 4 | 5
3.2 | 2.7 | 3.45 | 2.91 | 3.8 | 4.0
```

```
map<string, double>
"Tommy" | 2.5
Pair<string, double>
"Jill" | 3.45
```

C++ maps allow any type to be the key
Dictionary Implementation

- A dictionary/map can be implemented with a balanced BST
 - Insert, Find, Remove = $O(_______)$
- Can we do better?
 - Hash tables (unordered maps) offer the promise of $O(____)$ access time
Hash Tables - Insert

- Can we use non-integer keys to index an array?
 - Yes. Let us convert (i.e. "hash") the non-integer key to an integer
- To **insert** a key, we hash it and place the key (and value) at that index in the array
 - For now, make the unrealistic assumption that each unique key hashes to a unique integer
- The conversion function is known as a **hash function**, \(h(k) \)
- A hash table implements a set/map ADT
 - `insert(key)` / `insert(key,value)`
 - `remove(key)`
 - `lookup/find(key) => value`
- **Question to address**: What should we do if two keys ("Jill" and "Erin") hash to the same location (aka a COLLISION)?

A map implemented as a hash table (key=name, value = GPA)

Hash table parameter definitions:

\[
\alpha = \frac{n}{m} = \text{Loading factor} = \left(\frac{4}{6}\right)_{\text{above}}
\]
Hash Tables - Find

- To **find** a key, we simply hash it again to find the index where it was inserted and access it in the array.

- How might we hash a string to an integer?
 - Use ASCII codes for each character and **add**, **multiply**, or **shift/mix** them.
 - We then can use simple a **modulo m** operation to convert the sum to a value between 0 to m-1 where m is the table size.
 - Note: All data in a computer is already bits (1s and 0s). Any object can be viewed as a long binary number and hashed.

```plaintext
' h' = 104  ' e' = 101  ' l' = 108
' l' = 108  ' o' = 111

h("hello") = 532 \% m
```

Is this a good way to hash a string?
Hash Tables - Remove

- To **remove** a key, we simply hash the key and mark the location as "free" again
 - Could use a `bool` in the struct for each array entry (more later) to indicate it is free

- The **hash function, h(k), should**
 - Be **fast/easy** to compute
 - $O(|k|)$ – where $|k|$ is the length of the key
 - But in terms of n [# of keys in the set/map] this runtime is constant since $|k| \ll n$ [e.g. $O(1)$]
 - Be **consistent** and output the same result any time it is given the same input
 - **Distribute** keys well
 - We'd like every unique key to map to a different index, but that turns out to be almost impossible.
 - We'll settle for a "good" hash function where the probability of a key mapping to any location x is $1/m$ (i.e. uniform)

Hash table parameter definitions:

$n = \# \text{ of keys entered}$

$m = \text{tableSize}$

$\alpha = \frac{n}{m} = \text{Loading factor}$
Possible Hash Functions

• Define $n = \# \text{ of keys stored, } m = \text{ table size}$ and suppose k is non-negative integer key

• Evaluate the following possible hash functions
 • $h(k) = 0$
 • $h(k) = \text{rand()} \mod m$
 • $h(k) = k \mod m$

• Rules of thumb
 – The hash function should examine the entire search key (i.e. all bits/characters), not just a few digits or a portion of the key
 – When modulo hashing is used, the base should be prime
Hashing Efficiency

- If computing the hash function, $h(k)$, is $O(1)$ and the array access is $O(1)$,
- Then the runtime of the operations is $O(1)$
- What might prevent us from achieving this $O(1)$?
 - Collisions
Ordered vs. Unordered

Ordered Map/Set
- map/set
 (implemented as balanced BST)
- Log(n) runtime for insert/find/remove
- If we print each key via an in-order traversal of the tree, in what order will the keys be printed?

Unordered Map/Set
- unordered_map/unordered_set
 (implemented as hash table)
- Each uses a hash table for O(1) average runtime to insert, find, and remove
- New to C++11 and requires compilation with the `-std=c++11` option in g++
- Iteration will print the keys in an undefined order (unordered)
- Provides hash functions for basic types: int, string, etc. but for any other type you must provide your own hash function (like the operator< for BSTs)
Table Size and Collisions

• Suppose we want to store USC student info using their 10-digit USC ID as the key
 – The set of all POSSIBLE keys, S, has size $|S| = 10^{10}$
 – But the number of keys we'd actually store, n, is likely much less (i.e. $n << |S|$)

• So how large should the table size (m) be?

 ________ < ______________ < _________

• But anything smaller than the size of all possible keys admits the chance of COLLISION
 – A collision is when two keys map to the same location [i.e. $h(k1) == h(k2)$]
 – The probability of this should be low
 – How we handle collisions is the major remaining question to answer

• You will see that table size (m) should usually be a prime number

insert("Erin",3.2)
Resolving Collisions

• Collisions occur when two keys, k_1 and k_2, are not equal, but $h(k_1) = h(k_2)$.

• Collisions are inevitable if the number of entries, n, is greater than table size, m (by pigeonhole principle) and are likely even if $n < m$ (by the birthday paradox...more in our probability unit)

• Methods
 – Closed Addressing (e.g. buckets or chaining): Keys MUST live in the location they hash to (thus requiring multiple locations at each hash table index)
 • Methods: 1.) Buckets, 2.) Chaining
 – Open Addressing (aka probing): Keys MAY NOT live in the location they hash to (only requiring a single 1D array as the hash table)
 • Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing
Closed Addressing Methods

• Make each entry in the table a fixed-size ARRAY (bucket) or LINKED LIST (chain) of items/entries so all keys that hash to a location can reside at that index

 - **Close Addressing** => A key will reside in the location it hashes to (it's just that there may be many keys (and values) stored at that location

• **Buckets**

 - How big should you make each array?
 - Too much wasted space

• **Chaining**

 - Each entry is a linked list (or, potentially, vector)
Open Addressing and Linear Probing

• With open addressing, we keep the hash table a 1D array (only one location per index) but when collisions occur we allow keys to reside in a location other than $h(k)$
 – Open Addressing => It is possible a key does NOT reside in the location it hashes to requiring extra searching in a process called probing

• For insertion: always start by checking location $h(k)$
 – If it is open, write the key (and value) there
 – Else "probe" for an empty location

• Linear Probing (other techniques in a minute)
 – Let i be number of failed checks to find a blank location (for insertion) or the key we are looking (for find/remove)
 – $h(k,i) = (h(k)+i) \mod m$
 – Example: If $h(k)$ occupied (i.e. collision) then check $h(k)+1, h(k)+2, h(k)+3, \ldots$
Probing Impact on Find

- If $h(k)$ is occupied with another key, then probe
- **Insert**: probe until we find a blank location
- **Find/Remove**: probe until we...
 - Find the key we are looking for **OR**
 - ________________________________ **OR**
 - ________________________________
Probing Impact on Find

- If $h(k)$ is occupied with another key, then probe
- **Insert**: probe until we find a blank location
- **Find/Remove**: probe until we...
 - Find the key we are looking for ..OR..
 - We reach a free location ..OR..
 - We have looked in all possible locations (i.e. wrapped back to $h(k)$ or alternatively we've performed m probes)

```
insert("Ana")
```

```python
h(k) 0
Jill 1
Tom 2
Ana 3
```

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
Removal

- Many implementations exist but we will show one simple way for illustration
- Each location stores two bools
 - **Valid**: a stored key exists in this location (or else is free)
 - **Removed**: a key was erased at this location (so it is free for insertion, but probing must continue for find/remove)
- Progression:
 - Initially: \(V=0, R=0 \) (Free/Never used),
 - On insert: \(V=1, R=0 \),
 - On erasure: \(V=0, R=1 \) (can return to \(V=1, R=0 \) on insert)
- For performance, we can periodically rebuild/rehash the hash table after some number of erasures to effectively return locations to free/never used
Linear Probing & Primary Clustering

- Suppose a hash table \((m=10)\) with integer keys and \(h(k) = k \mod m\)
- Insert: 11, 21, 2, 31, 3
 - Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may cause collisions for other nearby hash locations
- This is known as primary clustering (a few collisions to one location and the resulting probing cause collisions for other keys that would not have collided)
Quadratic Probing

- If certain data patterns lead to many collisions, linear probing leads to clusters of occupied areas in the table called *primary clustering*.

- **Quadratic probing** tends to spread out data across the table by taking larger and larger steps until it finds an empty location.

- **Quadratic Probing**
 - (Again, let i be number of **failed** probes)
 - $h(k,i) = (h(k) + i^2) \mod m$
 - If $h(k)$ occupied, then check $h(k) + 1^2$, $h(k) + 2^2$, $h(k) + 3^2$, ...
Linear vs. Quadratic Probing

• If certain data patterns lead to many collisions, linear probing leads to clusters of occupied areas in the table called **primary clustering**

• How would quadratic probing help fight primary clustering?
 – Quadratic probing tends to spread out data across the table by taking larger and larger steps until it finds an empty location
Quadratic Probing Practice

• Use the hash function $h(k) = k \% 9$ to find the contents of a hash table ($m=9$) after inserting keys 36, 27, 18, 9, 0 using quadratic probing

• If your **loading factor** rises above 0.5, bad things can happen!

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Use the hash function $h(k) = k \% 7$ to find the contents of a hash table ($m=10$) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Quadratic probing only works well for prime table sizes, and keeping the load factor < 0.5
Double Hashing

- **Note:** In linear and quadratic probing, if two keys hash to the same place \(h_1(k1) == h_1(k2) \) we will probe the **same** sequence.
- Could we probe a **different** sequence even if two keys have collided?
 - Let's use ANOTHER hash function, \(h_2(k) \) to choose the **step size** of our probing sequence.
- **Double Hashing**
 - (Again, let \(i \) be number of failed probes)
 - Pick a second hash function \(h_2(k) \) in addition to the primary hash function, \(h_1(k) \)
 - \(h(k,i) = \left[h_1(k) + i \times h_2(k) \right] \mod m \)

Sequence:
- Start at \(h1(k) \),
- If needed, probe \(h1(k) + h2(k) \),
- If needed, probe \(h1(k) + 2 \times h2(k) \),
- If needed, probe \(h1(k) + 3 \times h2(k) \)
Double Hashing

• Assume
 – m=13,
 – h1(k) = k % 13
 – h2(k) = 5 – (k % 5)

• What sequence would I probe if k = 31
 – h1(31) = ___, h2(31) = ________________

 – Seq: ______________________________

 – Notice we __________________________ in the table. Why? A _____ table size!
Double Hashing

• Assume
 – \(m=13 \),
 – \(h_1(k) = k \mod 13 \)
 – \(h_2(k) = 5 - (k \mod 5) \)

• What sequence would I probe if \(k = 31 \)
 – \(h_1(31) = 5 \)
 – \(h_2(31) = 5 - (31 \mod 5) = 4 \) (which is the step size)
 – \(5 + 0 \times 4 = 5 \mod 13 = 5 \)
 – \(5 + 1 \times 4 = 9 \mod 13 = 9 \)
 – \(5 + 2 \times 4 = 13 \mod 13 = 0 \)
 – \(5 + 3 \times 4 = 17 \mod 13 = 4 \)
 – And then onto 8, 12, 3, 7, 11, 2, 6, 10, 1
 – Notice we visited each index in the table. Why? A prime table size!
Rehashing

• For probing (open-addressing), as α approaches 1 the expected number of probes/comparisons will get very large
 – Capped at the tableSize, m (i.e. $O(m)$)

• Similar to resizing a vector, we can allocate a larger prime size table/array
 – Must rehash items to location in new table size and cannot just copy items to corresponding location in the new array
 – Example: $h(k) = k \% 7 \neq h(k) = k \% 11$ (e.g. $k=9$)
 – For quadratic probing if table size m is prime, then first $m/2$ probes will go to unique locations

• General guideline for probing: keep $\alpha < ____$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>38</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

$h(k) = k \% 7$ \hspace{2cm} h(k) = k \% 11$
Rehashing

• For probing (open-addressing), as α approaches 1 the expected number of probes/comparisons will get very large
 – Capped at the tableSize, m (i.e. $O(m)$)

• Similar to resizing a vector, we can allocate a larger prime size table/array
 – Must **rehash** items to location in new table size and **cannot just copy** items to corresponding location in the new array
 – Example: $h(k) = k \% 7 \neq h(k) = k \% 11$ (e.g. $k=9$)
 – For quadratic probing if table size m is prime, then first $m/2$ probes will go to unique locations

• **General guideline for probing: keep $\alpha < 0.5$**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>38</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$h(k) = k \% 7$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>38</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$h(k) = k \% 11$
Probing Technique Summary

- If h(k) is occupied with another key, then probe
- Let i be number of failed probes
- Linear Probing
 - \(h(k, i) = (h(k) + i) \mod m \)
- Quadratic Probing
 - \(h(k, i) = (h(k) + i^2) \mod m \)
 - If h(k) occupied, then check \(h(k) + 1^2, h(k) + 2^2, h(k) + 3^2, \ldots \)
- Double Hashing
 - Pick a second hash function \(h_2(k) \) in addition to the primary hash function, \(h_1(k) \)
 - \(h(k, i) = [h_1(k) + i \cdot h_2(k)] \mod m \)
Hash Function Goals

• A "perfect hash function" should map each of the n keys to a unique location in the table
 – Recall that we will size our table to be larger than the expected number of keys...i.e. $n < m$
 – Perfect hash functions are not practically attainable

• A "good" hash function
 – Is easy and fast to compute
 – Scatters data uniformly throughout the hash table
 • $P(h(k) = x) = 1/m$ (i.e. pseudorandom)
Hashing Efficiency

• Loading factor, α, defined as:
 – $\alpha = n/m$ (Really it is just the fraction of locations currently occupied)
 – n=number of items in the table, m=tableSize

• For open addressing, $\alpha \leq 1$
 – Good rule of thumb: resize and rehash after $\alpha > 0.5$

• For closed addressing (chaining), α, can be greater than 1
 – This is because $n > m$
 – What is the average length of a chain in the table (e.g. 10 total items in a hash table with table size of 5)?
 – Need to keep α constant (usually $\alpha \leq 1$)
Hashing Efficiency

• Loading factor, α, defined as:
 – $\alpha = \frac{n}{m}$ (Really it is just the fraction of locations currently occupied)
 – $n=$number of items in the table, $m=$tableSize

• For open addressing, $\alpha \leq 1$
 – Good rule of thumb: resize and rehash after $\alpha > 0.5$

• For closed addressing (chaining), α, can be greater than 1
 – This is because $n > m$
 – What is the average length of a chain in the table (e.g. 10 total items in a hash table with table size of 5)?
 • Average length of chain will be $\alpha = \frac{n}{m}$
 – Need to keep α constant (usually $\alpha \leq 1$)
Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime. However, they are probabilistic.

- There was a similar problem with Splay Trees: they had a good average runtime, but a poor worst-case runtime.

As of this moment, we do not have the necessary mathematical framework to analyze either of these structures.

- We’re going to start remedying that... now.