
1

CS 103 Unit 14 – Stringstreams
and Parsing

2

I/O Streams
• '>>' operator used to read data from an input stream

– Always stops at whitespace

• '<<' operator used to write data to an output stream
– 'endl' forces a flush…Flush forces the OS to move data from the internal OS stream to

the actual output device (like the monitor)

7 5 y ...

input stream (user types all at once):

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{
int dummy, x;
cin >> dummy >> x;

}

I t w a s t h e

output stream in OS:

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{

cout << "X is " << endl;
cout << 4;

}

y ...input stream:
4

output stream after flush:

4\n

X is

6 1

3

Kinds of Streams

• I/O streams

– Keyboard (cin) and monitor (cout)

• File streams – Contents of file are the stream of data

– #include <fstream> and #include <iostream>

– ifstream and ofstream objects

4

When Does It Fail

For filestreams &
now stringstreams
the stream doesn't
fail until you read

PAST the EOF.
Reading something
that stops ON the
EOF will not cause
fail() to return true

T h e e n d . \n

fp

EOFFile text

char buf[40];
ifstream inf(argv[1]);

inf >> buf;

inf >> buf;

inf >> buf;

T h e \0buf

T h e e n d . \n

fp

EOFFile text

e n d \0buf

T h e e n d . \n

fp

EOFFile text

.

e n d \0buf

T h e e n d . \n

fp

EOFFile text

.

0

EOF BAD FAIL

0 0

0

EOF BAD FAIL

0 0

1

EOF BAD FAIL

0 1

5

Which Option Works?
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(!ifile.fail()){

ifile >> x;
nums.push_back(x);

}
...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1){

ifile >> x;
if(ifile.fail()) break;
nums.push_back(x);

}
...
}

7 8 EOF

data.txt

_

nums

_ _ _

Goal is to read all integers
from the file into a vector.

Which of the 3 works?

6

A More Compact Way
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(!ifile.fail()){

ifile >> x;
nums.push_back(x);

}
...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1){

ifile >> x;
if(ifile.fail()) break;
nums.push_back(x);

}
...
}

int x;
while(ifile >> x){

nums.push_back(x);
}
...

7 8 EOF

data.txt

_

nums

_ _ _

Calling >> on an input
stream will essentially
return a Boolean:
• true = success
• false = failure

7

Correct Pattern for File I/O or Streams

• Step 1: Try to read data (>> or getline)

• Step 2: Check if you failed

• Step 3: Only use the data read from step 1 if
you succeeded

• If you read and then use the data BEFORE
checking for failure, you will likely get 1 extra
(bogus) data value at the end

8

Recall How To Get Lines of Text
• Using the >> operator to get an input

string of text (char * or char [] variable
passed to cin) implicitly stops at the first
whitespace

• How can we get a whole line of text
(including spaces)

– cin.getline(char *buf, int bufsize);

– ifile.getline(char *buf, int bufsize);

– Reads max of bufsize-1 characters
(including newline)

• But getline() uses char* (C-Strings)…
what if we want to use C++ strings???

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

char myline[100]; int i = 1;

ifstream ifile ("input.txt");

if(ifile.fail()){ // can't open?

return 1;

}

ifile.getline(myline, 100);

while (! ifile.fail()) {

cout << i++ << ": " << myline << endl;

ifile.getline(myline, 100);

}

ifile.close();

return 0;

}

The fox jumped over the log.

The bear ate some honey.

The CS student solved a hard problem.

1: The fox jumped over the log.

2: The bear ate some honey.

3: The CS student solved a hard problem.

input.txt

9

C++ String getline()
• C++ string library (#include <string> defines a global function (not a

member of ifstream or cin) that can read a line of text into a C++ string

• Prototype: istream& getline(istream &is, string &str, char delim);
– is = any input stream (ifstream, cin), etc.)

– str = A C++ string that it will fill in with text

– delim = A char to stop on (by default it is '\n') which is why its called getline

– Returns the updated istream (the 'is' object you passed in as the 1st arg)

• The text from the input stream will be read up through the first occurrence
of 'delim' (defaults to '\n') and placed into str. The delimiter will be stripped
from the end of str and the input stream will be pointing at the first
character after 'delim'.

int line_no = 0;
ifstream myfile(argv[1]);
string myline;
getline(myfile, myline);
cout << myline << endl;

while (getline(myfile, myline)) {
cout << "Line: " << myline << endl;

}

ifstream myfile(argv[1]);
string myline;
// Not a member function
myfile.getline(myline); // doesn't work

// global scope function...correct
getline(myfile, myline);

10

STRINGSTREAMS

11

Introducing…Stringstreams

• I/O streams

– Keyboard (cin) and monitor (cout)

• File streams – Contents of file are the stream of data

– #include <fstream> and #include <iostream>

– ifstream and ofstream objects

• Stringstreams – Contents of a string are the stream
of data

– #include <sstream> and #include <iostream>

– sstream object

12

C++ String Stream

• If streams are just sequences of characters, aren't
strings themselves like a stream?

– The <sstream> library lets you treat C++ string objects like
they were streams

• Why would you want to treat a string as a stream?

– Buffer up output for later display

– Parse out the pieces of a string

– Data type conversions

• Very useful in conjunction with string's getline(...)

13

C++ Stringstream: Application 1a

• Use << and >> to convert numbers into strings
(i.e. 12345 => "12345")

#include<sstream>
using namespace std;
int main()
{
stringstream ss;
int num = 12345;
ss << num;

string strNum;
ss >> strNum;

return 0;
}

sstream_test1.cpp

getp

EOFss

1 2 3 4 5

getp

EOFss

1 2 3 4 5

getp

EOFss

12345num

"12345"strNum

14

C++ Stringstream: Application 1b

• Use << and >> to convert strings into numbers
(i.e. "12345" => 12345)

#include<sstream>
using namespace std;
int main()
{
stringstream ss;
string strNum = "12345";
ss << strNum;

int num;
ss >> num;
return 0;
}

sstream_test2.cpp

getp

EOFss

1 2 3 4 5

getp

EOFss

1 2 3 4 5

getp

EOFss

"12345"strNum

12345num

15

C++ Stringstream: Application 2

• Can parse (split) a string of many values into
separate variables

#include <sstream>
using namespace std;
int main()
{
stringstream ss;
ss << "2.0 35 a";

double x, int y; char z;
ss >> x >> y >> z;

return 0;
}

sstream_test3.cpp

getp

EOFss

2 . 0 3

getp

EOFss

getp

ss

2.0x

35y

'a'z

5 a

2 . 0 3 EOF5 a

16

C++ Stringstream: Application 3

• Use the .str() member function to create a large
string from many value (i.e. return a string with the
contents of whatever is in the stream)

#include<sstream>
using namespace std;
int main()
{
stringstream ss;
ss << 2.0 << " " << 35;
ss << " " << 'a';

string s = ss.str();

return 0;
}

sstream_test4.cpp

getp

EOFss

2 . 0 3

getp

EOFss

getp

ss

"2.0 35 a"s

5 a

2 . 0 3 EOF5 a

17

C++ Stringstream Reuse

• Beware of re-using the same stringstream object for
multiple conversions. It can be weird.

– Make sure you clear it out between uses and re-init with
an empty string

• Or just make a new stringstream each time

stringstream ss;

//do something with ss

ss.clear();

ss.str("");

// now you can reuse ss

stringstream ss;

//do something with ss

// Just declare another stream
stringstream ss2;

// do something with ss2

Option 1: Reuse
Option 2: Use new stringstream

18

Exercise

string text;
int num;
double val;

stringstream ss("Hello 103 2.0");
ss >> text >> num >> val;

• What's in each variable after
execution?

– text

– num

– val

19

Exercises

• In class exercises

– Stringstream_in

– Stringstream_out

– Date

http://bits.usc.edu/websheets/index.php#stringstream_in
http://bits.usc.edu/websheets/index.php#stringstream_in
http://bits.usc.edu/websheets/index.php#stringstream_in
http://bits.usc.edu/websheets/index.php#stringstream_in

20

Choices
Where is my

data?

Keyboard
(use _____)

File
(use _____)

String
(use ______)

Do I know
how many?

Yes No

21

Choices
Is it

delimited?

Text
Integers/
Doubles

Yes No

What type
of data?

22

Choosing an I/O Strategy
• Is my data delimited by particular characters?

– Yes, stop on newlines: Use getline()

– Yes, stop on other character: User getline() with optional 3rd character

– No, Use >> to skip all whitespaces and convert to a different data type
(int, double, etc.)

• If "yes" above, do I need to break data into smaller pieces (vs.
just wanting one large string)
– Yes, create a stringstream and extract using >>

– No, just keep the string returned by getline()

• Is the number of items you need to read known as a constant
or a variable read in earlier?
– Yes, Use a loop and extract (>>) values placing them in array or vector

– No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
To convert to other types it is easiest to use >>

23

In-Class Exercises

• Wordcount

24

HELPFUL PA5 APPROACH

25

getline() and stringstreams

• Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

int num_lines = 0;
int total_words = 0;

ifstream myfile(argv[1]);

string myline;
while(getline(myfile, myline)){

stringstream ss(myline);

string word;
while(ss >> word)
{ total_words++; }

num_lines++;
}

double avg =
(double) total_words / num_lines;

cout << "Avg. words per line: ";
cout << avg << endl;

The fox jumped over the log.

The bear ate some honey.

The CS student solved a hard problem.

26

Using Delimeters

• Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

vector<string> mywords;

ifstream myfile(argv[1]);

string myline;
getline(myfile, myline, '(');
// gets "garbage stuff "
// and throws away '('

getline(myfile, myline, ')');
// gets "words I care about"
// and throws away ')'`

stringstream ss(myline);
string word;
while(ss >> word) {

mywords.push_back(word);
}

garbage stuff (words I care about) junk

"words" "I" "care" "about"mywords

0 1 2 3

Text file:

27

SOLUTIONS

28

Which Option?
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(!ifile.fail()){

ifile >> x;
nums.push_back(x);

}
...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1){

ifile >> x;
if(ifile.fail()) break;
nums.push_back(x);

}
...
}

int x;
while(ifile >> x){

nums.push_back(x);
}
...

A stream returns itself after extraction

A stream can be used as a bool (returns true if it hasn't failed)

Need to check for failure after you

extract but before you store/use

7 8 EOF

data.txt

_

nums

_ _ _

