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Abstract The D-Wave adiabatic quantum computing platform is designed
to solve a particular class of problems—the Quadratic Unconstrained Binary
Optimization (QUBO) problems. Due to the particular “Chimera” physical
architecture of the D-Wave chip, the logical problem graph at hand needs an
extra process called minor embedding in order to be solvable on the D-Wave
architecture. The latter problem is itself NP-hard. In this paper, we propose
a novel polynomial-time approximation to the closely related treewidth based
on the differential geometric concept of Ollivier-Ricci curvature. The latter
runs in polynomial time and thus could significantly reduce the overall com-
plexity of determining whether a QUBO problem is minor-embeddable, and
thus solvable on the D-Wave architecture.
Keywords: Adiabatic Quantum Computation, Chimera architecture, minor
embedding, treewidth, Ollivier-Ricci curvature

1 Introduction

1.1 Quantum annealing

Adiabatic Quantum Computation (AQC), first proposed in [17], was originally
designed to solve such general optimization problems as 2-SAT and 3-SAT. In
the more specific D-Wave implementation, it maps a Quadratic Unconstrained
Binary Optimization (QUBO) problem, defined as

min
X

E(x1, x2, ..., xn) = c0 +

n∑
i=1

cixi +

n∑
i<j=1

cijxixj ,

xi ∈ {0, 1},

(1)

Dept. of Electrical Eng., University of Southern California, Los Angeles, CA 90089, USA



2

to the problem of finding the ground energy level of an Ising chain defined as

HIsing =

n∑
i=1

hiσ
z
i +

n∑
1≤i<j

Jijσ
z
i σ

z
k,

σzi = I⊗i−1n×n ⊗ σz ⊗ I⊗n−in×n ,

(2)

where σz is the usual Pauli operator. The annealer prepares an initial trans-
verse magnetic field, an equal superposition of 2n computational basis states,
as

Htrans = −
n∑
k=1

σxk , (3)

where σxi is defined as in (2) except for the Pauli operator σx being substituted
for σz. During adiabatic evolution, the Hamiltonian evolves smoothly from
Htrans to HIsing with

H(t) = (1− s)Htrans + sHIsing, s ∈ [0, 1]. (4)

From the adiabatic theorem, if the evolution is “slow enough,” the system
would remain in its ground state; thus, the solution to the original QUBO
problem could be obtained, with a certain success probability, from measure-
ments on the D-Wave Ising system.

Adiabatic Quantum Computation is widely used in many research fields
that feature optimization, graphical models, Bayesian networks, etc. One of
the specific areas of applications is computer vision problems involving mini-
mization of energy functions. Felzenszwalb [1] provides an insightful survey of
the applications of QUBO in computer vision. QUBO has been proven to be
NP-hard. There is some evidence that the D-Wave quantum computer gives a
modest speedup over classical solvers for QUBO problems, and may provide
a large speedup for some instances of QUBO problems [2]. Recently, on the
D-Wave 2X chip with 1152 qubits, the speedup reached up to three orders
of magnitude for a subset of scenarios in multiple query optimization prob-
lems [18].

1.2 D-Wave architecture and minor embedding

The general idea behind D-Wave is to embed a QUBO problem graph

G = (V = {1, 2, ..., n}, E = {ij : cij 6= 0})

into a hardware graph in order for the problem to be solvable by adiabatic
evolution on the hardware. Due to physical architectural considerations, such
as limited qubit fan-out, minimizing coupler strengths, 2D chip integration etc.
[19], the current hardware architecture is designed using K4,4 bipartite cells
interconnected in a 2-dimensional lattice, referred to as “Chimera topology.”
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For a problem graph to be embedded into a hardware graph, it is required
that the problem graph be a subgraph of the architecture graph. In most in-
stances of general problems, this is a very strong requirement, since the hard-
ware graph is fixed. In the D-Wave architecture, minor embedding instead of
subgraph embedding is used to allow 1-to-many vertex mapping [3]. By properly
adjusting the coupling strengths of particular edges and nodes [4], more than
one physical qubits can represent the same logical qubit, thus greatly increas-
ing the range of graphs that can be minor embedded into a fixed hardware
graph, at the cost of using more resources (more physical qubits).

The definition of minor embedding is as follows. Let U be a fixed hardware
graph. Given a problem graph G, the minor embedding of G is defined by
φ : G → U such that (i) each vertex v in V (G) is mapped to a connected
subtree Tv of U ; (ii) there exists a map V (G) × V (G) → E(U) such that for
each vw ∈ E(G), there are corresponding iv ∈ V (Tv) and iw ∈ V (Tw) such
that iviw ∈ E(U).

Minor embedding relaxes the original requirement of subgraph embedding,
provided that the resources (number of physical qubits) are adequate. Crucially
related to minor embedding is the concept of tree decomposition T of G:
Each vertex i ∈ I of the tree T abstracts a subset Vi of vertices of G, called a
“bag,” such that (i) ∪i∈IVi = V (G); (ii) for any vw ∈ E(G), there is a i ∈ I
such that v, w ∈ Vi; (iii) for any v ∈ V , the set {i ∈ I : v ∈ Vi} forms a
connected subtree of T . The width of a tree decomposition is maxi(|Vi| − 1).
The treewidth (tw) is the minimum width over all tree decompositions. The
treelength is the minimum over all decompositions of the maximum of the
diameters of the bags.

1.3 Paper outline

This paper is organized as follows: In section 2, the minor embeddability prob-
lem at hand will be reviewed and properly formulated in the present context,
and the proposed approximate but fast solution will be introduced. In section
3, the mathematical background of our approach—the differential-geometric
Ollivier-Ricci curvature—will be developed. In section 4, experimental results
will be shown that prove that in practice our approach can very efficiently rule
out cases where minor embedding fails.

The main contributions of this paper are (1) An embeddability preproces-
sor for adiabatic quantum computation; (2) A numerical connection (and a
“weak” theoretical link) between graph curvature and treewidth; (3) A quick
polynomial time curvature-based rule to reject cases where minor embedding
is not possible, thereby greatly reducing the amount of time the heuristics
might spent at attempting to construct an embedding.
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2 Minor embeddability and problem formulation

2.1 Treewidth and minor embeddability

To determine whether a problem graph has a chance to be minor-embeddable
into a hardware graph, one needs to check whether the treewidth of the prob-
lem graph is not larger than that of the hardware graph, following a well-known
graph minor theorem as discussed in more detail in [5, 21,23,24]:

Theorem 1 If G is a minor of H, then tw(G) ≤ tw(H).

The problem is that the above condition is necessary but not sufficient for
minor embeddability.

For regular graphs, the estimation of the treewidth is both standard and
efficient. For F (m, c), the graph of an array of m × m cells with each cell a
bipartite graph Kc,c (the D-Wave architecture), the treewidth of the graph
has very tight lower and upper bounds represented as [5]

cm ≤ tw(F (m, c)) ≤ cm+ c− 1. (5)

For the 128-qubit D-Wave “Chimera” architecture consisting of a 4×4 array of
K4,4 bipartite graph cells, the treewidth approximation has a range of [16, 19],
and it is exactly 17 if one needs the accurate treewidth.

However, as noted in [20], the biggest challenge to solve practical prob-
lems in quantum adiabatic computation is minor embedding of general graphs.
The major problem here is not to find the treewidth of a fixed architecture
graph U , but the treewidth of any arbitrary problem graph G. In order to
rule out embeddability, that is, the case where tw(G) > tw(U), a fast ap-
proximation of treewidth is still needed. In general, determining the treewidth
of arbitrary graph is NP-hard [21, 22]. Although a linear-time algorithm to
determine whether a graph has treewidth at most k is proposed in [21], the
constants in the algorithm are extremely large and grow exponentially with
k, which makes it impractical for most graphs [5]. Thus, heuristics are needed
for practical considerations.

2.2 Problem formulation and related work

There exist several recent quantum annealing applications running on D-Wave,
including solving database optimization [18], graph isomorphism [29], power
system fault detection [28], Bayesian network structure learning [27], and op-
erational planning [26]. However, in these applications, the problem size is
relatively small and solvable by minor embedding heuristics proposed in [25]
and implemented on D-Wave. Embeddability is not generally pre-determined,
but decided on a trial-and-error basis. Also, in most cases, embedding only
needs to be determined once and used throughout the entire annealing process.
However, this is not practical if the topology of the QUBO (i.e., the topology
of the original graph problem) is not fixed. The latter is precisely the case
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Fig. 1 Proposed problem pre-processor for the D-Wave adiabatic quantum computing plat-
form. The arbitrary graph could be either “embeddable” or “unembeddable,” but this is not
known. The “preprocessor” acts only on the “unembeddable” graphs, as it only checks a nec-
essary condition for embeddability, in polynomial-time in order to save embedding trial time.
Note that even if the necessary condition test passes, the graph could still be unembeddable
so that embedding trials are still necessary.

when solving the network scheduling problem in wireless networks [30], which
we take as a prototype for more general cases of problems with time-varying
QUBO topology.

The D-Wave heuristics of minor embedding G→ H reduces the time com-
plexity of the current best exact algorithm of O(2(2k+1) log k|nH |2k22|nH |2 |eG|)
[31] where k is the branchwidth of G and n∗, e∗ the graph order, size, resp., to
O(nHnGeH(eG + nG log nG)), at the cost of the following:

– Success with a certain probability, and re-tries on failure;
– No attempt to prove minor exclusion.

We propose a polynomial-time preprocessor as shown in Figure 1, which could
identify unembeddable problems by treewidth estimation, thus significantly re-
ducing the embedding trial time for arbitrary problems. The embedding trial
time cannot be ignored in time-sensitive problems. Figure 2 shows simulations
on a set of random graphs, performed in MATLAB 2015b on Intel 4960x with
32GB DDR3 RAM running Ubuntu 14.04 without parallelization. The em-
bedding API is provided by D-Wave. The testing environment in the following
sections remains the same, unless otherwise specified. Note that Figure 2 only
intends to show a typical process where embeddability is unknown, i.e. the
order of the test input is at least larger than the treewidth of the D-Wave ar-
chitecture. The computing time heavily depends on computing hardware, test
set, and order of both the problem graph and the hardware graph; however,
the time/cost breakdown would remain roughly the same for random graphs
of arbitrary order—namely, the time spent on embedding trials using heuris-
tics is much more significant than the actual annealing time. The latter is
especially true if the problem graph is not minor embeddable in the Chimera
architecture graph, as it may take many unsuccessful trial runs before it is
“declared” that the graph is not embeddable. Clearly, a quick way to rule out
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Fig. 2 Experimental results on wall-clock running time for the embedding heuristic. A set
of 40 problems all with 40 nodes, generated in accordance with the Erdös-Rényi model, is
tested. On the left plot, in order to test success probability, the embedding trials do not
stop if a successful embedding is found, performed in 40 embedding trials. On the right
graph, to simulate the real scenario, a default 10-trial process is run and stops once an
embedding is found and the graph is positively determined to be embeddable. On the other
hand, if after a great many runs no embedding is found, the graph is declared unembeddable
(although it might be embeddable if the trial missed the embedding). The numbers in the pie
chart are in seconds. Parameter loading and sampling time is provided in [41]. Determining
embeddability takes much shorter time since the process would stop once an embedding is
found, and is usually found within the first few trials.

embeddability would alleviate this situation, and this is the main motivation
for this work.

There exist several methods for both bound estimation and exact solution
of treewidth, such as polynomial-time bound estimations based on vertex
degree (lower bound) [35], triangulation (lower bound) [32], vertex deletion
(lower bound) [34], edge contraction (lower bound) [33], greedy degree (upper
bound) [51], Breadth First Search (BFS, upper bound) [52], and exponential-
time exact algorithms including QuickBB [11] using the branch and bound
method and TreewidthDP [36] using dynamic programming. Most of these
algorithms have issues with either 1) occasionally large error or 2) impracti-
cal time complexity. Note that some heuristics give very tight upper or lower
bounds, including greedy, which slightly outperforms our Ollivier-Ricci algo-
rithm in term of accuracy for varying order graphs (see Fig. 6). However, to
the best of our knowledge, there is no algorithm that gives direct estimations
instead of bounds on the treewidth. In Section 4, we compare our methods
with the best heuristics and exact algorithms to demonstrate that our result
is applicable in most scenarios.

3 Ollivier-Ricci curvature and treewidth

3.1 Ollivier-Ricci curvature

All fast approximation to treewidth algorithms are improvements of either
lower or upper bounds. Here, besides bringing some theoretical insights, we
propose a novel method of direct approximation based on a geometrical-
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topological invariant associated with a graph: specifically, we propose to de-
velop the connection between the curvature of a graph and the treewidth of a
graph.

The Ollivier-Ricci curvature, recently developed by Yann Ollivier [7, 8] and
further developed by a group led by Jürgen Jost [9], is a combinatorial measure
of how negatively/positively curved a graph is. It is inspired by a coarse version
of the Ricci curvature in differential geometry. The Ollivier-Ricci curvature
is conveniently defined in terms of the transport capabilities of the graph:

κ(x, y) = 1− W1(mx,my)

d(x, y)
∈ (−2, 1),

where

W1 : 1st Wasserstein distance,
mx : distribution of 1-step non-lazy random walk from node x,
d(x, y) : distance between nodes x and y (in general hop-distance).

In the above, the first Wasserstein distance W1 is defined as

W1(mi,mj) = inf
ξij

∑
k,l∈N(i)×N(j)

d(k, l)ξij(k, l), (6)

with the infimum being extended over all coupling measures ξij defined on
N(i)×N(j), where N(i) = {j ∈ V : ij ∈ E} is the neighborhood of i. ξij(k, l)
is sometimes referred to as the transference plan, that is, it specifies the mass
quantity initially at k ∈ N(i) to be transferred to l ∈ N(j). Formally,∑

`∈N(j)

ξij(k, `) = mi(k),
∑

k∈N(i)

ξij(k, `) = mj(`). (7)

The reader is referred to [47, 48] for a review of the Wasserstein distance and
optimal transport. A more intuitive explanation of the Ollivier-Ricci curvature
is shown in Figure 3. The Ollivier-Ricci curvature, though a local measure,
can be given a global significance by averaging it over all edges, since there is
currently no Ollivier-Ricci counterpart of the Gauss-Bonnet theorem.

The local aspect of the Ollivier-Ricci curvature makes it of relevance in an-
ticipating how the Heat Diffusion protocol (or the Back Pressure protocol for
that manner) will perform on a network, as both protocols use local informa-
tion to forward packets, as described in more detail in [15,16].

At this stage, there is no theoretical proof that the Ollivier-Ricci curvature
of a graph is related to its “tree-likeness.” However, it is the main purpose
of this paper to show that a strong correlation exists and develop a proof
that a lower bound on treewidth is an increasing function of curvature. Clear
agreement between curvature and treewidth at the limit of their ranges of
values is shown in Table 1.

To better visualize the bigger picture of network topology and embeddabil-
ity, the relationship among the most researched topics in network topology
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Fig. 3 Concept of optimal transport and curvature, where a mass distributed over a ball Bx

in a Riemannian manifold is being transported to the ball centered at y. The comparison
between (i) the piecemeal process of transporting every single mass element by parallel
transport of xx′ along the geodesic [x, y] and (ii) the process of lumping the total mass of Bx

at its center and transporting it in one move to the center of the other ball for redistribution

across the ball is quantified by the fraction

∫
Bx

d(x′,T (x′))dvol(x′)

d(x,y)vol(Bx)
. This measure is greater

than 1 if and only if κRicci[x, y] < 0, or less than 1 if and only if κRicci[x, y] > 0.

Table 1 Ollivier-Ricci curvature versus treewidth agreement (n denotes the order of the
graph)

treewidth Ollivier-Ricci curvature

range of possible values [1, n− 1] (−2, 1)
lower bound reached for tree tree
upper bound reached for complete graph complete graph

is provided in Figure 4. There exist weak links between Gromov δ and em-
beddability [42], Gromov δ and treewidth [43], treewidth and treelength [44];
and strong links between treelength and Gromov δ [12], treewidth and graph
minor and thus embeddability as discussed before. We will show strong cor-
relation, if not a strong theoretical link, between Ollivier-Ricci curvature and
treewidth; thus by calculating curvature using a linear programming interior
point method, one would estimate treewidth in polynomial time.

As an aside, note that the Ollivier-Ricci curvature has been used to an-
ticipate congestion in a wireless network under the specific Heat Diffusion
communication protocol [15]. The theoretical fact that underpins this obser-
vation is that the Ricci curvature regulates the flow of heat on a Riemannian
manifold, in somewhat the same way that the sectional curvature regulates
geodesics. It has also seen recent applications including formulating Hamilto-
nian Monte Carlo [37], Internet topology [40], modeling robustness of cancer
networks [38], and analyzing market fragility and systemic risk [39].
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Fig. 4 The conceptual connection among four related invariants in graph theory. We pro-
vide strong numerical connections between Ollivier-Ricci curvature and treewidth in random
arbitrary graphs; on the other hand, treewidth connects to graph minors, and hence cur-
vature could determine unembeddability. It is worth noting that for engineering purposes,
among the four topological invariants, only the Ollivier-Ricci curvature has polynomial-time
complexity.

3.2 Ollivier-Ricci curvature computation

Clearly, (6)-(7) together with ξij(k, `) ≥ 0 make a linear programming prob-
lem. The most important motivation for the Ollivier-Ricci approach to graph
curvature is that it is computable in polynomial-time via an Interior Point
Method, while determining treewidth of a graph is NP-hard (shown in sec-
tion 4). Note that in the actual computation throughout this paper, a more
dedicated algorithm described in Rubner [50] is implemented in practice. The
first Wasserstein distance in Eq. (6) is essentially Earth Mover’s Distance
(EMD) and has been proved to have polynomial-time complexity [50].

3.3 Proof of lower bound

We show that the Ollivier-Ricci curvature serves as a lower bound for the
treewidth of an arbitrary graph G. This result is obtained by combining two
known results: one that relates the lower bound on the spectrum of the graph
Laplacian to the treewidth [45], and one that relates the spectrum lower bound
to the Ollivier-Ricci curvature [46].

Proof It is known that

tw(G) > b3n
4

λ1
∆+ 2λ1

c − 1 =: f(λ1), (8)
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where n and ∆ denote the order and the maximum degree, resp., of the graph
and λ1 denotes the second smallest eigenvalue of the graph Laplacian. The
other result to be utilized is

1− (1− k[t])
1
t ≤ λ1 ≤ ... ≤ λN−1 ≤ 1 + (1− k[t])

1
t , (9)

where k[t] denotes the lower bound on the Ollivier-Ricci curvature of the t-fold
neighborhood graph as defined in [46]. By convention, t = 1 corresponds to
the original graph, so that k[1] = k is the lower bound on the Ollivier-Ricci
curvature of the original graph. It is easily seen that f(·) as defined by (8)
is a monotonically increasing hyperbola in λ1. Hence for k ≤ λ1, we have
f(λ1) ≥ f(k) and therefore

tw(G) ≥ b3n
4

k

∆+ 2k
c − 1. (10)

For the case considered in Fig. 5, left, this lower bound is not very useful as
it is negative for some k’s. However, its relevance lies in an important trend it
reveals: Clearly, as the lower bound k on the Ollivier-Ricci curvature increases,
the lower bound of the treewidth f(k) increases.

Bauer et al. [46] showed that as t increases, the lower bound on λ1 in (9)
always gets nontrivially tighter. Therefore, a tighter bound would be

tw(G) ≥ b3n
4

1− (1− k[t])
1
t

∆+ 2(1− (1− k[t])
1
t )
c − 1. (11)

Note that generating neighborhood graphs significantly increases compu-
tational cost. One could, however, construct G[t] by simulating the random
walk on the original graph G and by adding edge xy if the walk starting at
x ∈ V (G) reaches y ∈ V (G) after t steps (see [46, Secs. 2.1 and 2.2]).

Even though (11) is an improvement over (10), it could still go negative
for some networks. The reason is that, even though the bound (9) could be
tight, the treewidth bound (8) could be very conservative and could even be
negative. This especially happens when the maximum degree of the graph
is high, as it is the case for scale-free graphs that have heavy tailed degree
distribution. When the right-hand side of Equation (11) becomes negative, the
bound unfortunately becomes useless in the preprocessor of Fig 1 for treewidth
computation.

If, on the other hand, invoking Bauer’s claim of tightness we assume that

tw(G) ≥ [RHS(11)]problem ≥ [RHS(11)]architecture ,

then we may be able to conclude that

tw(G) ≥ tw(architecture),

in which case we can positively conclude that G is not embeddable in the ar-
chitecture while the heuristics would attempt to construct an embedding when
there is no hope for. This improved procedure is not considered here, as our
results indicate that t = 1 already yields good results. An assessment of the
extra effort needed to compute k[t] versus the benefit of a tighter bound is left
for further research.
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4 Experimental results

We set up our simulation experiments on the hardware discussed in section 2.
In the following, we examine three evaluation criteria of our curvature-based
estimate of the treewidth: namely, 1) the correlation between treewidth and
Ollivier-Ricci curvature, 2) the accuracy of the estimate, and 3) the wall-clock
time cost of the estimate compared to other estimation methods and the exact
solution.

4.1 Correlation

In Figure 5, we show a strong correlation between Ollivier-Ricci curvature
and treewidth of Erdös-Rényi random graphs. The curvature of the graphs
is controlled by the probability of connection parameter in the Erdös-Rényi
generator. In general, as the probability increases so does the curvature. We
performed the experiment on two sets of graphs: those of the same order and
those with varying order. Since for varying order, the treewidth could go as
high as |V (G)| − 1, a normalization is needed. We propose

twnorm(G) =
tw(G)

|V (G)|
. (12)

This is the normalization that was used in the simulation. Fig. 5 reveals a linear
estimate of treewidth of the form tw(G) ≈ aκ(G) + c where κ(G) denotes the
curvature of the graph. Even though Fig. 5 is restricted to Erdös-Rényi graphs,
it is shown in our previous work [49] that data points of trees and scale-free
graphs lie on, or close to, the same interpolation line. (More accurate results
could be obtained by polynomial interpolation.)

4.2 Accuracy

We perform a linear interpolation-based treewidth estimation on randomly
generated graphs of nontrivial treewidth computation. Since the exact solu-
tion has exponential complexity, the size of the test graphs is taken to be
small enough to permit exact calculation. We estimate the treewidth based on
several classical heuristics discussed in section 2 in addition to the nonclas-
sical curvature estimate. We compare the results with the exact solution, as
shown in Figure 6, where the exact solution is normalized to 1. Under such
normalization, any other returned treewidth estimate is called accuracy index,
with the idea that the closer the accuracy index is to 1, the more accurate the
heuristic or Ollivier-Ricci curvature estimate is.

Out of several heuristics for upper and lower bound computation discussed
in the previous section, we choose BFS and Greedy for upper bound estimation
and Min Degree for lower bound estimation.
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Fig. 5 Scatter plots of Ollivier-Ricci curvature versus treewidth (coefficient of determina-
tion R2: 0.965 (left) and 0.889 (right)) The left plot is constructed on a set of 40 random
graphs using the Erdös-Rényi random graph model with increasing probability of connection
(hence increasing curvature). The right plot is constructed on a set of 250 random graphs,
with the order of the graphs varying from 10 to 34. The treewidth of the right graphs is
normalized by the order of the respective graphs; moreover, each order case contains random
graphs with different probabilities of connection.

It turns out that the curvature estimate is of statistically best accuracy
on sample graph sets of fixed order but with varying connectivity, with the
greedy algorithm coming next (left panel of Fig. 6). Note, however, that on
the varying order test set (right panel of Fig. 6), the accuracy of the curvature
estimate is not as good as that of the greedy algorithm, but still better than
the remaining two algorithms. This may be improved by a more carefully
thought of definition of “normalized treewidth” or by higher order polynomial
interpolation.

Student’s t-test is utilized to test the significance of the observed Ollivier-
Ricci curvature accuracy index being closer to the ideal value of 1 than the
other estimates. The t-test would assume that the empirical distribution of
the accuracy indexes returned by the various trials of the various methods
(Greedy, Ollivier-Ricci, BFS, Min Degree) is Gaussian. It should be noted
that the Greedy and BFS algorithms give only upper bounds on the accuracy
index, while the Min Degree algorithm gives a lower bound. Consequently,
the distribution of the accuracy indexes for the Greedy, Min Degree and BFS
estimates is skewed and cannot be Gaussian. So, the t-test cannot be applied
“as is” to prove that the various means differ. However, on theoretical grounds,
the mean of the Min Degree index is less than 1, while the mean of the Greedy
and BFS indexes is larger than 1. On the other hand, the sample distribution
of the accuracy indexes returned by the Ollivier-Ricci curvature is symmetric,
and appears to be Gaussian with mean 1. So, the only statistical test to be
conducted is a t-test on the mean of the Ollivier-Ricci curvature to be 1. We
used the Matlab t-test implementation with the null hypothesis that the mean
of Ollivier-Ricci curvature is equal to 1 and the t-test does not reject the null
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Fig. 6 Accuracy analysis of Ollivier-Ricci curvature estimation and other well-known classi-
cal heuristics. Accuracy is estimated relative to the exact solution, so that the exact solution
has accuracy index of 1. Bars show 25th and 75th percentile of the estimation. The left graph
shows the accuracy index of 60 graphs of the same order but with varying topology. The
right plot shows the accuracy index for graphs with similar topology but with order varying
from 10 to 40. Accuracy larger than one means that estimated treewidth is larger than
actual treewidth. LibTW library [6] is used throughout the computation.

hypothesis with a p-value of 0.3979 for the fixed order case and 0.1415 for the
varying order case.

4.3 Time cost

The classical treewidth heuristics used in accuracy comparison all have
polynomial-time complexity and run smoothly in experiments; thus, their
speed is not assessed in this section. We would mainly compare the curva-
ture estimate with two best known exact treewidth algorithms: QuickBB and
TreewidthDP. The former, discussed in detail in [36], treats the treewidth
problem as a linear ordering problem, and finds a perfect elimination scheme
of such ordering. The latter, discussed in detail in [11], performs a search over
permutations of the vertices. TreewidthDP runs much more slowly in general
than the latter; however, for memory constrained systems, QuickBB would
utilize address space in a better way. The comparison is shown in Figure 7.
As one would note from the left figure, curvature estimation takes more time
as curvature and treewidth grow larger along the abscissa. Note that the time
complexity of QuickBB scales as O(nn−tw(G)) [11, Sec. 8]. Therefore, QuickBB
favors graphs of higher treewidth while curvature estimation favors graphs
of lower treewidth. One may utilize this fact to develop “smart algorithms”
that efficiently predetermine graph connectivity and decide which algorithm
to choose. From the right plot of Figure 7, it follows that TreewidthDP scale
exponentially with the order of the graph in general, and the curvature esti-
mation appears subexponential as the curve is not quite a line. Note that it
is not possible in practice to scale the problem to larger size, as the time cost
for TreewidthDP is already approaching practical limits.
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Fig. 7 Wall-clock time cost of classical exact treewidth algorithms and non classical curva-
ture estimate. On the left panel, the abscissa is consistent with increasing treewidth on a set
of 60 graphs with the same order. On the right panel, the abscissa is the order of the graph in
a set of graphs with similar topological characteristics in the sense of normalized treewidth.
Both simulations are performed in the same environment as before. No parallelization is
added. Note that the time is in log scale.

5 Conclusion and future work

In conclusion, we reviewed the quantum adiabatic implementation of the
QUBO problem—more specifically, the crucial minor embedding step that
allows it to be solved on, say, the D-Wave quantum computer architecture.
We proposed a fast estimation algorithm of the treewidth, the exact com-
putation of which is NP-hard, based on the computationally less demanding
differential-geometric Ollivier-Ricci curvature. Even though we derived analyt-
ically a lower bound on treewidth based on a lower bound of the curvature, this
leaves open the theoretical problem of proving the existence of error bounds
between the exact Ollivier-Ricci curvature and the exact treewidth of a graph.

It is also important to follow up on the impact of curvature-based treewidth
estimation on real-world problems, as the D-Wave chip is being applied to
more and more optimization problems. It is of interest to properly define
a time-sensitive, time-varying QUBO problem that could benefit from fast
treewidth estimation, thus possibly leading to a general quantum speedup in
applications. Sensor coverage and, more specifically, optimization subject to
interference constraints in wireless networking [30] would be potential prob-
lems of this nature.

An broader theoretical spinoff of this work, closely related to the treewidth
versus treelength issue displayed in Figure 4, is the discrepancy between con-
gestion in wireline networks under least length path routing [10] and conges-
tion in wireless networks under the Heat Diffusion protocol [15]. Indeed, the
former occurs over Gromov hyperbolic networks [10], while the latter occurs
over Ollivier-Ricci negatively curved networks. Observing that the proof of
congestion in Gromov-hyperbolic networks [10] does not rely on a “fattened
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tree” interpretation of the Gromov property further corroborates our claim of
Gromov-hyperbolicity versus tree-likeness discrepancy [49].
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