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Abstract

When dealing with the control of quantum sys-
tems in interaction with an external environment, one
of the most commonly used models is the Lindblad-
Kossakowski equation for the density matrix. Its deriva-
tion relies on various approximations, which are usually
justified in terms of weak interaction between the system
and its surroundings and special properties of the bath
interacting with the system. This equation contains dis-
sipative corrections, accounting for the interaction with
the environment, whose expression strongly depends on
the adopted Markov approximation. In the case of co-
herently controlled Lindblad-Kossakowski equation, it
is usually assumed that this correction is independent of
the control Hamiltonian. However, this procedure is not
consistent with the rigorous derivation of the Markov
approximation in the standard case, the so-called weak
coupling limit, in which the dissipative contribution de-
pends on the coherent part of the dynamics.

In this paper we discuss the rigorous derivation of
the Lindblad-Kossakowski equation in the weak cou-
pling limit regime, following the original derivation of
Davies [7], in the case where the control is present, and
explicitly displaying the dependence of the model on the
control. We then consider the special case of a 2-level
system in a bosonic bath, and show explicitly how the
model depends on the parameters in the Hamiltonian
which contains the control. We also discuss the impact
of this more rigorous modeling procedure in the cur-
rent research on methods to find controls that decouple
the system from the environment. We indicate directions
and problems for further research.
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1. INTRODUCTION

In the last decades there has been a large interest in
the control of quantum systems whose interaction with
the environment cannot be neglected. Such systems are
named open quantum systems and their control presents
a series of challenges and a structure which is not a sim-
ple extension of what is known for the case of closed
systems [3]. The effect of the interaction with the envi-
ronment leads to a degradation of the ‘quantum’ nature
of the evolution which jeopardizes the correct imple-
mentation of quantum information processing. There-
fore control of the dynamics to shield a system from the
bath is currently investigated.

Generally, a well motivated model of open quan-
tum dynamics is the Markovian Quantum Master Equa-
tion for the density matrix ρ describing the system. This
is given by

ρ̇ = [−iH,ρ]+∑
j,k

(
VjρV †

k −
1
2

{
V †

k Vj,ρ
})

, (1)

where the operators Vj are the so-called Lindblad-
Kossakowski operators, cf., e.g., [2]. Here H is the
closed system Hamiltonian H0 augmented with the so-
called Lamb shift term, HLamb, which depends on the
interaction between the system and the environment.
The derivation of the equation (1) is the work of many
authors including Nakajima, Zwanzig, Prigogine, Re-
sibois, Lindblad, Kossakowski and Davies. This work
proceeded from phenomenological arguments to rigor-
ous mathematical proofs (see e.g., [5], [6], [7], and the
references in [13]). Equation (1) is valid under the as-
sumption that the coupling with the external environ-
ment is small and that memory effects are negligible,
the Born and Markov approximations. More specifi-
cally, there are two main approaches to rigorous Markov
approximations, valid under different conditions: the
weak coupling limit and the singular coupling limit. In
the first case, which is usually better motivated from a
physical point of view, the Lindblad-Kossakowski op-
erators depend on the Hamiltonian H0. A survey on the
master equation is presented in [8].
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When dealing with coherent control of open quan-
tum systems, the Hamiltonian H0 depends on the con-
trol and typically authors in the control theory literature
modify equation (1) by simply replacing H0 with a time
varying Hamiltonian, Hc := Hc(u), depending on the
control (see e.g., papers in the special issue of the IEEE
Transactions on Automatic Control dedicated to quan-
tum control [16], and the references therein). While this
procedure is justified in the singular coupling limit, it is
not in the weak coupling limit, since in the latter case
the Vj’s operators in (1) depend on the Hamiltonian it-
self, which in turn depends on the control (which, in
principle, has yet to be designed). By using an exam-
ple, in this paper we will show that this dependence can
be very significant. While this fact has been already dis-
cussed to some extent in the physics literature [14], our
goal is to point it out to the control community, and to
suggest directions for future research.

The paper is organized as follows. In section 2 we
describe the quantum master equation and define the
above mentioned approximations. Our treatment fol-
lows mainly the work of Davies in [7] (cf. also [5],
[6], [7], and [4]) and it is presented in a way that high-
lights the dependence of the Lindblad-Kossakowski op-
erators on the Hamiltonian and therefore the controls.
We stress the role of the Generalized Master Equation
which is an exact integral equation, of the Volterra type,
which describes the evolution before any approxima-
tion is applied. The two cases of singular coupling limit
and weak coupling limit are discussed, pointing out that
in the second case the Lindblad-Kossakowski operators
depend on the control. In section 3 we consider the
model of a 2-level system in an external environment
which consists of a continuous set of harmonic oscil-
lators (bosonic bath). We derive the generator of the
dynamics, and explicitly show the aforementioned de-
pendence. In section 4 we discuss how this dependence
may affect current research in finding controls to decou-
ple the system dynamics from the environment (see e.g.,
[10], and references therein).

We would like to emphasize at the outset that, al-
though the arguments presented in this paper limit the
applicability of some of the results published in the lit-
erature, they also open new scenarios for the develop-
ment of the theory of control of open quantum systems.
The dependence of the model of de-coherence on the
control offers a new way to shield a quantum systems
from the detrimental effects of the interaction with the
environment as the control enters not only the coherent
part of the model, but also the additional terms model-
ing the interaction with the environment.

2. THE QUANTUM MASTER EQUA-
TION

2.1. Preliminaries

We consider a system S and a bath B in a composite
state described by a density operator ρT on the Hilbert
space HS⊗HB. Our objective is to obtain an equation
for the evolution of the state of the system S only, which
is ρS := TrB(ρT ). We assume that the states of the sys-
tem S and bath B are initially uncorrelated so that

ρT (0) = ρS(0)⊗ρB, (2)

for an equilibrium state of the bath ρB, satisfying
([HB,ρB] = 0). The dynamics of the total system S+B is
determined by an Hamiltonian operator HTOT (t), given
by the sum of the term ĤS(t)⊗ 1, which describes the
dynamics of the system alone, the term 1⊗HB which
describes the dynamics of the bath alone, and finally
the term εĤSB, which describes the interaction between
system and bath. The parameter ε is used to describe
the strength of the interaction, which, in the limit con-
sidered below, is assumed to be small. We have there-
fore

HTOT (t) := ĤS(t)⊗1+1⊗HB + εĤSB. (3)

Without loss of generality, we write the interaction
Hamiltonian as ĤSB := ∑ j VS j⊗VB j. Adding and sub-
tracting ∑ j Tr(VB jρB)VS j ⊗ 1 = TrB(ĤSB1⊗ρB) in (3),
we define

Hε
S (t) := ĤS(t)+ ε ∑

j
Tr(VB jρB)VS j, (4)

HSB := ĤSB− ε ∑
j

Tr(VB jρB)VS j ⊗1, (5)

so that we can rewrite the Hamiltonian HTOT (t) in (3)
as HTOT (t) = Hε

S (t)⊗ 1 + 1⊗HB + εHSB. The term
εTrB(ĤSB1⊗ ρB) in (4) is the so-called Lamb shift.
It represents a shift in the Hamiltonian of the system
due to the interaction with the bath. Notice that the
Hamiltonian ĤS(t) (and therefore Hε

S (t)) can be time-
dependent, since it contains the time-varying control
fields; all other Hamiltonians are assumed constant.

The dynamics of ρT follows the Liouville-
Schrödinger equation ρ̇T = [−iHTOT (t),ρT ] =
[−iHε

S (t)⊗1,ρT ]+ [−i1⊗HB,ρT ]+ ε[−iHSB,ρT ].
As customary, adA denotes the operator adA(B) :=

[A,B], and we use the short notation adε
S (t), adB and

adSB for ad−iHε
S (t)⊗1, ad−i1⊗HB , and ad−iHSB , respec-

tively, so that this equation can be compactly written
as

ρ̇T = (adε
S (t)+adB)(ρT )+ εadSB(ρT ). (6)
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Following the technique of Nakajima [12] and
Zwanzig [15], we define a projection operator P (cf.
[13]), as

P[ρ] = TrB(ρ)⊗ρB, (7)

so that P(ρT ) = ρS⊗ρB, where ρB in the definition of
P is the same as in (2). We denote by Q := 1−P. It
follows from the definitions and properties of adε

S (t),
adB and adSB, and ρB that

Padε
S (t) = adε

S (t)P, Qadε
S (t) = adε

S (t)Q, ∀t ≥ 0
(8)

PadB = adBP = 0, QadB = adBQ = adB, (9)

PadSBP = 0. (10)

In particular this last one follows from (5).

2.2. The Generalized Master Equation

The Generalized Master Equation (GME) is a
Volterra integral equation representing the dynamics of
ρS. It does not involve any approximation, and it repre-
sents the starting point to obtain a Markovian dynamics,
in the form of a differential equation as in (1).

By writing adSB = (P+Q)adSB(P+Q), and recall-
ing (10), we can rewrite equation (6) as

ρ̇T = (adε
S (t)+adB + εQadSBQ)(ρT )+ (11)

ε(QadSBP+PadSBQ)(ρT ).

Following [5], [6], [7], we introduce evolution oper-
ators (or propagators) associated with the linear op-
erators appearing in (11). Φ0(t,s) is the propagator
associated with ad0

S(t) + adB, and it would describe
the evolution of the state ρT if there was no interac-
tion between system and bath. Φε

1(t,s) is the propa-
gator associated with adε

S (t) + adB; it is the same as
Φ0(t,s) but it takes into account the Lamb-shift term
in the free dynamics of the system S. Φε

2(t,s) is the
propagator associated with adε

S (t) + adB + εQadSBQ,
cf.(11). Φε

3(t,s) is the (full) propagator associated with
adε

S (t)+ adB + εQadSBQ+ ε(QadSBP+PadSBQ). No-
tice that because of (8), (9), we have

PΦ
ε
2(t,s) = Φ

ε
2(t,s)P = PΦ

ε
1(t,s) = Φ

ε
1(t,s)P. (12)

The propagator Φε
3 satisfies the following integral equa-

tion (cf. (11))

Φ
ε
3(t,s) = Φ

ε
2(t,s)+ (13)

ε

∫ t

s
Φ

ε
2(t,r)(QadSBP+PadSBQ)Φε

3(r,s)dr.

From this, by using (12), we calculate PΦε
3(t,s)P and

QΦε
3(t,s)P; we obtain respectively

PΦ
ε
3(t,s)P=PΦ

ε
1(t,s)P+ε

∫ t

s
Φ

ε
1(t,r)PadSBQΦ

ε
3(r,s)Pdr,

(14)

QΦ
ε
3(t,s)P = ε

∫ t

s
Φ

ε
2(t,x)QadSBPΦ

ε
3(x,s)Pdx. (15)

Replacing (15) into (14), and setting s = 0, we obtain

PΦ
ε
3(t,0)P = PΦ

ε
1(t,0)P+ (16)

ε
2
∫ t

0
Φ

ε
1(t,r)PadSB

[∫ r

0
Φ

ε
2(r,x)QadSBdx

]
Hdr,

H := PΦε
3(x,0)P, where the term in square brackets is

QΦε
3(r,0)P. We can slightly simplify (16) by using (10)

to replace QadSBP with adSBP, and obtain

PΦ
ε
3(t,0)P = PΦ

ε
1(t,0)P+ (17)

ε
2
∫ t

0
Φ

ε
1(t,r)PadSB

[∫ r

0
Φ

ε
2(r,x)adSBPΦ

ε
3(x,0)Pdx

]
dr.

The operator PΦε
3(t,0)P in (17) describes the evolution

of the state of ρS of S. Since the initial state of the total
system S+B is given by (2), P acts on it as the identity.
Φε

3(t,0)PρT (0) gives the state of the system S + B at
time t, and the application of P recovers the state of the
system S: the final result is ρS(t)⊗ ρB. Changing the

order of integration in (17) and replacing Φε
1(t,r) with

Φε
1(t,x)(Φ

ε
1(r,x))

−1, we obtain

PΦ
ε
3(t,0)P = PΦ

ε
1(t,0)P+ (18)

ε
2
∫ t

0
Φ

ε
1(t,x)

[∫ t

x
(Φε

1(r,x))
−1PadSBΦ

ε
2(r,x)adSBdr

]
Hdx,

with H := PΦε
3(x,0)P. Defining as L = L(ε, t,x) the

kernel

L(ε, t,x) := ε
2
∫ t

x
(Φε

1(r,x))
−1PadSBΦ

ε
2(r,x)adSBdr,

(19)
equation (18) can be written in the form

PΦ
ε
3(t,0)P=PΦ

ε
1(t,0)P+

∫ t

0
Φ

ε
1(t,x)L(ε, t,x)PΦ

ε
3(x,0)Pdx,

(20)
which, when applied to ρS(0)⊗ρB, gives the General-
ized Master Equation (GME)

ρS(t)⊗ρB = Φ
ε
1(t,0)[ρS(0)⊗ρB]+ (21)∫ t

0
Φ

ε
1(t,x)L(ε, t,x)[ρS(x)⊗ρB]dx.

The GME is an exact representation of the dynamics of
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the state of the system. There is no approximation in-
volved at this stage. The GME is a Volterra integral
equation [9] and shows how the state ρS at time t de-
pends on the its previous evolution. In other words, the
state ρS(t) is a weighed sum of the whole history of ρS,
and, consequently, the evolution is non-Markovian.

2.3. The Weak Coupling Limit

The work of Davies [5], [6] and Davies and Spohn
[7] aimed to identify an appropriate generator (i.e., a
differential equation) whose solution is a good approx-
imation, in a precise sense, of the real trajectory as
ε → 0. We base our analysis on the main result (The-
orem 2) of [7], which describes the generator, and is
valid for ‘slow’ controls. Several variations are avail-
able (cf., [1], [8], [13]). This result assumes that the
Lamb shift TrB(ĤSB1⊗ ρB) in (4) vanishes, so that
ĤS(t) = Hε

S (t) := HS(t) and Φ0(t,s) = Φε
1(t,s), inde-

pendently of ε . Assuming that the integral converges,
defining R(t,r) := e−âdS(t)r⊗ e−adBr consider the oper-
ator L̃ defined as

L̃(t)[ρS] :=TrB

(∫ +∞

0
R(t,r)adSBR(t,r)−1adSB[ρS⊗ρB]dr

)
(22)

for every ρS. We have denoted by âdS(t) the operator
ρS→ [−iHS(t),ρS], which can be written as

ˆadS(t) :=
n2

S−1

∑
n=1
−iλ j(t)Π j(t), (23)

where nS is the dimension of the system S (which we as-
sume finite), and Π j(t) are the projections onto the one
dimensional eigenspaces of ˆadS(t). If we assume that
the control u = u(t) (and therefore HS(t)) is an analytic
function of t, it can be shown that both Π and λ j can be
taken as analytic functions. We assume this is the case
in the following. We also define

K = K(t) =−
n2

S−1

∑
j=1

Π j(t)Π′j(t) (24)

Theorem 1 Consider the solution ρε of the linear dif-
ferential equation

dρε

dt
=
(

ˆadS(t)+K(t)+ ε
2L\(t)

)
[ρε(t)], (25)

where

L\(t) :=
n2

S−1

∑
j=1

Π j(t)L̃(t)Π j(t) (26)

under the above assumptions. Then ρε(t) tends to the
solution ρS(t) in (21) as ε → 0 in the following sense:

for a fixed τ0

lim
ε→0

sup
0≤t≤ε−2τ0

‖ρS(t)−ρ
ε(t)‖= 0. (27)

For future reference, we find it convenient to rewrite the
term L̃(t)[ρS] as

L̃(t)[ρS] = (28)

−∑
j,k

∫ +∞

0

[
Tr
(

ρBVB j(r)VBk

)(
VS j(t,r)VSkρS−VSkρSVS j(t,r)

)
+Tr

(
ρBVBkVB j(r)

)(
ρSVSkVS j(t,r)−VS j(t,r)ρSVSk

)]
dr

where we have used the definition adSB[·] = [−iHSB, ·]
and HSB = ∑ j VS j⊗VB j, and we have used the notation
VS j(t,r) := eâdS(t)r[VS j]. From the expression (28) and
(26), it is possible to show that, in the special case where
HS is time invariant, the generator in (25) is of the form
(1) (where the Hamiltonian H is augmented with an ex-
tra term of the form ε2H1⊗ 1). For sake of brevity we
omit the details. However, a special case will be shown
in the next section (where we actually will allow the
Hamiltonian HS to be time varying).

2.4. The Singular Coupling Limit

We go back now to the generalized master equa-
tion (21) and the kernel operator L = L(ε, t,x) in (19).
When developed using the definition of Φε

1 and Φε
2 and

neglecting terms in ε of order 3 or higher, this expres-
sion contains functions which measure the correlation
of observables on the bath at two different times. Such
functions are called autocorrelation functions (cf., e.g.,
[2]). More precisely, the autocorrelation functions arise
from the trace over the bath of the double commutator
appearing in equation (18), obtained since the operator
adSB is applied twice. The presence of the time propa-
gator lead to the evaluation of the average of interaction
operators taken at different times. A Markovian approx-
imation of the dynamics can be obtained under the as-
sumption that the bath is fast. From the mathematical
point of view, this means that the bath autocorrelation
functions are delta-functions in time, that is, the bath
has no memory. This approach is called Singular Cou-
pling Limit and this leads to a rigorous Markovian ap-
proximation of the dynamics, whose details are out of
the scope of this work. The assumption of singular auto-
correlation functions automatically suppresses any non-
Markovian contribution in the dynamics of the relevant
system, and the dissipative part of the generator of the
dynamics is independent of its Hamiltonian part. There-
fore, any work concerning the control of open quan-
tum systems in terms of Lindblad-Kossakowski oper-
ators which are independent on the Hamiltonian part is
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ultimately addressing only those systems where the sin-
gular coupling procedure is well justified. While there
are scenarios where this approach is valid, the corre-
sponding results have a limited validity, which does not
cover the entirety of Markovian dynamics. On the other
side, the weak coupling procedure is more satisfactory
from this perspective, since it does not require dras-
tic assumptions on the autocorrelations of the bath, but
only a weak coupling between system and environment
and therefore it is more widely applied.

3. A CASE STUDY

In this section we derive the generator of the
Markovian dynamics in the weak coupling limit as
given in (25), for a qubit coupled with a bosonic bath
through the Jaynes-Cummings Hamiltonian 1

HSB = ∑
k

g(ωk)
(

σ−⊗b†(ωk)+σ+⊗b(ωk)
)
, (29)

where ωk is the angular frequency of the k-th bosonic
mode (harmonic oscillator), and εg(ωk) its coupling to
the qubit. As usual, b†(ωk) and b(ωk) are creation and
annihilation operators for the k-th mode, satisfying

[b(ωk),b(ωl)]= [b†(ωk),b†(ωl)]= 0; [b(ωk),b†(ωl)]= δkl ,
(30)

and σ+, σ− the qubit rising and lowering operators, de-
fined by

σ± =
1√
2
(σx± iσy). (31)

The free Hamiltonians are given by

HS(t) =
1
2

ω0(t)σ̂z(t), HB = ∑
k

ωk

(
b†(ωk)b(ωk)+

1
2

)
,

(32)
where σ̂z(t) := hx(t)σx+hy(t)σy+hz(t)σz with h2

x(t)+
h2

y(t) + h2
z (t) = 1, and therefore we write hx(t) :=

sinθ(t)sinφ(t), hy(t) := sinθ(t)cosφ(t), hz(t) :=
cosθ(t). Our goal here is to investigate how the the dis-
sipative part in (25) depends on the Hamiltonian HS(t)
and therefore the control in a coherent control scheme.
We will see that the dependence is very significant.

We define σ̂x(t), σ̂y(t) such that the standard su(2)
algebra is satisfied at any time: [σ̂k(t), σ̂l(t)] = 2iσ̂m(t),
where (k, l,m) is a cyclic permutation of (x,y,z). The
standard Pauli matrices are related to these redefined
(control dependent) Pauli matrices through an SO(3)
transformation U (t) such that

σk = ∑
l

Ukl(t)σ̂l(t), σ̂k(t) = ∑
l

Ulk(t)σl , (33)

1a similar analysis can be performed with an arbitrary interaction
term, and the Jaynes - Cummings Hamiltonian is a prototypical ex-
ample.

where k, l ∈ {x,y,z}. We can write U (t) = −sinφ(t)cosθ(t) −cosφ(t)cosθ(t) sinθ(t)
cosφ(t) −sinφ(t) 0

sinφ(t)sinθ(t) cosφ(t)sinθ(t) cosθ(t)

 .

(34)
Moreover, defining

σ̂± =
1√
2
(σ̂x± iσ̂y) (35)

in accordance with (31), we can also write

σk = ∑
l

Vkl(t)σ̂l(t), σ̂k(t) = ∑
l

V ∗lk (t)σl , (36)

where k, l ∈ {+,−,z}, for coefficients Vkl which can be
obtained from (31), (33), (34), (35). Now, following
Davies’ prescription summarized in the previous sec-
tion, we can evaluate the different contributions appear-
ing in the dissipative part of the generator of the dy-
namics in the weak coupling limit in (25). We assume
that the equilibrium state of the bath is given by the
vacuum state ρB = |0〉〈0|, that is, no oscillator is ini-
tially excited. Since in our case VB j is b(ω j) or b†(ω j),
it turns out that Tr(ρBVB j) = 0 for all j, and there
is no Lamb-shift. Define b(ω j, t) := e−adBt(b(ω j)) =
eiHBtb(ω j)e−iHBt (cf. (22)). From (30) and (32), it fol-
lows that

[HB,b(ω j)]=−ω jb(ω j), [HB,b†(ω j)]=ω jb†(ω j).
(37)

This gives

b(ω j, t) = e−iω jtb(ω j), b†(ω j, t) = eiω jtb†(ω j),
(38)

and the equations

Tr
(

ρBb(ωk)b(ω j, t)
)
= Tr

(
ρBb(ωk, t)b(ω j)

)
= 0,

(39)
Tr
(

ρBb†(ωk)b†(ω j, t)
)
= Tr

(
ρBb†(ωk, t)b†(ω j)

)
= 0,

Tr
(

ρBb†(ωk)b(ω j, t)
)
= Tr

(
ρBb†(ωk, t)b(ω j)

)
= 0,

Tr
(

ρBb(ωk, t)b†(ω j)
)
= e−iω jtδ jk,

Tr
(

ρBb(ωk)b†(ω j, t)
)
= eiω jtδ jk.

Using these in (28), we calculate

L̃(t)[ρS] = (40)

−∑
j

g2(ω j)
∫ +∞

0

[(
σ+(t,r)σ−ρS−σ−ρSσ+(t,r)

)
e−iω jr+

(
ρSσ+σ−(t,r)−σ−(t,r)ρSσ+

)
e+iω jr

]
dr,
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where
σ+(t,r)≡ eiHS(t)rσ+e−iHS(t)r (41)

=V++(t)eiω0(t)rσ̂+(t)+V+−(t)e−iω0(t)rσ̂−(t)+V+z(t)σ̂z(t)

and
σ−(t,r)≡ eiHS(t)rσ−e−iHS(t)r (42)

=V−+(t)eiω0(t)rσ̂+(t)+V−−(t)e−iω0(t)rσ̂−(t)+V−z(t)σ̂z(t).

Of course, σ−(t,r) = σ
†
+(t,r), since V ∗−−(t) = V++(t),

V ∗−+(t) = V+−(t), and V+z(t) = V−z(t) are real num-
bers. In (41) and (42) we have found it convenient to
express σ+ and σ− in the (time-dependent) basis of the
eigenstates of the free time-evolution generator. To pro-
ceed with the computation it is customary to consider
the limit to a continuum of harmonic oscillators,

∑
j
. . .→

∫ +∞

0
. . .ρ(ω)dω, (43)

where ρ(ω) is the density of modes with angular fre-
quency ω . For the present purposes we don’t need to
specify the form of this density, but we simply define∫ +∞

0
g2(ω)e±iωr

ρ(ω)dω ≡ c(r)± is(r). (44)

Moreover, we define∫ +∞

0
c(r)e±iω0(t)rdr ≡ γc(ω0, t)± iγs(ω0, t), (45)

∫ +∞

0
c(r)dr ≡ γ0,∫ +∞

0
s(r)e±iω0(t)rdr ≡ δc(ω0, t)± iδs(ω0, t),∫ +∞

0
s(r)dr ≡ δ0,

and assume that all these integrals converge. Therefore,
by using (41), (42), and (45) we can write L̃ in (28) in
terms of the functions γc, γs, δc, δs, γ0, δ0. The next
step is to average the operator L̃ following the Davies’
prescription (26) and obtain L\(t). In our case model,
the eigenprojections Πn(t) are explicitly given by

Π j(t)[ρS] =
1
2

Tr
(

ρSσ̂
†
j (t)
)

σ̂ j(t), (46)

with j ∈ {+,−,z}, and the respective eigenvalues are
0,ω0(t),−ω0(t). We notice that

∑
n

Πn(t)L(t)Πn(t)= lim
T→+∞

1
2T

∫ T

−T
e−iHS(t)rL(t)eiHS(t)rdr,

(47)

and, moreover,

lim
T→+∞

1
2T

∫ T

−T
e±iω0(t)rdr = lim

T→+∞

1
2T

∫ T

−T
e±2iω0(t)rdr = 0.

(48)
Therefore, if we expand σ+ and σ− as in (41) and (42),
the only non-vanishing averages contain both σ̂+(t) and
σ̂−(t), or σ̂z(t) twice, and we obtain

L\(t)[ρS] = (49)

V++(t)V−−(t)
(

γc(ω0, t)+δs(ω0, t)
)
A +

+V+−(t)V−+(t)
(

γc(ω0, t)−δs(ω0, t)
)
B+

V+z(t)V−z(t)γ0

(
2σ̂z(t)ρSσ̂z(t)−2ρS

)]
+

2i
[
V++(t)V−−(t)

(
γs(ω0, t)−δc(ω0, t)

)
[σ̂+(t)σ̂−(t),ρS]

−V+−(t)V−+(t)
(

γs(ω0, t)+δc(ω0, t)
)
[σ̂−(t)σ̂+(t),ρS]

]
,

with A :=
(

2σ̂−(t)ρSσ̂+(t)−{ρS, σ̂+(t)σ̂−(t)}
)

,B :=(
2σ̂+(t)ρSσ̂−(t) − {ρS, σ̂−(t)σ̂+(t)}

)
. In this

expression, the first three terms are of the Lindblad-
Kossakowski form, while the last two contribu-
tions are dissipative corrections to the coherent
part of the dynamics. Using the explicit ex-
pression for the matrix V we can also obtain
V++(t)V−−(t) = 1

2

(
cos2 θ(t)

2 + cosθ(t)cosφ(t)
)

,

V+−(t)V−+(t) = 1
2

(
cos2 θ(t)

2 − cosθ(t)cosφ(t)
)
,

V+z(t)V−z(t) = 1
2 sin2

θ(t), and these relations can
further simplify (49). For instance, the Hamiltonian
part can be more compactly rewritten as

2i
(

γs(ω0, t)cosθ(t)cosφ(t)−δc(ω0, t)cos2 θ(t)
2

)
[σ̂z(t),ρS].

(50)
The next step is the evaluation of the term K(t) (24)
in the Markovian generator. In the present case, it is
given by the sum of three contributions:−K(t)[ρS] =
Π0(t)Π′0(t)[ρS] + Π+(t)Π′+(t)[ρS] + Π−(t)Π′−(t)[ρS],
which we now compute separately. From (46) we can
write

Π
′
0(t)[ρS] =

1
2

(
ρSσ̂

′
z(t)
)

σ̂z(t)+
1
2

(
ρSσ̂z(t)

)
σ̂
′
z(t),

(51)
and then

Π0(t)Π′0(t)[ρS] = (52)

1
2

(
Tr
(

ρSσ̂
′
z(t)
)
+

1
2

Tr
(

ρSσ̂z(t)
)

Tr
(

σ̂z(t)σ̂ ′z(t)
))

σ̂z(t)

=
1
2

Tr
(

ρSσ̂
′
z(t)
)

σ̂z(t),
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since
Tr
(

σ̂z(t)σ̂ ′z(t)
)
= 0 (53)

as a consequence of σ̂2
z (t) = 1. On the other hand, it is

possible to prove that

Π+(t)Π′+(t)[ρS] = (54)

1
2

Tr
(

ρSσ̂
′
−(t)

)
σ̂+(t)+

1
4

Tr
(

ρSσ̂−(t)
)

Tr
(

σ̂−(t)σ̂ ′+(t)
)

σ̂+(t)

=
1
2

Tr
(

ρSσ̂
′
−(t)

)
σ̂+(t)

since
Tr
(

σ̂−(t)σ̂ ′+(t)
)
= Trσ̂

′
z(t) = 0, (55)

and similarly

Π−(t)Π′−(t)[ρS] =
1
2

Tr
(

ρSσ̂
′
+(t)

)
σ̂−(t). (56)

It is possible to prove that (52), (54) and (56) are time-
dependent Lindblad-Kossakowski terms.

The above expressions show how the generator in
(25) depends on the coherent Hamiltonian and therefore
the control. All Kossakowski-Lindblad operators are
‘rotated’ according to the operator σ̂z(t) in (32), which
depends on the control.

4. System-bath decoupling and the DSM
problem

A Decoherence Splitting Manifold (DSM) is a sub-
set of the set of density operators {ρS = ρ

†
S ,ρS ≥

0 ,Tr(ρS) = 1} in which some (possibly multiple)
eigenvalues λk∈K of ρS are preserved, along with
their multiplicities mk∈K , while the other eigenval-
ues λk̄∈K̄ are not specified. The only requirement is
that their multiplicities mk̄∈K̄ remain constant. Such
a subset will be denoted as DΛK ,mK̄

, where ΛK =

block diag
{

λkImk : k ∈ K
}

denotes the diagonal matrix
of preserved eigenvalues, while mK̄ denotes the spec-
ifications on the multiplicities of the remaining eigen-
values. It can be shown that DΛK ,mK̄

is a real-analytic
manifold [11]. This manifold is referred to as splitting,
because any density matrix ρ ∈DΛK ,mK̄

has its eigenval-
ues splitting between, on the one hand, those eigenval-
ues ΛK that are preserved and, on the other hand, those
eigenvalues ΛK̄ allowed to drift. Every density ma-
trix with eigenvalue specifications belongs to one DSM.
While in unitary dynamics, all the eigenvalues of the
density matrix ρS are preserved, in dissipative open sys-
tem dynamics these eigenvalues drift. However, if the
dynamics is such as to keep the system on a DSM, some
of the eigenvalues are preserved, so that some informa-
tion on the initial density matrix is preserved. The DSM

control problem consists of finding a coherent control
to keep ρS on a DSM.

Assume ρS(t) ∈ DK,mK̄
for every t. Then we can

project it to a sub-density matrix which has unitary evo-
lution. Let

ρS(t) =V (t)
(

ΛK 0
0 ΛK̄(t)

)
V †(t) (57)

where the eigenvalues in ΛK are preserved, while the
remaining eigenvalues in ΛK̄(t) could be evolving, with
the only restriction that there are no eigenvalue cross-
ings. If VK(t) is the matrix of eigenvectors for the eigen-
values of ΛK , we define the sub-density

ρDPS(t) :=
1

Trace(ΛK)
VK(t)ΛKV †

K(t) (58)

=
1

Trace(PDPS(t)ρ(t)PDPS(t))
PDPS(t)ρ(t)PDPS(t)

where
PDPS(t) =VK(t)V

†
K(t).

If we differentiate (58), we get

ρ̇DPS(t) =−ı[HEFF(t),ρDPS(t)], (59)

where HEFF is some “effective” Hamiltonian,

HEFF(t) :=−ıVK(t)V̇
†
K(t) = ıV̇K(t)V

†
K(t) (60)

which is easily seen to be Hermitian.
Consider now the evolution of ρS given in (1). It

is convenient to express the matrix ρS in terms in the
vector of coherences representation, i.e., using the vec-
tor~x := [x1, . . . ,xnS ]

T ,2 where ρS =
1
nS

1+∑
nS
j=1 x jσ j for

some orthonormal basis {σ j}, j = 1, . . . ,nS in the space
of nS×nS Hermitian matrices. With this notation, con-
sider the quantum master equation (1) where, in the co-
herent part, we assume m control variables u1, . . . ,um,
and we assume for simplicity that the control appears
linearly. The quantum master equation can be written
in the form

ẋ = A~x+
m

∑
j=1

B j~xu j +G~x,

for appropriate (n2
S− 1)× (n2

S− 1) matrices A, B j, j =
1, . . . ,m, and G.

The condition that ρS belongs to the DSM can be
expressed in terms of appropriate functions of the vec-
tor ~x equal to zero. These functions represent the char-
acteristic polynomial of ρS, det(ρS − λ1) and (possi-
bly) some of its derivatives with respect to λ , equal to

2nS denotes the dimension of the system S.
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zero. The constancy of the multiplicities on the com-
plementary eigenvalues is somewhat more complicated.
The lack of numerical specifications on those eigen-
values require then to be eliminated using the Tarski-
Seidenberg quantifier elimination, resulting in addi-
tional polynomial constraints. Taking the Jacobian ma-
trix of these constraints Jx, the condition for ρS(t) to
belong to a DSM at all t ≥ 0, is

Jx(A~x(t)+
m

∑
j=1

B j~x(t)u j +G~x(t)) = 0. (61)

However it is a general fact that on the DSM

JxA~x = 0, and JxB j~x = 0, ∀ j = 1, . . . ,m. (62)

This is a a simple consequence of the fact that the dy-
namics without the dissipative part G~x is unitary and
therefore preserves all eigenvalues including the ones
in the set ΛK defining the DSM DΛK ,mK̄

. Therefore the
condition (61) reduces to

Jx(G~x(t)) = 0. (63)

This tells us that it is not possible to simply use the con-
trol to cancel all the terms in (61). The control how-
ever affects x(t) in (63) and one could in principle try to
use it to induce a trajectory satisfying (63) and therefore
preserving the desired eigenvalues.

The above considerations assume that G in (63) is
constant, independent of the control u. As we have dis-
cussed in the previous sections, this assumption is only
justified in the singular coupling limit. In the weak cou-
pling limit, G in (63) depends explicitly on the control.
In that case, the situation might in fact be more favor-
able as it might be possible to design G(u) so that (63)
is verified.

5. Concluding Remarks

The model of the quantum master equation often
used in controllability analysis of open quantum sys-
tems is valid only in the restrictive singular coupling
limit, where an infinitely fast dynamics for the bath is
assumed. In the more common weak coupling limit,
the coherent part of the dynamics and therefore the con-
trol appears in the whole dynamical model including the
part modeling dissipation. One example discussed here
is a system consisting of a spin 1

2 particle in a bosonic
bath showing how, under the assumptions of Davies’ re-
sults [7], the model depends on the control. In general
the design of the control has to take into account the
whole modeling procedure and what kind of assump-
tions on the system and bath are made. However, as
we have pointed out in section 4, this might become an
opportunity for future research.
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