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Abstract—Robust control and management of the grid relies
on accurate data. Both PMUs and RTUs are prone to false data
injection attacks. Thus, it is crucial to have a mechanism for fast
and accurate detection of tampered data—both for preventing at-
tacks that may lead to blackouts, and for routine monitoring and
control of current and future grids. We propose a decentralized
false data injection detection scheme based on the Markov graph
of the bus phase angles. We utilize the conditional covariance test
CMIT to learn the structure of the grid. Using the DC power flow
model, we show that, under normal circumstances, the Markov
graph of the voltage angles is consistent with the power grid
graph. Therefore, a discrepancy between the calculated Markov
graph and learned structure should trigger the alarm. Our
method can detect the most recent stealthy deception attack on
the power grid that assumes knowledge of the bus-branch model
of the system and is capable of deceiving the State Estimator;
hence damaging power network control, monitoring, demand
response, and pricing scheme. Specifically, under the stealthy
deception attack, the Markov graph of phase angles changes. In
addition to detecting a state of attack, our method can detect
the set of attacked nodes. To the best of our knowledge, our
remedy is the first to comprehensively detect this sophisticated
attack and it does not need additional hardware. Moreover, it is
successful no matter the size of the attacked subset. Simulation
of various power networks confirms our claims.

Index Terms—Bus phase angles, structure learning, conditional
covariance test, false data injection detection

I. INTRODUCTION

Among the attributes that make the grid “smart” is its
ability to process a massive amount of data for monitoring,
control, and maintenance purposes. In a typical Transmission
System Operator (TSO), the substation Remote Terminal Units
(RTUs) read the status of voltages, currents, and switching
states. The RTU data is redirected in data-packages to the
Supervisory Control and Data Acquisition (SCADA) system
via communication channels. In addition, synchronous Phasor
Measurement Units (PMUs) are being massively deployed
throughout the grid. PMUs provide a higher level of detail
to the SCADA system (e.g. voltage angle). The signals from
the PMUs are transmitted via the RTU to the SCADA. The
State Estimator (SE) located at the control center aims to find
the best overall snapshot solution based on all measurements.

Recent monitoring and control schemes rely primarily on
PMU measurements; for example, [1] tries to increase voltage
resilience to avoid voltage collapse by using synchronized

PMU measurements and decision trees and [2]–[4] rely on
PMUs for fault detection and localization.

The centralization of the data to the State Estimator makes
it the back door to false data injection attacks. Therefore,
aforementioned methods can be deluded by false data in-
jection attacks. Thus, it is crucial to have a mechanism for
fast and accurate discovery of malicious tampering; both for
preventing the attacks that may lead to blackouts, and for
routine monitoring and control tasks of the smart grid. The
cyber attacks have gained increasing attention over the past
years. Unfortunately, there are realistic “stealthy” threats that
cannot be detected with current security modules in the power
network and may lead to cascading events, instability in the
system, and blackouts in major areas of the network. For
details on stealthy deception attack, their implementation and
serious consequences, see [5]–[9].

A. Summary of Results

We have designed a decentralized false data injection attack
detection mechanism that utilizes the Markov graph of the bus
phase angles. We utilize the conditional covariance threshold
test CMIT [10] to learn the structure of the grid. We show that
under normal circumstances, and because of the grid structure,
the Markov graph of voltage angles can be determined by the
power grid graph. Therefore, a discrepancy between calculated
Markov graph and learned structure triggers the alarm. This
work was initiated by the authors in [11].

Because of the connection between the Markov graph of the
bus angle measurements and the grid topology, our method can
be implemented in a decentralized manner, i.e. at each sub-
network. Currently, sub-network topology is available online
and global network structure is available hourly [2]. Not only
by decentralization can we increase the speed and get closer to
online detection, but we also increase accuracy and stability by
avoiding communication delays and synchronization problems
when trying to send measurement data between locations
far apart [12], [13]. Furthermore, we noticeably decrease the
amount of exchanged data to address privacy concerns as much
as possible.

We show that our method can detect the most recently
designed attack on the power grid that remains undetected
by the traditional bad data detection scheme [14] and is
capable of deceiving the State Estimator and damaging power
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Fig. 1: Flowchart of our detection algorithm

network control, monitoring, demand response, and pricing
schemes [6]. In this scenario, the attacker is equipped with
vital data and has the knowledge of the bus-branch model
of the grid. It should be noted that our method not only
detects that the system is under attack, but also determines
the particular set of nodes under the attack. The flowchart is
shown in Figure 1.

In addition, we show that our method can detect the situation
where the attacker manipulates reactive power data to lead the
State Estimator to wrong estimates of the voltages. Such an
attack can be designed to fake a voltage collapse or trick the
operator to cause a voltage collapse. This latter detection is
based on the linearization of the AC power flow around the
steady state. Then using our algorithm for bus voltages and
reactive power rather than bus phase angles and active power,
it readily follows that this latter attack can also be detected.

B. Related Work

Although the authors of [8] suggest an algorithm for PMU
placement such that the “stealthy” attack is observable, they
report a successful algorithm only for the 2-node attack and
propose empirical approaches for the 3, 4, and 5-node attacks.
According to [8], for cases where more than two nodes are
under attack, the complexity of the approach is said to be
“disheartening”. Considering the fact that finding the number
of needed PMUs is NP-hard and that [8] gives an upper bound
and uses a heuristic method for PMU placement, we need to
mention for comparison purposes that our algorithm has no
hardware requirements, its complexity does not depend on the
number of nodes under attack, and it works for any number
of attacked nodes. It is also worth mentioning that, even in
the original paper presenting the attack for a relatively small

network (IEEE-30), seven measurements from five nodes are
manipulated. Therefore, it seems that the 2-node attack is not
the most probable one.

There has been another line of work dedicated to computing
the “security index” for different nodes in order to find the
set of nodes that are most vulnerable to false data injection
attacks [15]. Although these attempts are acknowledged, our
method differs greatly from such perspectives as such methods
do not detect the attack state when it happens and they cannot
find the set of nodes that are under attack.

The dependency graph approach is used in [4] for topology
fault detection in the grid. However, since attacks on the State
Estimator are not considered, such methods can be deceived
by false data injection. Furthermore, [4] uses a constrained
maximum likelihood optimization for finding the information
matrix, while here an advanced structure learning method
is used that captures the power grid structure better. This
is because in the power grid the edges are not centered
but distributed all over the network. This is discussed in
Section III-A.

Paper Outline: The paper is organized as follows. In
Section II , we show that the bus phase angles form a Gaussian
Markov Random Field (GMRF) and argue that their Markov
graph is dictated by the grid structure. In Section III , we
explain the conditional covariance test CMIT [10], which we
use for obtaining the Markov graph among bus phase angles,
and discuss how we leverage it to perform optimally for
the power grid. The stealthy deception attack on the State
Estimator is introduced in Section IV . We elaborate on our
detection scheme in Section V . Simulations are presented in
Section V I . Section V II concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

A Gaussian Markov Random Field (GMRF) is a family of
jointly Gaussian distributions that factor according to a given
graph. Given a graph G = (V,E), with V = {1, ..., p},
consider the vector of Gaussian random variables X =
[X1, X2, ..., Xp]

> , where each node i ∈ V is associated with
a scalar Gaussian random variable Xi. A Gaussian Markov
Random Field on G has a probability density function (pdf)
that can be parametrized as

fX(x) ∝ exp[−1

2
x>Jx+ h>x], (1)

where J is a positive-definite symmetric matrix whose sparsity
pattern corresponds to that of the graph G. More precisely,

J(i, j) = 0⇐⇒ (i, j) /∈ E.

The matrix J = Σ−1 is known as the potential or information
matrix, the non-zero entries J(i, j) as the edge potentials, and
the vector h as the vertex potential vector. In general, graph
G = (V,E) is called the Markov graph (graphical model)
underlying the joint probability distribution fX(x), where the
node set V represents random variable set {Xi} and the edge
set E is defined in order to satisfy the local Markov property.
For a Markov Random Field, local Markov property states that
Xi ⊥ X−{i,N(i)}|XN(i), where XN(i) represents all random



3

variables associated with the neighbors of i in graph G and
X−{i,N(i)} denotes all variables except for Xi and XN(i).

B. Bus Phase Angles GMRF

We now apply the preceding to the bus phase angles. The
DC power flow model [16] is often used for analysis of power
systems in normal operations. When the system is stable, the
phase angle differences are small, so sin(θi − θj) ∼ θi − θj .
By the DC power flow model, the system state X can be
described using bus phase angles. The active power flow on
the transmission line connecting bus i to bus j is given by

Pij = bij(Xi −Xj), (2)

where Xi and Xj denote the phasor angles at bus i and j
respectively, and bij denotes the inverse of the line inductive
reactance. The power injected at bus i equals the algebraic
sum of the powers flowing away from bus i:

Pi =
∑
j 6=i

Pij =
∑
j 6=i

bij(Xi −Xj). (3)

When buses i and j are not connected, bij = 0. Thus, it follows
that the phasor angle at bus i could be represented as

Xi =
∑
j 6=i

{
bij∑
i 6=j bij

}
Xj +

1∑
j 6=i bij

Pi. (4)

Eq. (2) can also be rewritten in matrix form as

P = BX, (5)

where P = [P1, P2, ..., Pp]
> is the vector of injected active

powers, X = [X1, X2, ..., Xp]
> is the vector of bus phase

angles and

B =

{
−bij if i 6= j,∑
j 6=i bij if i = j.

(6)

Remark: Note that, because of linearity of the DC power flow
model, the above equations are valid for both the phase angle
X together with the injected power P and for the fluctuations
of the phase angle X together with the fluctuations of the
injected power P around its steady-state value. Specifically, if
we let P̃ refer to the vector of active power fluctuations and
X̃ represent the vector of phase angle fluctuations, we have
P̃ = BX̃ . In the following, the focus is on the DC power flow
model. Nevertheless, our analysis remains valid if we consider
fluctuations around the steady-state values.

Because of load uncertainty, and under generation-load
balance, the injected power can be modeled as a random vari-
able [17]. The injected power is the sum of many random fac-
tors such as load fluctuations, wind turbine and Photo Voltaic
Cell (PVC) output fluctuations, etc. While the independence
of the constituting random variables can be justified, their
identical distribution cannot. Therefore, using the Lyapunov
Central Limit Theorem(CLT) [18, Sec. 7.7.2], which does not
require the random variables to be identically distributed, we
can model the injected power as a Gaussian distribution.

Lyapunov CLT: Let {Yi : i = 1, 2, . . . , n} be a sequence
of independent random variables each with finite expected
value µi and variance σ2

i . Define s2n =
∑n
i=1 σ

2
i . If the

Lyapunov condition1 is satisfied, then
∑n
i=1

(Yi−µi)
sn

converges
in distribution to a standard normal random variable as n goes
to infinity.

Considering conventional assumptions in power systems,
the Lyapunov condition is met. As argued in [19], the Gaus-
sian assumption is justified in the transmission network. The
Gaussian model is also utilized in various analysis of power
networks such as [20]–[23] where n is estimated to be of order
1000. To exemplify CLT, it is suggested in [24] that as few as
5 wind turbines would suffice to see CLT in action. Therefore,
for each i, we model Pi in Eq. (3) with a Gaussian random
variable. Hence the linear relationship in Eq. (5), together with
the fixed phasor at the slack bus, implies that the phasor angles
θi are Gaussian random variables [4].

The next step is to find out whether the Xi’s satisfy the
local Markov property and, in the affirmative, to discover
the neighbor sets corresponding to each node. We do this by
analyzing Eq. (4). If there were only the first term, we would
conclude that the set of nodes electrically connected to node i
satisfies the local Markov property, but the second term makes
a difference. Below, we argue that an analysis of the second
term of (4) shows that this term causes some second-neighbors
of Xi to have a nonzero term in matrix J . In addition, for
nodes that are more than two hops apart, Jij = 0. Therefore,
as opposed to the claim in [4], a second-neighbor relationship
does exist in matrix J . The second neighbor property may
result in additional edges in the Markov graph between the
nodes that are second neighbors in the grid graph.

As stated earlier, the powers injected at different buses
have Gaussian distribution. We can assume that they are
independent and without loss of generality they are zero
mean. Therefore, the probability distribution function for P
is fP (P ) ∝ e−

1
2P

>P . Since P = BX , we have fX(X) ∝
e−

1
2X

>B>BX . Recalling the definition of the probability dis-
tribution function for jointly Gaussian random variables in (1),
we get J = BTB. Let d(i, j) represent the hop distance
between nodes i and j in the power grid graph G. By definition
of matrix B, this leads to some nonzero Jij entries for
d(i, j) = 2. In addition, we state the following:

Proposition 1. Assume that the powers injected at the nodes
are Gaussian and mutually independent. Then

Jij = 0, ∀ d(i, j) > 2.

Proof: We argue by contradiction. Assume Jij 6= 0 for
some d(i, j) > 2. Since Jij =

∑
k BikBjk, it follows that

∃ k s.t. Bik 6= 0, Bjk 6= 0. By (6), Bik 6= 0 implies d(i, k) =
1. From there on, the triangle inequality implies that d(i, j) ≤
d(i, k)+d(k, j) = 1+1 = 2, which contradicts the assumption
d(i, j) > 2.

It was shown in [19] that for some graphs, the second-
neighbor terms are smaller than the terms corresponding to
the immediate electrical neighbors of Xi. More precisely, it
was shown that for lattice-structured grids, this approximation

1The condition requires that ∃δ > 0 such that the random variables |Yi−µi|
have moments of order 2+δ and the rate of growth of these moments is limited

in the sense that limn→∞
∑n
i=1 E|Yi−µi|

2+δ

s2+δn
= 0.
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Algorithm 1 CMIT (xn; ξn,p, η) for structure learning using
samples xn [10]

Initialize Ĝnp = (V, ∅)

For each i, j ∈ V ,
if minS⊂V \{i,j}

|S|≤η
Σ̂(i, j|S) > ξn,p,

then
add (i, j) to the edge set of Ĝnp .

end if
Output:Ĝnp

falls under the generic fact of the tapering off of Fourier coeffi-
cients [19]. Therefore, we can approximate each neighborhood
with the immediate electrical neighbors. We can also proceed
with the exact relationship. For simplicity, we opt for the first-
neighbor analysis. We explain shortly why CMIT works with
this approximation as well.

Note that our detection method relies on the graphical model
of the variables. It is based on the fact that the Markov
graph of bus phase angles changes under an attack. CMIT
is tuned with correct data and we prove that in case of attack,
the Markov graph of compromised data does not follow the
Markov graph of correct data. Hence, we can tune CMIT by
either the exact relationship or the approximate Markov graph.
In both cases, the output in case of attack is different from the
output tuned with correct data. Therefore, CMIT works for
both approximate and exact neighborhoods.

III. STRUCTURE LEARNING

In the context of graphical models, model selection means
finding the exact Markov graph underlying a group of random
variables based on samples of those random variables. There
are two main classes of methods for learning the structure
of the underlying graphical model, convex methods and non-
convex methods. The `1-regularized maximum likelihood es-
timators are the main class of convex methods [25]–[28]. In
these methods, the inverse covariance matrix is penalized with
a convex `1-regularizer in order to encourage sparsity in the
estimated Markov graph structure. The other types of methods
are the non-convex or greedy methods [10]. In the present
paper, we use the latter methods.

A. Conditional Covariance Test

In order to learn the structure of the power grid, we
utilize the Gaussian Graphical Model Selection method called
CMIT [10]. CMIT estimates the structure of the underlying
graphical model given i.i.d. samples of the random variables.
CMIT is shown in Algorithm 1.

In Algorithm 1, the output is an edge set corresponding
to graph G given n i.i.d. samples xn, each of which has p
variables (corresponding to vertices), a threshold ξn,p (that
depends on both p and n) and a constant η ∈ N, which is
related to the local vertex separation property (described later).

In our case, each one of the p variables represents a bus phase
angle.

The sufficient condition for output of CMIT to have struc-
tural consistency with the underlying Markov graph among
variables is that the graph has to satisfy local separation prop-
erty and walk-summability [10]. An ensemble of graphs has
the (η, γ)-local separation property if for any (i, j) /∈ E(G),
the maximum number of paths between i and j of length at
most γ does not exceed η. A Gaussian model is said to be
α-walk summable if ||R̄|| ≤ α < 1, where R̄ = [|rij |] and ||.||
denotes the spectral or 2-norm of a matrix [10]. R = [rij ] is
the matrix of partial correlation coefficients; it vanishes on the
diagonal entries and on the non-diagonal entries it is given by

rij ,
Σ(i, j|V \ {i, j})√

Σ(i, i|V \ {i, j})Σ(j, j|V \ {i, j})

=− J(i, j)√
J(i, i)J(j, j)

. (7)

rij , the partial correlation coefficient between variables Xi

and Xj for i 6= j, measures their conditional covariance given
all other variables [29].

Regardless of whether the exact or approximate neighbor-
hood relationship holds, the Markov graph of the bus phase
angles is an example of bounded local path graphs that satisfy
the local separation property. We also checked the analyzed
networks for the walk-summability condition. As shown in (7)
and the definition of walk-summability, this property depends
only on matrix J and thus on the topology of the grid. The
walk-summability does not depend on the operating point of
the grid.

It is shown in [10] that, under walk-summability, the effect
of faraway nodes on the covariance decays exponentially with
the distance and the error in approximating the covariance
by local neighboring decays exponentially with the distance.
Hence by correct tuning of threshold ξn,p and with enough
samples, we expect the output of CMIT to follow the grid
structure.

The computational complexity of CMIT is O(pη+2), which
is efficient for small η [10]. η is the parameter associated
with local separation property described above. The sample
complexity associated with CMIT is n = Ω(J−2min log p), where
Jmin is the minimum absolute edge potential in the model [10].

It is worth mentioning that since we use CMIT for structure
learning of phasor data, our method is robust against mea-
surement noise. The reason is that CMIT analyzes conditional
covariance of its input data. Since input data is Gaussian, the
conditional covariance can be found from covariance matrix
for phasor data, i.e. Σ(X,X) (see Eq. 8). Let N be the
sum of the measurement noise and systematic errors. Both
systematic errors and measurement noise are independent
of the measured values. Also, we know that E(X) = 0.
Therefore, Σ(X+N,X+N) = Σ(X,X)+Σ(N,N). Note that
in CMIT we only look at pairs (i, j) such that i 6= j. Therefore
as long as Σ(N,N) has a diagonal form, this error does not
influence our performance. This is the case when errors at
different locations in the network are independent of each
other. Measurement noise meets this criterion. Moreover, if
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systematic error in the network satisfies Σ(N,N) = Diag(.),
it also does not impact our method. Even if systematic errors
do not have a diagonal covariance but remain the same with
time, they can be detected and compensated during an initial
training phase when we are sure the system is not under the
attack.

CMIT distributes the edges fairly uniformly across the
nodes, while the `1 method tends to cluster all the edges
together among the “dominant” variables leading to a densely
connected component and several isolated points [10] and thus
a disconnected graph. Therefore, the `1 method has some
limitations in detecting the structure of a connected graph. The
power grid transmission network is a connected graph where
the edges are distributed over the network. Therefore, CMIT
is more suitable for detecting the structure of the power grid.

B. Decentralization

We want to find the Markov graph of our bus phasor
measurements. The connection between electrical connectivity
and correlation (Proposition 1) helps us to decentralize our
method to a great extent. The power network in its normal
operating condition consists of different areas connected to-
gether via border nodes. A border node is any node that is also
connected to a node from a different area as depicted in [30].
Therefore, we decompose our network into these sub-areas.
Our method can be performed locally in the sub-networks.
The sub-network connection graph is available online from
the protection system at each sub-network and can be readily
compared with the bus phase angle Markov graph. In addition,
only for border nodes we need to consider their out-of-area
neighbors as well. This can be done either by solving the
power flow equations for that border link or by receiving
measurements from neighbor sub-networks. Therefore, we run
CMIT for each sub-graph to figure out its Markov graph. Then
we compare it with online network graph information to detect
false data injection attacks.

This decentralization reduces complexity and increases
speed. Our decentralized method is a substitute for considering
all measurements throughout the power grid, which requires a
huge amount of data exchange, computation, and overhead. In
addition to having fewer nodes to analyze, this decentralization
leads us to a smaller η and greatly reduces computational
complexity, which makes our method capable of being ex-
ecuted in very large networks. Furthermore, since structure
learning is performed locally, faraway relationships created
by nonlinearities—ignored in Prop. 1 but intrinsic to power
systems—are mitigated, hence our neighborhood assumptions
are justified. Last but not least, utility companies are not
willing to expose their information for economical competition
reasons and there have been several attempts to make them
do that [31]. Thus it is desired to reduce the amount of data
exchange between different areas and our method adequately
fulfills this preference.

It should be noted that the measurement vector X analyzed
in this paper is a mixture of measurements from PMUs and
State Estimator output corresponding to the same time. This is
achieved as follows. PMUs use GPS-sync time stamp and State

Estimator measurements in SCADA are labeled with local
time stamp. Since our method is performed locally, it has two
advantages. First, as discussed earlier, it avoids large delays
in communication network. Second, we can use the local time
stamps from State Estimator outputs. We do not require the
high rate of measurement from PMUs for our detection scheme
and only consider the PMU samples at the time we have State
Estimator samples. Since both data have time stamps, we are
able to form the measurement vector X with measurement
data from the same time.

C. Online Calculations

For fast monitoring of the power grid, we need an on-
line algorithm. As we show in this section, our algorithm can
be developed as an iterative method that processes new data
without the need for reprocessing earlier data. Here, we derive
an iterative formulation for the sample covariance matrix. Then
we use it to calculate the conditional covariance using

Σ̂(i, j|S) := Σ̂(i, j)− Σ̂(i, S)Σ̂−1(S, S)Σ̂(S, j). (8)

As we know, in general,

Σ = E[(X − µ)(X − µ)>] = E[XX>]− µµ>.

Let Σ̂(n)(X) denote the sample covariance matrix for a vector
X of p elements from n samples and let µ̂(n)(X) be the
corresponding sample mean. In addition, let X(i) be the ith
sample of our vector. Then we have

Σ̂(n)(X) =
1

n− 1

(
n∑
i=1

X(i)X(i)>
)
− µ̂(n)µ̂(n)> . (9)

Therefore,

Σ̂(n+1)(X) =
1

n

[
n∑
i=1

X(i)X(i)> +X(n+1)X(n+1)>
]

(10a)

− µ̂(n+1)µ̂(n+1)> ,

µ̂(n+1) =
1

n+ 1
[nµ̂(n) +X(n+1)]. (10b)

By keeping the first term in (9) and the sample mean (10b),
our updating rule is (10a). Thus, we revise the sample co-
variance as soon as any bus phasor measurement changes and
leverage it to reach the conditional covariances needed for
CMIT. It goes without saying that if the system demand and
structure does not change and the system is not subject to false
data injection attack, the voltage angles at nodes remain the
same and there is no need to run any algorithm.

IV. STEALTHY DECEPTION ATTACK

The most recent and most dreaded false data injection attack
on the power grid was introduced in [14]. It assumes knowl-
edge of the bus-branch model and it is capable of deceiving
the State Estimator. For a p-bus electric power network, the
l = 2p − 1 dimensional state vector x is [θ>, V >]>, where
V = [V1, ..., Vp]

> is the vector of voltage bus magnitudes and
θ = [θ2, ..., θp]

> the vector of phase angles. It is assumed
that the nonlinear measurement model for the state estimation
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is z = h(x) + ε, where h(.) is the measurement function,
z = [z>P , z

>
Q ]> is the measurement vector consisting of active

and reactive power flow measurements and ε is the mea-
surement error. H(xk) := dh(x)

dx |x=xk denotes the Jacobian
matrix of the measurement model h(x) at xk. The goal of the
stealthy deception attacker is to compromise the measurements
available to the State Estimator (SE) as za = z + a, where
za is the corrupted measurement vector and a is the attack
vector. The vector a is designed such that the SE algorithm
converges and the attack a is undetected by the Bad Data
Detection scheme. Then it is shown that, under the DC power
flow model, such an attack can only be performed locally with
a ∈ Im(H), where H = HPθ is the matrix connecting the
vector of bus injected active powers to the vector of bus phase
angles, i.e., P = HPθθ. The attack is shown in Figure 2.

V. STEALTHY DECEPTION ATTACK DETECTION

In this Section, we show that our method can detect the
aforementioned stealthy deception attack despite the fact that
it remains undetected by the traditional Bad Data Detection
scheme. The fundamental idea behind our detection scheme
is that of structure learning. Our learner, CMIT, is first
tuned with correct data, which corresponds to the grid graph.
Therefore, any attack that changes the structure alters the
output of CMIT and this triggers the alarm. Let us consider
the attack more specifically. As we are considering the DC
power flow model and all voltage magnitudes are normalized
to 1 p.u., the state vector introduced in [14] reduces to the
vector of voltage angles, X . Since a ∈ Im(H), ∃ d such that
a = Hd and

za = z + a = H(X + d) = HXa,

where Xa represents the vector of angles when the system is
under attack, za is the attacked measurement vector, and X
is the correct phasor angle vector. Considering (3), we have
Hij = −bij for i 6= j and Hii =

∑
i6=j bij , where bij denotes

the inverse of the line inductive reactance. We have

Xa = X + d = H−1P +H−1a = H−1(P + a). (11)

As the definition of matrix H shows, it is of rank p−1. There-
fore, the above H−1 denotes the pseudo-inverse of matrix H .
Another way to address this singularity is to remove the row
and the column associated with the slack bus. From (11), we

Fig. 2: Power grid under a cyber attack

get

Σ(Xa, Xa) = H−1[Σ(P + a, P + a)]H−1
T

= H−1[Σ(P, P ) + Σ(a, a)]H−1
T
.

The above calculation assumes that the attack vector is inde-
pendent of the current measurement values in the network, as
demonstrated in the definition of the attack [14].

An attack is considered successful if it causes the operator
to make a wrong decision. For that matter, the attacker would
not insert just one wrong sample. In addition, if the attack
vector remains constant, it does not cause any reaction. This
eliminates the case of constant attack vectors. Therefore, the
attacker is expected to insert non-constant vectors a during
some samples. Thus Σ(a, a) 6= 0 and

Σ(Xa, Xa) 6= Σ(X,X). (12)

It is not difficult to show that, if we remove the assumption
on independence of attack vector and the injected power, (12)
still holds.

Considering (12) and the fact that matrix inverse is unique,
it follows that, in case of an attack, the new Σ−1 will not be the
same as the network information matrix in normal condition,
i.e., Σ−1(Xa, Xa) 6= Jnormal, and as a result, the output of
CMIT will not follow the grid structure. We use this mismatch
to trigger the alarm. It should be noted that acceptable load
changes do not change the Markov graph and as a result do
not lead to false alarms. The reason is that such changes do
not falsify the DC power flow model and the Markov graph
will continue to follow the defined information matrix. After
the alarm is triggered, the next step is to find which nodes are
under attack.

A. Detecting the Set of Attacked Nodes

We use the correlation anomaly metric [32] to find the
attacked nodes. This metric quantifies the contribution of each
random variable to the difference between two probability
densities while considering the sparsity of the structure. The
Kullback-Leibler (KL) divergence is used as the measure of
the difference. As soon as an attack is detected, we use
the attacked information matrix and the information matrix
corresponding to the current topology of the grid to compute
the anomaly score for each node. The nodes with highest
anomaly scores are announced as the nodes under attack. We
investigate the implementation details in the next section.

It should be noted that the attack is performed locally and
because of the local Markov property, we are certain that no
nodes from other sub-graphs contribute to the attack.

We should emphasize that the considered attack assumes
the knowledge of the system bus-branch model. Therefore,
the attacker is equipped with very critical information. Yet,
we can mitigate such an “intelligent” attack.

B. Reactive Power versus Voltage Amplitude

As mentioned before, with similar calculations, we can
consider the case where the attacker manipulates reactive
power data to lead the State Estimator to wrong estimates of
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the voltage. Such an attack can be designed to fake a voltage
collapse or trick the operator to cause a change in the normal
state of the grid. For example, if the attacker fakes a decreasing
trend in the voltage magnitude in some part of the grid, the
operator will send more reactive power to that part and thus
this could cause voltage overload/underload. At this point, the
protection system would disconnect the corresponding lines.
This could lead to outages in some areas and in a worse
scenario to overloading in other parts of the grid that might
cause blackouts and cascading events.

The detection can be done by linearization of the AC power
flow and by considering the fluctuations around steady state.
Then pursuing our algorithm, it readily follows that such an
attack can also be detected with a similar approach to the one
developed here for bus phase angles and active power.

In the rest of this section, we show how this analogy can be
established. The AC power flow states that the active power
and the reactive power flowing from bus i to bus j are,
respectively,

Pij = GijV
2
i −GijViVj cos(θi − θj) + bijViVj sin(θi − θj),

Qij = bijV
2
i − bijViVj cos(θi − θj)−GijViVj sin(θi − θj),

where Vi and θi are the voltage magnitude and phase angle,
resp., at bus i and Gij and bij are the conductance and
susceptance, resp., of line ij. From [33], we obtain the
following approximation of the AC fluctuating power flow:

P̃ij = (bijV iV j cos θij)(θ̃i − θ̃i),
Q̃ij = (2bijV i − bijV j cos θij)Ṽi − (bijV i cos θij)Ṽj ,

where an overbar denotes the steady-state value, a tilde means
the fluctuation around the steady-state value, and θij = θi−θj .
These fluctuating values due to renewables and variable loads
justify the utilization of probabilistic methods in power grid
problems.

Now assuming that for the steady-state values of the volt-
ages we have V i = V j ' 1 p.u. (per unit) and the fluctuations
in angles are about the same such that cos θij = 1, we have

P̃ij = bij(θ̃i − θ̃j), (13a)

Q̃ij = bij(Ṽi − Ṽj). (13b)

It is clear from (13a)-(13b) that we can follow the same
approach we had about active power and voltage angles with
reactive power and voltage magnitudes, respectively.

It can be argued that, as a result of uncertainty, the aggregate
reactive power at each bus can be approximated as a Gaussian
random variable and, because of Eq. (13b), the voltage fluc-
tuations around the steady-state value can be approximated
with Gaussian random variables. Therefore, the same path
of approach as for phase angles can be followed to show
the GMRF property for voltage amplitudes. Comparing (13b)
with (2) makes it clear that the same matrix, i.e., matrix B
developed in Section II-B, is playing the role of correlating
the voltage amplitudes. Therefore, assuming that the statistics
of the active and reactive power fluctuations are similar, the
underlying graph is the same. This can readily be seen by
comparing (13a) and (13b).
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Fig. 3: Detection rate for IEEE-14 bus system

VI. SIMULATION

a) Training the System: We consider IEEE-14 bus sys-
tem as well as IEEE-30 bus system. First, we feed the system
with Gaussian demand and simulate the power grid. We use
MATPOWER [34] for solving the DC power flow equations
for various demand and use the resulting angle measure-
ments as the input to CMIT. We leverage YALMIP [35] and
SDPT3 [36] to run CMIT in MATLAB. With the right choice
of parameters and threshold ξn,p of CMIT, and enough mea-
surements, the Markov graph should follow the grid structure.
We use the edit distance between two graphs for tuning the
threshold ξn,p. The edit distance between two graphs reveals
the number of edges that exist in only one of the two graphs.

b) Detecting Attack State: After the threshold ξn,p is set,
our detection algorithm works in the following manner. Each
time the procedure is initiated, i.e., when any PMU angle
measurement or State Estimator output changes, it updates
the conditional covariances Σ̂(i, j|S) based on new data, runs
CMIT and checks the edit distance between the Markov graph
of phasor data and the grid structure. A discrepancy triggers
the alarm. Subsequently to an alarm, the system uses anomaly
metric to find all the buses under the attack. The flowchart of
our method is shown in Figure 1.

Next, we introduce the stealthy deception attack on the
system. The attack is designed according to the description
in [14], i.e., it is a random vector such that a ∈ Im(H). The
attack is claimed to be successful only if performed locally on
connected nodes. Having this constraint in mind, for IEEE-14
test case the maximum number of attacked nodes is 6 and
for IEEE-30 bus system this number is 8. For the IEEE-14
network, we consider the cases where 2 to 6 nodes are under
attack. For the IEEE-30 network, we consider the cases where
2 to 8 nodes are under attack. For each case and for each
network, we simulate all possible attack combinations. This is
to make sure we have checked our detection scheme against
all possible stealthy deception attacks. Each case is repeated
1000 times for different attack vector values.

When the attacker starts tampering with the data, the
corrupted samples are added to the sample bin of CMIT
and are therefore used in calculating the sample covariance
matrix. With enough corrupted samples, our algorithm can
get arbitrarily close to 100% successful in detecting all cases
of attacks discussed above, for both IEEE-14 and IEEE-30
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bus systems. This is shown in Figure 3 for IEEE-14 bus
system. The detection rate is averaged over all possible attack
scenarios. The reason behind the trend shown in Figure 3 is
that first, for a very small number of corrupted measurements,
the Markov graph follows the true information matrix and
then, for a higher number of compromised measurements, the
Markov graph follows the random relationship that the attacker
is producing. When the number of compromised samples
increases, they gain more weight in the sample covariance, and
the chance of a change in the Markov graph increases. It can be
seen that even for a small number of corrupted measurements,
our method presents a good performance: the detection rate
is 90% with 30 corrupted samples. The minimum number of
corrupted samples to get almost 100% detection rate for IEEE-
14 bus system is 130 and it is 50 for IEEE-30 bus system.
Since IEEE-30 is more sparse than IEEE-14 bus system, our
method performs more efficiently in the former case. Yet, for
a 60 Hz system, the detection speed for IEEE-14 bus system
is quite amazing as well.

c) Identifying Nodes under Attack: The next step is to
find which nodes are under attack. As stated earlier, we
use anomaly score metric [32] to detect such nodes. As an
example, Figure 4 shows the anomaly score plot for the case
where nodes 4, 5 and 6 are under attack2. It means that a
random vector is added to the measurements at these nodes.
This attack is repeated 1000 times for different values building
an attack size of 0.7. The attack size refers to the expected
value of the Euclidean norm of the attack vector a.

Simulation results show that as the attack size increases,
the difference between the anomaly scores of the nodes under
the attack and the uncompromised nodes increases and, as a
result, it becomes easier to pinpoint the attacked nodes. For
example, Figure 5 compares the cases where the attack size
is 1, 0.7 and 0.5 for the attack scenario where nodes 4, 5,

2The numbering system employed here is the one of the published IEEE-
14 system available at https://www.ee.washington.edu/research/pstca/pf14/pg
tca14bus.htm
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Fig. 4: Anomaly score for IEEE-14 bus system. Nodes 4, 5, 6 are
under attack; Attack size is 0.7.
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Fig. 5: Anomaly score for IEEE-14 bus system for different attack
sizes. Nodes 4, 5, 6 are under attack. Attack sizes are 0.5, 0.7, 1.

6 are under attack. It should be noted that in order for an
attack to be successful in misleading the TSO, the attack size
should not be too small. More specifically, the attacker wants
to make a change in the system state such that the change is
noticeable with the hope that this would result in the wrong
reaction of the TSO. If the value of the system state under the
attack is close to its real value, the system is not considered
under the attack as it continues its normal operation. It can
be seen that, even for the smallest possible attack size that
would normally not lead the operator to react, the anomaly
score plot will remain reliable. For example, in the considered
attack scenario, the anomaly plot performs well even for an
attack size of 0.3, while it seems that a potentially successful
attack under normal standards needs a bigger attack size.

d) Setting up Anomaly Score Threshold: Setting the
threshold for anomaly score is another important aspect of
the detection algorithm. As discussed earlier, our scheme has
two major parts. First, detection of attack state, i.e. to declare
if the system is under attack. Second, the identification of
the attacked nodes in case of an attack state. In Figure 3,
we analyzed the detection rate of the “attack state” versus the
number of corrupted samples. In Figure 4 and 5, we discussed
how normalized anomaly score changes with different attack
sizes. Now, we use this intuition to design the threshold for
anomaly score. In case of “attack state” we calculate the
normalized anomaly score for each node. For any node, if
this benchmark is greater than the threshold, the node is
considered to be under attack. In this context, we define the
“Node Detection Ratio (NDRo)” as the ratio of the number
of attacked nodes that are correctly labeled as attacked to
the total number of attacked nodes. Consequently, the “False
Alarm Ratio (FARo),” not to be confused with the False
Alarm rate (FAR), refers to the number of uncompromised
nodes that are mislabeled as under attack to the total number
of uncompromised nodes. As in detection theory, there is a
trade-off in designing this threshold value. Lower threshold
values result in higher NDRo and higher FARo and vice versa.
Since our goal is to detect all attacked nodes, we design the
threshold such that the NDRo is approximately 100% with
a very low FARo. To design the threshold, we repeat the
simulation discussed for Figures 4 and 5 for five different
sets of attacked nodes, the three discussed attack sizes, and
repeat each attack size 100 times. As can also be seen in the
above plots, with a threshold of 0.3 for all attacked nodes, the
normalized anomaly score is above the threshold. Next, we use
this threshold in all possible sets of attacked nodes on IEEE-14
bus system with a attack size of 0.7 and repeat it 50 times for
each set. Simulation results show that this threshold guarantees
nearly 100% NDRo with a very low FARo of 3.82 × 10−5.
The reason is that anomaly score provides a precise statistical
analysis of the nodes that contribute to the mismatch. Hence,
we can obtain 100% detection rate with a very low FARo.

VII. DISCUSSION AND CONCLUSION

We have proposed a decentralized false data injection attack
detection scheme that is capable of detecting the most recent
stealthy deception attack on power grid. To the best of our
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knowledge, our remedy is the first to comprehensively detect
this sophisticated attack. In addition to detecting the attack
state, our algorithm is capable of pinpointing the set of
attacked nodes. Although [8] considers the same attack on
the power network, considerable progress is made in our
approach versus the one in [8]. In both cases, the goal is to
detect the attack. While [8] seeks a PMU placement method,
our method does not require additional hardware but rather
performs statistical structure learning on the measurement
data. In general, both PMU placement and structure learning
are NP hard. However, the use of common knowledge of the
grid structure helps us reach a polynomial time solution. The
power network structure is a sparse graph that satisfies the
local separation property and the walk-summability. For details
on how these properties reduce the general NP hard problem
to a tractable polynomial time problem, see [10].

As stated earlier, the computational complexity of our
method is polynomial and the decentralized property makes
our scheme suitable for huge networks, yet with bearable
complexity and run time. In addition, our method is capable
of detecting attacks that manipulate reactive power measure-
ments to cause inaccurate voltage amplitude data. Such attack
scenario can lead to, or mimic a voltage collapse.

In conclusion, we have introduced change detection for the
graphical model of a power system and showed that it can
be used to detect data manipulation. Our method protects the
power system against a large class of false data injection
attacks, which is of paramount importance for current and
future grid reliability, security, and stability.
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