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Abstract

The traditional heavy-tailed interpretation of congestion is challenged in this paper. A
counter example shows that a network with uniform degree can have significant traffic conges-
tion when the degree is larger than 6. A profound understanding of what causes congestion
is reestablished, based on the network curvature theorem. A load balancing algorithm based
on curvature control is presented with network applications.

Keywords: network congestion, curvature, inertia, Gromov hyperbolic graphs, Poincaré
disk, load balancing, Yamabe flow.

1 Introduction

One of the most important challenges in networking systems, especially in large and wide area
networks, is the traffic congestion problem. The queuing feature between two routers can create
a logical bottleneck between two users. Correspondingly, insufficient bandwidth on the physical
links between routers is a contributor to congestion. The current congestion control technologies
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in communication networks are based on the feedback from the congested node to the source
to slow down the packet flow rate, such as bidirectional congestion control and Random Early
Detection (RED). However, these technologies can only be applied once the congestion has
happened to some degree, and it is only based on the local point of view of some queue overflow
along the source to target path. This paper investigates the deeper reason behind the congestion
in the large scale, and will challenge the current least-cost-path algorithms, such as Dijkstra’s
shortest path algorithm. It will indeed be established that these least-cost-path algorithms
aggravate the congestion, especially in negatively curved networks.

A fundamental ingredient in this paper is that, in order to get a large-scale view on the
congestion problem, we utilize the coarse approximation of a network graph by a Riemannian
manifold. A graph as a mathematical idealization of a network is completely different than a
Riemannian manifold; however, the recent development of the so-called coarse geometry under
the leadership of Mikhael Gromov has given the two mathematical structures—graphs and
manifolds—the unifying framework of geodesic spaces. As a corollary, the concept of curvature
has become applicable to graphs [2, 8, 9, 10]. The fundamental mathematical idea behind
this unification is to realize that the traditional Riemannian curvature, which relies on the
differentiable structure of the manifold, can be rephrased in terms of the more primitive concept
of distance [3, 6]. Since a communication network can be endowed with a distance, which
represents communication cost, delay, outage, etc., its curvature can be defined. The positively
curved versus negatively curved network dichotomy roughly corresponds to the more traditional
meshed (decentralized) versus core-concentric (centralized) network dichotomy [14].

It has been experimentally observed that, on the Internet and other networks, traffic seems
to concentrate quite heavily on some very small subsets. As shown in Fig. 1, congestion could
occur at the “core” through an easy mechanism. However, one extremely important point that
will be made in this paper is that, contrary to traditional belief, congestion is not necessarily a
manifestation of the heavy-tailed behavior related to high node degree, but is a manifestation
of a more subtle process that can be traced back to the curvature.

Figure 1: Traditional understanding of congestion occurring at the “core:” left, Internet Service
Provider (ISP) graph; right: idealized model.

The mathematical apparatus and computer simulations will unveil this striking traffic pattern
in negatively curved networks from both a theoretical and a practical point of view. In further,
this paper studies another fundamental question: if congestion does not necessarily occur at
vertices of high degree, nor at the so-called highly connected “core,” then what are the congestion
points? This paper shows that congestion occurs at the points of least inertia of the network.
Last but not least, a curvature-based load-balancing routing is proposed, and its performance



is compared with a shortest-path routing in multicast communication network.

2 General Concepts and Conjectures

2.1 Curvature, Traffic, Betweenness, Inertia, and Centroid

Let G = (V,E) be a graph specified by its vertex set V and its edge set E and endowed with
a (symmetric) distance function d : G × G → R+. A path p(s, t) from s to t is a continuous
map [0, l] → G such that p(s, t)(0) = s and p(s, t)(l) = t. The weight of an edge e = xy is
defined as w(e) = d(x, y). The length of the path is defined as ℓ(p(s, t)) =

∑
e⊆p(s,t)w(e). A

geodesic [s, t] is a path such that ℓ ([s, t]) ≤ ℓ (p (s, t)), ∀p(s, t). A geodesic triangle is defined
as ∆abc = [a, b] ∪ [b, c] ∪ [c, a].

For the sake of simplicity, the network curvature concept is restricted to planar communica-
tion graphs and is based on Alexandrov angles [1, 3, 6]. Let (ab1 = abdeg(a)+1, ab2, ..., abdeg(a))
be a cyclic ordering of the set of edges attached to the vertex a. The Alexandrov angle αk at the

vertex a of the geodesic triangle ∆abkbk+1 is defined as αk = cos−1w(abk)
2+w(abk+1)

2−w(bkbk+1)
2

2w(abk)w(abk+1)

and the (Gauss) curvature at the vertex a is defined as

κ(a) =
2π −

∑deg(a)
i=1 αk∑deg(a)

k=1 A(∆abkbk+1)
=

K(a)∑deg(a)
k=1 A(∆abkbk+1)

(1)

where A(∆abkbk+1) denotes the area of the geodesic triangle ∆abkbk+1 easily computable via
Heron’s formula. It is easily seen that, for the number of hops metric (w(e) = 1), αk = π/6;
therefore, κ(a) < 0, κ(a) = 0, or κ(a) > 0 depending on whether deg(a) > 6, deg(a) = 6, or
deg(a) < 6, respectively.

An infinite negatively curved graph has the property that it is isometric to a negatively
curved manifold up to a bounded distortion (see [5] for precise statement). Since this graph-
manifold identification entails a bounded error, large scale problems on graphs can be mapped
to more manageable continuous geometry problems on manifolds (see Sec. 4).

The traffic on the graph is driven by a demand measure Λd : V × V → R+, where the
demand Λd(s, t) is the traffic rate (e.g., number of packets per second) to be transmitted from
the source s to the destination target t. Assume that the routing protocol sends the packets
from the source s to the target t along the path p(s, t) with probability π(p(s, t)). As such,
the path p(s, t) inherits a traffic rate measure τ(p(s, t)) = Λd(s, t)π(p(s, t)). An edge e laying
on the path p(s, t) inherits from that path a traffic τ(p(s, t)). Aggregating this traffic over all
source-target pairs and all paths traversing the edge e yields the traffic rate sustained by the
edge e, τ(e) =

∑
(s,t)∈V×V

∑
p(s,t)⊇e τ(p(s, t)). The traffic rate at a vertex v is defined as

b(v) = 1
2

∑
e⊇v τ(e) +

∑
s ̸=v Λd(s, v) +

∑
t̸=v Λd(v, t)

= |{[s, t] : v ∈ [s, t]}| (if Λd(x, y) = 1,∀x ̸= y)

The notation b(·) stands for betweenness [3], as for a uniformly distributed demand, the traffic
at v is the number of geodesics passing through v. Given a connected subgraph X ⊆ G, we
define its traffic load to be representative of the number of packets in it:

Λt(X) =
∑
s,t∈V

 ∑
e∈p(s,t)∩X

w(e)

Λd(s, t)π(p(s, t)) (2)

The inertia of a (connected) graph G with respect to a vertex v is defined as ϕG(v) =∑
vi∈V d2(v, vi). Observe that this inertia may be infinite. A center of mass or centroid
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of the graph G is defined as a vertex relative to which the inertia is minimum: cm(G) =
argminv∈V ϕG(v). The global minimum need not be unique.

2.2 Conjectures

Conjecture G−. If the graph G = (V,E) is negatively curved along with a demand measure Λd

uniformly distributed over V ×V , the least-cost protocol that sends packets over optimal routes
leads to a very high traffic rate b(v) (traffic load Λt(X)) over a very small number of vertices v
(over a very small subset X).

Conjecture G+. If the graph G = (V,E) is nonnegatively curved along with a demand measure
Λd uniformly distributed over V × V , the protocol that sends packets over optimal routes leads
to a nearly uniform traffic rate b(v).

We can now formulate our third conjecture, saying that the maximum traffic load for uni-
formly distributed demand occurs near the center of mass of the network relative to uniformly
distributed weight:

Conjecture G. argmaxv b(v) ≈ cm(G). (Equality failed only in one positively curved example.)

Conjecture M−. If the graph G is negatively curved, the inertia ϕG(v) has a unique global
minimum and cm(G) is unique. (This result is already known for global Busemann nonpositively
curved spaces [12].)

Conjecture M+. If G is nonnegatively curved, cm(G) is not uniquely defined. (In a real-life,
massive, nonnegatively curved network, the inertia ϕG(v) is nearly constant with v and cm(G)
might be hard to identify.)

Clearly, Conjecture M± along with Conjecture G would yield Conjecture G±.

3 Benchmark Examples

Several benchmark examples in here will provide support for these conjectures: a set of planar
graphs in which the curvature is dictated by the valence (degree) of the nodes, as shown in
Fig. 2. As shown in Fig. 3, we examine the negatively curved cases of valence 7, 8 and 9,
hence of curvature 1

2π

(
2π − 7π

3

)
= −1

6 , −1
3 and−1

2 , respectively, in which significant traffic
congestion occurs at the centroid of the graph when least cost routing (Dijkstra’s) algorithm is
applied. Then we contrast the results with those of a vanishing curvature graph of valence 6
(curvature=0), in which the congestion is more smoothly distributed over all nodes. Towards a
more realistic situation, we then look at a case of mixed valence. We then proceed to positively
curved graph of valence <6, in which the situation is drastically different than in negative
curvature, as the traffic is uniformly distributed!

Clearly, as shown in Fig. 4, as the curvature becomes more and more negative, the vertex
carrying the heaviest traffic in the graph becomes more and more congested relative to the other
nodes, consistently with the inertia at the center of mass becoming smaller and smaller By
increasing the node degree, with the same number of nodes and traffic demand, there are more
connections in the network, so that the total traffic in the network decreases, but the traffic is
heavier in the congestion center.



Figure 2: Simple hyperbolic graph with node degree seven and uniform edge length.

To further test Conjecture M−, especially to eliminate a possible contribution of the sym-
metrical structure of the graph to the congestion cases of the previous paragraph, we simulate
the traffic and inertia distribution in a highly unsymmetrical network as shown in Fig. 5. The
position of the heaviest traffic congestion point matches the node with minimum inertia. These
results, in further, confirm our conjecture M−.

4 Proofs of Conjectures

4.1 Proof Conjecture G+: Traffic in Positive Curvature

Consider the Platonic solids. All of these Platonic solids have their symmetry group Γ. This
symmetry group Γ acts on the vertex set VP of the Platonic solid P as a map Γ × VP →
VP , (g, v) 7→ g(v), where g is an element of the symmetry group. Recall that the action of a
symmetry group on a space is vertex-transitive if ∀v, w ∈ VP there exists a g ∈ Γ such that
w = g(v).

It is easy to see that the action of the symmetry groups on the Platonic solids is vertex-
transitive. We prove this as follows: Observe that all Platonic solids except the tetrahedron
have dihedral (rotation) symmetries about axes joining the centers of pairs of opposite faces,
while the tetrahedron has D3 symmetry about the axis joining a vertex to the center of the
opposite face. Then consider two vertices v, w on a Platonic solid. Join them by a sequence of
consecutive edges. It is easy to see that the beginning vertex of an edge can be moved to the
end vertex by a symmetry about the axis perpendicular to the center of a face comprising the
edge.

With the above concept, it is easy to prove that the betweenness is uniform. Let bG(w)
denote the betweenness of the node v in the graph G. Then we have

bG(w) = bG(gv) = bg−1G(v) = bG(v)

The only nontrivial part in the above string of equalities is the second one, where it is essential
that the edge length be uniform. Indeed if (s, t) is a pair communicating via gv, we have
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Figure 3: Traffic distribution in different planar networks: degree 6 everywhere, degree 7 ev-
erywhere, degree 8 everywhere, and random degree 6/7/8. The routing algorithm implements
random pickup of equal cost paths.

d(s, g(v))+d(g(v), t) = d(s, t), from which it follows that d(g−1s, v)+d(v, g−1t) = d(g−1s, g−1t),
hence there is a pair (g−1s, g−1t) communicating via v.

The proof that the inertia is uniform is essentially the same:

ϕG(w) = ϕG(gv) = ϕg−1G(v) = ϕG(v)

The proof that τ(v) is uniform involves the edge-transitivity of the symmetry group. Let
τG(e) be the traffic rate on edge e in the graph G. Then

τG(e2) = τG(ge1) = τg−1G(e1) = τG(e1)

Again, in the second inequality, it is essential that the demand be uniform. From the above, it
easily follows that τG(e1) = τG(e2).

Hence we have the following result: For a uniformly distributed demand measure Λd : VP ×
VP → R+ on the squared power of the vertex set of one of the 5 Platonic solids, the traffic load
b : VP → R+ is uniform, for a geodesic routing and provided the traffic is equally distributed
among pairs of nodes.

More generally, by Higuchi’s theorem [17], positively curved graphs are finite; next, the
valence can only take values 3, 4, 5; therefore, the inertia and the congestion remain bounded
from above and from below.

4.2 Quantitative Measure of Traffic in Disks

In general, the traffic load density in a convex subset X of a surface Σ is defined in a way
inspired from (2), except for some normalization,

λt(X) =
1

A (Σ)2A(X)

∫∫
(s,t)∈Σ×Σ

ℓ (X ∩ [s, t]) dΛd(s, t)



Figure 4: Traffic at the center of mass, total traffic in the network, and the total connection in
the network.

Here Σ is the “network” that comprises all sources s and all targets t; the normalization by the
squared area A(Σ)2 is justified by dΛd(s, t) = A(ds)A(dt), and the normalization A(X) is for
obvious reasons. From here on, we specialize the computations to Σ = B(R) and X = B(r), a
large ball and a small ball (R >> r), respectively, with their common center at the origin of the
Euclidean space E2 or the hyperbolic space H2.

4.3 Conjecture G+: Traffic at the Center of a Euclidean Disk

The above double integral can be rewritten as the following:

λt(X) =
1

A (B(R))2A(B(r))

∫ √
R2−u2−

√
r2−u2

0

∫ √
R2−u2−

√
r2−u2

0

∫ 2π

0

∫ r

0
ℓ {X ∩ [s, t]} ...

...× |Jacobian| du dθ dl dl

We first compute the Jacobian relative to the change of variables from Cartesian coordinates to
polar coordinates. Assume the points s and t are at (x, y) and (x′, y′) in Cartesian coordinates.
As shown in Fig. 6, their corresponding representations in polar coordinates with (u, θ, l, l′) are
the following:

x = u cos θ + (l +
√
r2 − u2) cos

(
θ + π

2

)
= u cos θ − (l +

√
r2 − u2) sin θ

y = u sin θ + (l +
√
r2 − u2) sin

(
θ + π

2

)
= u sin θ + (l +

√
r2 − u2) cos θ

x′ = u cos θ + (l′ +
√
r2 − u2) cos

(
θ − π

2

)
= u cos θ + (l′ +

√
r2 − u2) sin (θ)

y′ = u sin θ + (l′ +
√
r2 − u2) sin

(
θ − π

2

)
= u sin θ − (l′ +

√
r2 − u2) cos (θ)

Long but elementary calculations show that |Jacobian| = l + l′. Then

λt(X) = limR→∞

∫√R2−u2−
√

r2−u2

0

∫√R2−u2−
√

r2−u2

0

∫ 2π
0

∫ r
0 2

√
r2−u2(l+l′)du dθ dl dl′

(πR2)2(πr2)

= 1
πR
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Figure 5: Traffic and inertia distribution in an unsymmetrical network. (Vertex #3 has maxi-
mum traffic and minimum inertia.)

4.4 Conjecture G−: Traffic at the Center of a Hyperbolic Disk

As shown in Fig. 7, the points s and t are at (x, y) and (x′, y′), respectively, in the Cartesian
coordinates of the Poincaré disk, D = {x+ jy ∈ C : |x+ jy| = r < 1}. It is, however, useful to
parameterize the source and target by their representations in “polar” coordinates (u, θ, r, r′),
where the distances u, r̄, r̄′ are hyperbolic. If r, r̄ represent the Euclidean and hyperbolic mea-
surements, respectively, of the radius, then r = tanh

(
1
2r
)
. As is well known, the area element

is given by

dA =
4dxdy(
1− |r|2

)2 =
4dxdy(

1− tanh2 1
2r
)2 = 4 cosh4

(
1

2
r

)
dx dy

The Cartesian (x, y, x′, y′) versus polar-hyperbolic (u, θ, r, r′) coordinate transformation is the
following:

x = cos (λ+ θ) · tanh
(
1
2r
)
,

y = sin (λ+ θ) · tanh
(
1
2r
)
,

x′ = cos (θ − λ′) · tanh
(
1
2r

′
)

y′ = sin (θ − λ′) · tanh
(
1
2r

′
)

where cosλ = tanhu
tanh r and cosλ′ = tanhu

tanh r′
, per hyperbolic trigonometry in square angle triangles.

Next,

|Jacobian| r̄,r̄
′→∞
= O

(
1

cosh2
(
1
2r
)
cosh2

(
1
2r

′
))



Figure 6: Traffic in Euclidean disk.

λt(X) = 1
A(B(R))2A(B(r))

∫∫
(s,t)∈B(R)×B(R) ℓ {X ∩ [s, t]}A(ds)A(dt)

= 1
A(B(R))2A(B(r))

∫∫ ∫∫
B(R)×B(R) ℓ {X ∩ [s, t]} ×

(
16 cosh4 r · cosh4 r′

)
dx dx′ dy dy′

=
∫ R̄
r

∫ R̄
r

∫ 2π
0

∫ r̄
0 ℓ {X ∩ [s, t]} ×

(
16 cosh4 r · cosh4 r′

)
× |Jacobian| du dθ dr dr′

≈ O

[
sinh2

(
R̄
2

)
cosh2

(
R̄
2

)
sinh2

(
R̄
2

)
sinh2

(
R̄
2

)
]

(R̄ → ∞)

= O(constant)

(The reader is referred to [15] for the details.)

The conclusion is that, in the hyperbolic case, the normalized traffic transiting through the
small ball remains bounded from below as R → ∞. This strongly contrasts with the Euclidean
case, where the normalized traffic goes to zero as R → ∞. In other words, in the hyperbolic case,
the traffic density Λt(X)/A(X) ≍ cstA(B(R))2, which is worse than the asymptotic estimate
of cstA(B(R))1.5 in the Euclidean case. (See [4] for traffic in scale-free rather than hyperbolic
spaces.)

4.5 Conjecture M±: Minimum Intertia

In the Poincaré disk, the Laplacian operator is ∆ =
(
1− |z|2

)2
∂
∂z

∂
∂z̄ =

(1−|z|2)
2

4

(
∂2

∂x2 + ∂2

∂y2

)
. A

twice continuously differentiable function f such that ∆f = 0 is said to be harmonic. If ∆f ≥ 0,
then the function is said to be subharmonic. What motivates the utilization of (sub)harmonic
functions is that they reach their maxima on the boundary of analyticity.

Theorem 1. The inertia of B(R) in the Poincaré disk relative to the point v,

ϕ(v) =

∫∫
B(R)

d(v, z)2dA(z)

reaches its minimum at v = 0.
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Figure 7: Traffic in hyperbolic disk.

Proof. We first show that d2(v, z) is subharmonic in v. Indeed, obviously, the Poincaré disk is a
complete Riemannian manifold of nonpositive curvature, and hence it is a Busemann Non Posi-
tively Curved (NPC) space [12, page 45]. But in a Busemann NPC space, the distance squared
is strictly convex [12, page 61]. A strictly convex function has positive definite Hessian [13, page
395]. Hence the trace of the Hessian, ∆d2, is (strictly) positive. Next, we prove that ϕ(v) is
subharmonic; indeed

∆ϕ(v) = ∆

∫∫
B(R)

d(v, z)2dA(z) =

∫∫
B(R)

(
∆d(v, z)2

)
dA(z) ≥ 0

Moreover, since ∆d2(·, z) > 0, it follows that ϕ is subharmonic in the strong sense that ∆ϕ > 0.
By rotational symmetry, ϕ(v) is constant on v ∈ ∂B(r), r < R. Write this value as ϕ(∂B(r)).
By the subharmonic property, it follows that ϕ(0) ≤ ϕ(∂B(r)),∀r < R. For any point v ∈ B(R),
we obviously have v ∈ ∂B(|v|), with |v| < R, so that ϕ(0) ≤ ϕ(∂B(|v|)) = ϕ(v). Hence the
minimum is reached at v = 0. It remains to show that the minimum is unique, that is, to show
that the preceding inequality can be strengthened to a strict inequality. From the strengthened
subharmonic property ∆ϕ > 0 and the Green function argument of [11, page 9], it follows that
ϕ(∂B(|v|)) is strictly increasing with |v|. Hence ϕ(v) reaches its (unique) minimum at v = 0.

5 Shortest-Path Routing vs. Curvature Based Load Balancing

5.1 Traditional Shortest-Path Routing

In the previous sections, we have shown, from a theoretical point of view, that for uniformly
distributed demand the shortest path length routing in negatively curved networks causes con-
gestion over a small number of vertices; moreover, these vertices with heavy traffic rate occur
near the center of mass of the network. In this section, we more specifically look at this conges-
tion phenomenon in the practical setting of traffic overload in communication network. To make



this problem more specific and straightforward, we focus our attention on multicasting traffic,
even though our theorem can be applied to more general communication network paradigms,
such as VoIP and multimedia networking, mobile Ad-Hoc networks, wireless sensor networks,
etc., where traffic congestion and routing algorithms are the big concerns in the design of those
communication networks.

Multicasting could involve almost all layers of a communication network. A multicast task
can be performed at the application layer, where a hybrid network is a good model for this
application, as will be presented later. A multicast task can also go systematically through the
physical, link, and network layers. The increasing popularity of group communication appli-
cations such as teleconference and information dissemination services has led to an increasing
interest for the development of multicast transport protocols. However, these transport proto-
cols could cause congestion collapse if they are widely used, as they ignore the curvature and
are hence prone to the related congestion problems discussed above.

Two basic multicast tree algorithms are currently available in the industry: one is the dense-
mode algorithm; the other is the sparse-mode algorithm. Both multicast tree algorithms are at
the heart of the multicast protocols, such as the Distance Vector Multicast Routing Protocol
(DVMRP) in dense-mode, and the Protocol-Independent Multicast (PIM) operating in both
dense mode and sparse mode. As shown in Fig. 8a, the dense-mode uses the source-based tree.
It determines a shortest-path tree to all destinations first, and then uses a reverse shortest-path
tree rooted at a source. So the spanning tree starts at the source and guarantees the lowest cost
from a source to all leaves of the trees. The sparse-mode algorithm uses a shared-tree technique
which uses a rendezvous point (RP) to connect sources and receivers. This rendezvous point
acts as the core or root to coordinate forwarding packets from source to receivers under its
distribution subtrees, as shown in Fig. 8b.

Figure 8: Two methods for constructing multicast algorithms: (a) dense mode, using a source-
based tree; (b) sparse-mode, using a shared tree.

We used the Network Simulator (ns-2) to build up the traffic congestion environment in
multicast communication. To make our simulation straightforward, we focus our attention on
the congestion versus network curvature issue by ignoring the dynamic change in the group
membership and using User Datagram Protocol (UDP) as the sources. In further, we apply
the same topology structure (uniform node degree 6, 7 or 8) into the ns-2 simulation as the
one already used in Section 3. A snapshot of the visualization with ns-2 NAm (the Network
Animator) is shown in Fig. 9. In this figure, the node degree is 8 with a total of 100 nodes in
the graph with node #0 at the centroid (a similar layout as the one shown in Fig. 2).
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Other important networking settings are the followings:

• Every node in this graph is multicasting to all the other nodes in the network.

• The maximum buffer size of the queue in every link between two nodes is 1000 bytes pks,
and every link is a duplex-link with 1Mb bandwidth, with a response time of 2ms.

• The size of every file is fixed to 2000 bytes.

• The start time of every UDP source is an exponential random variable with average value
0.01, and the interval time between two successive UDP packets for the source is 2.0
seconds.

As shown in Fig. 9, with the above setting, the network with 100 nodes and node degree 8
has congestion at nodes #0, #2, #3, #4, #5, as revealed by heavy packet drops. There is no
such congestion for the network with node degree 6.

Figure 9: Snapshot of the visualization of network with node degree 8 and its packet loss using
ns-2 Nam.

5.2 Load Balancing Routing

Load balancing algorithms are widely used to curb the congestion. For example, Cisco IOS router
software has built-in load balancing functionality, and is available across all router platforms. It
allows a router to use multiple equal cost paths to a destination when forwarding packets. The
fundamental mechanism is as follows: When the router must select a route from many with the
same administrative distance, the routers choose the path with the lowest congestion cost to the
destination. In further, one can select load-balancing to work per-destination or per-packet. As
shown in Table 1, from [7], the position of the asterisk (*) points to the interface over which the
next packet/destination-based flow is sent; and the asterisk (*) keeps rotating among the equal
cost paths each time a packet/flow is served.



Table 1: In load balancing [7], the asterisk (*) keeps rotating among equal cost paths.

M2515-B# show ip route 1.0.0.0

Routing entry for 1.0.0.0/8

Known via "rip", distance 120, metric 1

Redistributing via rip

Advertised by rip (self originated)

Last update from 192.168.75.7 on Serial1, 00:00:00 ago

Routing Descriptor Blocks:

* 192.168.57.7, from 192.168.57.7, 00:00:18 ago, via Serial0

Route metric is 1, traffic share count is 1

192.168.75.7, from 192.168.75.7, 00:00:00 ago, via Serial1

Route metric is 1, traffic share count is 1

However, in most cases, negatively curved networks have worst congestion problem, and the
current load-balancing algorithms cannot alleviate it. The reason is this: first of all, there are not
many multiple paths with the same administrative distance, since negatively curved manifolds
have no conjugate points as the positively curved manifolds have. Second, even if we allow for
quasi-optimal paths, there are still too close to the optimal one to bypass the congestion points.

Figure 10: The system level diagram of curvature based load balancing.

So, in here, we propose a curvature based load-balancing algorithm. The system diagram is
shown in Fig. 10. The curvature κ of the network is used to control a switch. If the network
is nonnegatively curved, κ ≥ 0, the weight of the edges in the network is the administrative
distance; and the shortest path is calculated based on that. Therefore, traditional load-balancing
is used as we mentioned above. If the network is negatively curved, the weight of the edge
between two directly connected vertex vi and vertex vj is reassigned to be:

w̃(vivj) =

(∑
k

d2(vk, vi)

)−1

︸ ︷︷ ︸
u(vi)

w(vivj)

∑
j

d2(vj , vk)

−1

︸ ︷︷ ︸
u(vj)

(3)

where d is the administrative distance.
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Figure 11: Traffic distribution of node degree 7 network; left: without load-balancing; right:
with load-balancing.

A modified graph is generated with these edge weights instead of the administrative distances.
The curvature will be positive in this modified graph since χ = 2 > 0. The inertia distribution
will be tend to be flat since the edges close to minimum inertia vertices (with heaviest traffic)
of the original graph are assigned larger weights to increase the inertia so that the routing
curbs the traffic along those edges. Fig. 11 compares the traffic distribution with and without
the curvature based load-balancing. In this experiment, we use the node degree 7 network.
The heaviest traffic drops from 3340 to 1756 after the curvature based load-balancing. It is a
47% decrease. Since the paths have to be detoured from the congestion vertex through extra
routers, it will cause an increase of the total traffic in the network. The total traffic with the
load-balancing is 69126 compared with 53964 without the load-balancing. It is a 28% increase.
Fig. 12 compares the typical routings with and without load-balancing.

5.3 Load Balancing by Yamabe Flow

The link weight reassignment (3) fundamentally smoothes over the inertia of the graph and, as
a corollary of the various conjectures and results, alleviates the congestion by distributing the
traffic more uniformly. From a deeper mathematical viewpoint, the new link weight w̃ is in fact
a conformal transformation [16] of the original weight w. The combinatorial Yamabe flow [16]
is a refined procedure that iterates on the conformal factor u : V → R+ to produce, subject to
no obstruction, a metric of uniformly positive curvature. More specifically, the combinatorial
Yamabe flow on a triangulated surface is the system of ODE’s

du(vi, t)

dt
=−Ku∗d(vi)u(vi, t), u(vi, 0) = 1

where u(vi, t) is the conformal factor associated with the vertex vi at time t, u ∗ d is the
conformally modified administrative distance defined as u ∗ w(vivj) = u(vi)w(vivj)u(vj), and
Ku∗d(vi) is the combinatorial curvature (the numerator of (1)) at vi for the metric u∗w. By the
piecewise linear (PL) Gauss-Bonnet theorem,

∑
iK(vi) = 2πχ, where χ = |F | − |E|+ |V | is the

Euler characteristic. Thus a metric of uniformly positive curvature exists only if χ > 0, which is
the case for the triangulation of Fig. 12. On such a triangulation, the Yamabe flow will converge
to a metric of constant positive curvature, unless it reaches a removable singularity. The latter is
a degenerate triangle ∆vivjvk of the triangulation, that is, u∗w(vivj)+u∗w(vjvk) = u∗w(vivk).
This singularity is easily removed by deleting the link vivk. Thus, to alleviate congestion, some
links might have to be removed, a phenomenon otherwise referred to as Braess paradox.



Figure 12: Routing with and without the curvature-based load balancing (Red circle: without
load balancing; Blue circle: with load balancing.)

6 Conclusion and Future Work

We have proposed to utilize coarse geometry concepts to analyze the traffic pattern in networks,
especially in negatively curved networks. We have found that the Alexandrov angles provide
relevant curvature information, consistently with the Gauss concept. The latter provides the
quintessence of the topological structure of a network. Networks with different curvatures have
drastically different behaviors as far as traffic, random walk, percolation processes, etc. are
concerned. Negatively curved networks are prone to congestion. Because of the pervasive
implication of negative curvature, the congestion cannot be really alleviated, unless more drastic
action—curvature control—is implemented by a Yamabe-like scheme. The remaining challenge
is to implement the Yamabe flow in some flooding scheme.
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