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Abstract— In this paper, the issue of data-driven modeling
of a single load in a laboratory set-up is confronted with the
same data-driven modeling of the same load, but in a real
grid environment. As it is argued here, an aggregation effect
of all of the loads in a grid endows a single load with grid-
characteristics properties in addition to the usual load-specific
properties. Topologically, the hidden feedback structure of a bus
model reveals that the resulting digraph is strongly connected,
meaning that all loads are intertwined in a single system that
cannot be decomposed into islands.

I. INTRODUCTION

Load modeling is undoubtedly an important—still active—
area of research in the power grid. Indeed, depending on
their active and reactive power profiles, loads could be the
culprit in voltage collapse or other nuisances in the grid [8],
[24]. One issue that has never been made completely clear is
what is the difference between, on the one hand, a model of
a single isolated load and, on the other hand, a model of a
load in a complex grid environment. Berg [4], [5] is adamant
that his load models represent the loads in the Scandinavian
microgrid environment in which the experiments were done.
Hill [14], [20] on the other hand does “curve fitting” of the
power disruption resulting from a voltage drop in a single
load laboratory environment. A puzzling difference between
the two models is that the Berg model involves the frequency
in a fractional exponent in a narrow bandwidth around 50
cycles/sec, whereas a lingering issue in the Hill model is its
lack of frequency dependence [14, p. 175], [21, p. 24].

A fractional transfer function model of a high voltage
transformer was already derived in [15]. The big difference
is that the fractional model of the transformer is mandated by
matching the frequency response over a very large frequency
sweep, exciting parasitic distributed parameter electromag-
netic effects present in the wiring of the transformer. Here,
we deal with the frequency response over a very narrow
frequency band around 50 cycles/sec. Under those circum-
stances, it is a bit difficult to see how parasitic modes could
be excited, unless another hitherto unknown effect is present.
The purpose of this paper is to offer evidence that his other
effect is the aggregation of the loads. By “load aggregation,”
we mean that, after unraveling the hidden feedbacks in bus
model, the resulting interconnected system is made up of
one and only one strongly connected component [6], [7].
The latter means that under normal operations loads are not
“islanded.” Quite to the contrary, every single load penetrates
the whole grid. As an example [12], removing a load at a
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grid point in the Bay Area was observed by a micro-PMU
550 kilometers away in the Los Angeles area.

An outline of the paper follows: Sec. II deals with Berg
load modeling. Sec. III introduces the basic feedback motif
of a single generator, single line, single load bus. This basic
feedback motif is repeated to reveal the hidden feedback
structure of a more complicated grid in Sec. IV. Sec. V de-
scribes the load aggregation effect as the strongly connected
property of the hidden feedback structure. Sec. VI describes
various contingency scenarios.

II. BERG LOAD MODELING AND FRACTIONAL DYNAMICS

The Berg model [1], [4], [5],

P (VL, ω) = KpV
pv
L ωpω , Q(VL, ω) = KqV

qv
L ωqω , (1)

is usually thought of as a static model, but its frequency
dependence gives it some dynamical properties formalized
in the describing function technique [2]. The Berg model
was derived experimentally from data collected on a Scan-
dinavian “micro-grid,” when a generator was deliberately
removed from the grid, resulting in transients and eventually
a new steady state of the power profile (P,Q) absorbed by
the load. Contrary to the Hill model, the Berg model does
not attempt to model the transients; it only models the shift
in the steady state, but in a manner that goes beyond the Hill
model as it involves the frequency—in a rather unorthodox
way, with fractional exponents of the frequency.

It is straightforward to go from the complex power to the
impedance model of the load:

ZL =
VLVL

∗

ILVL
∗ =

V 2
L

S∗
L

=
V 2
L

P (VL, ω)− jQ(VL, ω)
(2)

=
1

KpV
pv−2
L ωpω − jKqV

qv−2
L ωqω

,

where boldfaced quantities denote phasors and where SL =
VLIL

∗ = P (VL, ω)+jQ(VL, ω) is the complex power. Using
the experimental pv , pω , qv , and qω data derived in [4] for
different loads, the impedances are easily obtained as in [24,
Table II], in describing function format [2] since they depend
on the voltage amplitude.

For notational convenience, we switch to the admittance
formulation YL = 1/ZL = Lωp− jWωq . Next, we approx-
imate YL(VL, ω) with a formal circuit-theoretic admittance,
except for its amplitude dependency,

YL(VL, ω) ≈ A(VL)× (jω)α −B(VL)× (jω)β , (3)

where A, B are real-valued. The construction of the approx-
imation is done as follows: First, write jα = a + jb, jβ =



c+ jd. Then the approximant becomes

A×(jω)α−B×(jω)β = aAωα−cBωβ+j(bAωα−dBωβ).

The matching conditions then become

aAωα − cBωβ ≈ Lωp, −bAωα + dBωβ ≈Wωq.

Matching the right and left-hand sides at ω = ω0 =
2π50 rad/sec, along with the derivatives around ω = ω0,
entails 4 conditions. This allows us to uniquely determine
the 4 parameters A,α,B, β.

The right-hand side of (3) has an obvious holomorphic
extension, A×(σ+jω)α−B×(σ+jω)β that clearly satisfies
the Cauchy-Riemann conditions. For ω = 0, the extension
is obviously real and hence satisfies the “realness” condition
of formal circuit theory [3].

Finally, write s = σ + jω, the Laplace symbol. With this
notation, the admittance takes the form

YL =
IL
VL

= Asα −Bsβ .

Reinterpreting the inverse Laplace transform of sα as the
fractional differential Dα

(∗) yields the fractional dynamics
model:

IL(t) = ADα
∗ VL(t)−BDβ

∗VL(t). (4)

In our choice between the Riemann Dα and the Caputo Dα
∗

fractional differential [11], [13], [16], [17], [18], [19], we
opted for the latter as its initial conditions involves only
integer order derivatives of VL. Note that such a fractional
order equation is known not to have periodic solutions [25].
It is believed that the fluctuations of the PMU variables
observed in [22] betray their fractional dynamics.

III. BASIC MOTIF

In the most basic power system (one generator with
internal impedance, one line, one load), a feedback structure
already appears in the light of its circuit theoretic model.
The basic bus model of Fig. 1(a) has the 2-motif feedback
structure of Fig. 1(b). The first motif refers to the loop ZGY12

fed by the generator emf EG to produce the generator voltage
VG, as shown in the top part of Fig. 1(b). The second motif
is the ZLY12 loop that produces the load voltage VL. In the
next section, we analyze those two basic motifs are repeated
in a large scale architecture to yield the hidden feedback
structure in the power grid.

(a) (b)

Fig. 1: Simple 2-bus power system: (a) Circuit diagram (b)
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Fig. 2: Hypothetical decomposition of a grid digraph into
strongly connected components. Each strongly connected
component (dotted circle) is itself a multivariable version
of the bottom motif of Fig. 1(b).

IV. BASIC MOTIF INTERCONNECTION

Consider now the basic motif of Fig. 1(a) repeated in an
interconnection pattern together with the basic feedback of
Fig. 1(b) itself repeated in a matter consistent with the bus
model. The latter obviously leads to a complicated feedback
interconnect.

Given a complicated feedforward-feedback path intercon-
nection, the question as to whether closed-loop stability
could be decided by examining closed-loop stability of
several “subsystems” was posed in a graph-theoretic setting
by Callier and Desoer [6], [7]. Given that transport of the
various information/commodities occurs in a specific direc-
tion, the overall interconnection structure can be abstracted
as a directed graph or digraph D = (V, E). A Strongly
Connected Component (SCC), D(U), U ⊆ V , is a subset
of vertices and oriented edges connecting U -vertices such
that ∀vi, vj ∈ D(U), there exists a directed path from vi
to vj and a directed path from vj to vi, and furthermore
the subset is maximal in the sense that adding a vertex
vk 6∈ U would destroy the strongly connected property. The
SCCs are themselves connected through the Interconnection
Subsystem (IS), which, as shown in Fig. 2, has no oriented
loops for otherwise some of the D(Ui) could not be maximal.
Then using the concept of essential set, each SCC component
is partitioned into two parts: one that is the feedforward
path and another that is the feedback part of the diagram,
as illustrated in the dotted circle of Fig. 2.

We apply those concepts of [6], [7] to the power grid.
Instead of arguing in terms of active/reactive power flow,
we argue in terms of such circuit theory commodities as
generator electro-motive forces (EG), line voltage drops (V`),
line currents (I`), load voltages (VL), and load currents
(IL). It is argued that the circuit theory interconnection
has a great many feedbacks, hidden in the bus model, but
revealed upon modeling the loads as impedances. Indeed,
repeating the bottom motif of Fig. 1(b) yields the mul-
tivariable feedback shown in the dotted circle of Fig. 2,
where the load impedances are in the feedforward path
and the line admittances in the feedback path, although the
reverse convention shown in the bottom motif Fig. 1(b) is
fundamentally not different.



Looking at the hypothetical decomposition of Fig. 2, it
follows that, if a collapse occurs in one of the D(Ui)’s, that
part of the network upstream to D(Ui) won’t be affected.
Now, assume there is adequate supply relative to the demand.
Assume none of the D(Ui)’s could go into the nonlinear
feedback effect collapse as formulated in [24]. Then the
whole interconnect would not go into collapse. Clearly,
if such a decomposition as that of Fig. 2 were possible,
checking for collapse would be immensely simplified and
two loads in different D(Ui)’s won’t be aggregated in a
feedback loop.

The problem is that for any grid with the generator
internal impedances properly modeled, except in case of
faults, the hidden feedback structure is strongly connected,
cannot be decomposed in strongly connected component, and
the various loads are intertwined in an aggregating feedback.

V. AGGREGATION EFFECT: ONE SINGLE STRONGLY
CONNECTED COMPONENT

Before going through the detail, we provide an idea of the
proof of Th. 1. Consider a 1-generator, 2-load interconnect,
as shown in Fig. 3. Going from power flow to equivalent
circuit theoretical formulation yields the multi-input, multi-
output (MIMO) feedback of Fig. 4(a). By visual inspection,
the latter interconnect looks like the MIMO feedback shown
in the dotted circle of Fig. 2, with the extra difficulty that
Fig. 4(a) involves generator internal impedance. The nodes of
the feedback diagram of Fig. 4(a) are partitioned into voltage
nodes and current nodes in the bipartite digraph shown in
Fig. 4(b), obviously strongly connected. From this point on, it
turns out that adding one generator will add another bipartite
digraph, the two digraphs being connected in a way that
allows us to go back and forth between the two of them. It
turns out that this is a general fact; hence the hidden feedback
graph is strongly connected.

1) 3-bus power system: In this case, we choose a 3-bus
system with one generator at bus 2 feeding two loads at buses
1 and 3, as shown in Fig. 3. The feedback structure of this
power system, depicted in Fig. 4(a), has three motifs, one
for the generator and two for the loads. By looking at the
feedback system, we can see that the generator is connected
to the loads ZL1 and ZL2 through line admittances Y12 and
Y23 respectively. So, the system is strongly connected.

Fig. 3: 3-bus power system: 1 generator, 2 loads

The graph of this feedback system is a bipartite 2-color
graph, as shown in Fig. 4(b). The green color is for the
voltage nodes (VL1, VG, and VL2) and the orange color is
for the current nodes (IL1, IG, and IL2).

(a) (b)

Fig. 4: 3-motif case (1 generator, 2 loads): (a) Feedback
model, (b) Graph model

We can find the “plant” transfer matrix Ḡ and the feedback
matrix F̄ by writing the nodal equations for the power
system, which yieldsVL1

VG
VL2


︸ ︷︷ ︸

η

=
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Ḡ
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, (5)
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e

=

 Y12 −Y12 0
−Y12 Y12 + Y23 −Y23

0 −Y23 Y23


︸ ︷︷ ︸

F̄

VL1

VG
VL2


︸ ︷︷ ︸

η

. (6)

2) 6-bus power system: In this case, we have a larger
power system with 6 buses, 2 generators, and 4 loads as
shown in Fig. 5 . The feedback model of the power system,
as shown in Fig. 6(a), has 6 motifs, two for the generators
and four for the loads 1, 2, 3, and 4. The feedback model is
strongly connected.

Fig. 5: 6-bus power system

The graph representation of this power system, depicted in
Fig. 6, shows how generator and load motifs are connected.
The graph is strongly connected, because the only way of
decomposing the graph is by disconnecting two lines in the
system, like lines 2-3 and 5-6.

The plant matrix Ḡ and the feedback matrix F̄ are derived
below



(a)

(b)

Fig. 6: 6-motif case: (a) Feedback model, (b) Graph model
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F̄ =
Y12 + Y16 −Y12 0 0 0 −Y16

−Y12 Y12 + Y23 −Y23 0 0 0
0 −Y23 Y23 + Y43 −Y43 0 0
0 0 −Y43 Y43 + Y45 −Y45 0
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3) IEEE 14-bus power system: This 14-bus power system
is one of the IEEE standard test cases which was provided
online by [10] and depicted in Fig. 7 with its graph model
shown in Fig. 8.

Fig. 7: IEEE 14 bus power system

Fig. 8: Graph model in Small World configuration

In view of the above many examples, we can formulate
the following major result of the paper:

Theorem 1: Under the condition that the bus system has
no faults, if the bus model graph is connected, then it is
strongly connected.

Proof: The grid is composed of many “basic motifs,”
each motif being strongly connected. Given two motifs, say
i and j, since the graph is connected, there are intermediate
motifs, i+ 1, i+ 2, ..., j− 2, j− 1, connected with directed



edges {i, i+ 1}, {i+ 1, i+ 2},..., {j − 1, j}, where {k, k +
1} denotes an edge without specification of its direction.
Physically, each edge {k, k+ 1} is an admittance Y flowing
in one direction. But by the feedback created by this line
admittance, there is another edge Y flowing in the other
direction. Hence two consecutive motifs, say, k and k + 1
are connected by two edges: one k → k+1 and another one
k + 1→ k. Hence the graph is strongly connected.

VI. THE EFFECT OF CONTINGENCIES ON THE POWER
SYSTEM GRAPH

In Section V, we were able to show that any power
system has a strongly connected feedback digraph. In this
section, we show how the power system digraph can lose
its strong connectivity in case of single-element (N − 1)
and double-element (N − 2) contingencies.

There are different types of contingencies in the power sys-
tem like, generator failure, transformer failure, transmission
line disconnection, faults (single phase to ground, phase-to-
phase, three-phase). Here, we will consider only transmission
line tripping and three-phase fault and we will choose the 6-
bus power system as our case study.

A. Single-element contingency

In the graph shown in Fig. 6(b), each transmission line
connects the two bipartite graphs by two edges in both
directions. Disconnecting any transmission line randomly
will not effect the strong connectivity of the graph. For
example, if the line 5-6 is disconnected, the edges VL3-IL4

and VL4-IL3 will disappear from the graph, but the remaining
2-3 line will ensure strong connectivity of the 2 bipartite
graph interconnect. The weight of the edges connecting VL3-
IL3 and VL4-IL4 will become Y16 and Y45, respectively.

Fig. 9: Graph model of 6-bus power system after disconnect-
ing line 5-6

In case of a three-phase fault, the load impedance and the
voltage at bus load become zero. Since the voltage at the
load bus is zero, we can delete its vertex and all the edges
connected to it. A fault at any of the loads will make the
graph not strongly connected any more because there is no
edge leaving the current vertex at the faulted bus. So, the
graph will have two strongly connected components, one for
the load current and the other one for the remaining vertices.
For example, a three-phase fault at load 1 has a graph as the
one shown in Fig.10.

Fig. 10: Graph model of 6-bus power system after a three-
phase fault at bus 2

B. Double-element contingency
Disconnecting any two transmission lines from the power

system will cause removing four edges from the graph,
2 for each line. This kind of contingencies can make the
system not strongly connected anymore and divide the
graph into two smaller strongly connected ones. This kind
of contingencies is very harmful to the power system,
especially when the generation does not meet the demand
in the new separated parts.

If we disconnect the lines 2-3 and 5-6, the new graph will
have 2 strongly connected components, each component with
1 generator and 2 loads, as shown in Fig.11.

Fig. 11: Graph model of 6-bus power system after discon-
necting lines 2-3 and 5-6

In case of two three-phase faults, all the edges connected
to the two voltage vertices will disappear as well as the two
vertices themselves. The effect caused by these faults will be
four strongly connected components, two of them have only
one vertex and the other two have four vertices. If we choose
for example load 1 and load 4 to have faults, the resulted
graph model is shown in Fig.12.

Fig. 12: Graph model of 6-bus power system after faults at
buses 2 and 5



The connected but not strongly connected cases of
Figs. 10, 12 illustrate the necessity to restrict Theorem 1
to systems that have no faults.

VII. CONCLUSION

A. Summary

The main point of the paper is encapsulated in Theorem 1,
saying that the hidden feedback structure of the power
grid—essential for understanding subtle voltage collapse
scenarios [24]—is strongly connected [6], [7]. The latter is a
robust property, as it survives some simple contingencies as
shown in Sec. VI. This strongly connected property means
that the great many loads in the power grid are intertwined,
so that (P,Q) measurements made at one load do not
reflect the nominal load behavior, but its behavior in the
grid environment. At the limit of infinitely many loads, the
nominal load will appear to have a distributed parameter
frequency response, as the Berg model (1) shows.

Parallel to this “first principles” approach, the fractal
analysis of PMU signals [22], [23] points to the necessity of
the Grünwald-Letnikov fractional dynamics [9] to explain the
behavior of the signals. On the other hand, after some holo-
morphic extension of the Berg model, the inverse Laplace
transform yields a Riemann-Caputo fractional dynamics [13],
hence connecting the data driven and first principles ap-
proaches.

Another corollary of the strongly connected component is
that cascading failures are unlikely to be contained without
human intervention.

B. Future work

The Berg model [4] somehow misses the transient that
leads to the perturbed steady state after voltage disruption,
which is precisely taken care of by the Hill model [14].
Incorporating the Hill modeling of the transients in the Berg
model would lead to the next generation of load models.

Establishing the complete connection between the fractal
PMU data-driven analysis and the first principles approach,
relying on the Grünwald-Letnikov and the Riemann-Caputo
fractional derivatives, respectively, calls for some reconcili-
ation between the two fractional dynamics approaches.
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