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ABSTRACT
Minimum cost routing is considered on multiclass multihop
wireless networks influenced by stochastic arrivals, inter-channel
interference, and time-varying topology. Endowing each wire-
less link with a cost factor, possibly time-varying and different
for each class, we define the Dirichlet routing cost as the square
of link packet transmissions weighted by the link cost-factors.
A dynamic routing protocol is proposed to minimize this cost,
while ensuring queue stability for all stabilizable traffic de-
mands, and without requiring any information about network
topology or packet arrivals. Further, when all links are of unit
cost factor, the proposed protocol leads to minimum average
network delay among all routing protocols that act based only
on current queue congestion and current channel states. We
also show that under our proposed routing protocol, the fluid
limit of wireless network follows Ohm’s law on a suitably-
defined nonlinear resistive network. This makes possible the
use of tools from circuit theory, such as nonlinear resistive net-
works, to analyze and optimize the rate behavior of stochastic
interfering wireless networks.

1. INTRODUCTION
Consider a time-slotted wireless network in which new

packets of the same size may randomly arrive to differ-
ent nodes, destined for any other node, potentially several
hops away. Due to environmental factors and user mobil-
ity, the topology of the network may randomly change in
time. Due to inter-channel interference, not all wireless
channels can transmit at the same time. The network is
described by a simple, directed connectivity graph with
set of nodes V and directed edges E . Packets of the same
destination form a class (regardless of their sources) and
K⊆V represents the set of all possible classes in the net-
work. Given a wireless link ij ∈ E and a class d ∈ K,

the link actual-transmission f
(d)
ij (n) counts the number of

d-class packets (or d-packets in short) transmitted over
the link at timeslot n. For each class d, every link ij is
also endowed with a link cost-factor ρ

(d)
ij (n) > 1 that rep-

resents the cost of transmitting one d-packet over the link
at slot n. The aim of this paper is to find time-slotted
actual-transmissions f

(d)
ij (n) that solve

Minimize: lim sup
τ→∞

1

τ

τ−1∑
n=0

E
{∑
ij∈E

∑
d∈K

ρ
(d)
ij (n)

(
f

(d)
ij (n)

)2}
Subject to: Queue stability for all stabilizable arrivals

(1)

where E denotes expectation. We refer to the cost func-
tion of problem (1) as Dirichlet routing cost due to its
connection with Dirichlet’s Principle in mathematics [1].

It is worth noting that the problem (1) needs to be
solved at network and link layer, which totally discon-
nects the treatment of this problem from cross-layer op-
timization techniques [2–5]. The aim in the latter is to
control flow at transport layer so as to keep the arrival
rates within the network capacity region. The network-
layer routing policy, on the other hand, has no control on
arrivals. Instead, the basic assumption here is queue sta-
bilizability, meaning that the arrival rates lie within the
network capacity region. Then, an important quality fac-
tor of a protocol, called throughput optimality, is to stably
support the entire capacity region. It should be obvious
that minimum cost routing at network and link layer has
no contradiction with flow control at transport layer.

When the link cost-factors are correlated with a sort
of resource consumption such as energy (resp., quality de-
fect such as end-to-end delay), the constrained minimiza-
tion (1) is closely related to minimizing average network
resource (resp., average quality defect) subject to through-
put optimality. The quadratic cost function of (1) can rep-
resent different routing penalties, giving a wide-reaching
impact to the optimization problem (1). Below are some
examples that can be brought into this abstract model.
• Link quality factor turned as a cost factor: The

quality of wireless communication depends on hardware
and environmental factors. Different state-of-the-art link-
quality metrics have been introduced such as Expected
Transmission Count (ETX), Packet Reception Rate (PRR),
Required Number of Packet Transmissions (RNP), etc.
(See [6] for a review.) Most link quality measures can
easily be merged with problem (1) as a link cost-factor.
• Routing distance minimization: The cost factor of

each link ij for a class d can be assigned proportional to
the hop-count or geographic distance between the receiv-
ing node j and the destination node d. Then, due to the
close correlation between routing distance and packet la-
tency, problem (1) may be interpreted as average delay
minimization subject to throughput optimality.
• Energy usage minimization: Link capacity is a func-

tion of transmission power and channel condition. Assum-
ing that power allocation happens independently of queue
congestion, each link may receive a cost factor propor-
tional to the ratio of allocated power to the link capacity.



• Relaying cost minimization: Nodes in ad-hoc net-
works, which belong to different users, may act in their
own interests rather than forwarding traffic for others.
Several protocols have addressed this non-cooperative is-
sue, based mostly on game theory and with no cost op-
timization or throughput optimality result (see [7] and
references therein). Assume that every node declares a
relaying cost to transfer one packet. Then in our frame-
work, each incoming link to a node may receive a cost
factor proportional to the node relaying cost.

Related Work. It is shown in [8] that a station-
ary randomized algorithm can solve the constrained op-
timization problem (1). While such an algorithm exists
in theory, it is intractable in practice as it requires a full
knowledge of arrival statistics and channel state probabil-
ities. Moreover, assuming all the statistics and probabil-
ities could be accurately estimated, the algorithm would
still need to solve a dynamic programming problem for
each topology state, where the number of states grows
exponentially with the number of wireless channels.

Thus far, the V-parameter Back-Pressure (BP) has
been the only feasible approach to decreasing, but not
minimizing, a routing penalty at network layer [8]. It
parametrizes the original BP [9] by a constant V > 0
to trade queue congestion for routing cost. It is proved
that the average routing cost can come within O(1/V ) of
its minimum, but at the expense of an increase in aver-
age network delay of O(V ) relative to that of the original
BP. Therefore, while the algorithm can decrease a rout-
ing cost towards its minimum, it is not able to achieve
the minimum cost subject to network stability. We re-
mark, however, that the V-parameter approach holds for
more general cost functions, and is not restricted to the
particular structure of the Dirichlet routing cost in (1).

Adding distance information to link weights, [10] en-
hances BP to give priority to shorter paths. It does not
minimize the average routing distance and uses the short-
est path information in a heuristic manner. Energy-delay
tradeoff for sensor networks was considered in [11]. Asymp-
totic energy usage as network size grows to infinity was
studied in [12]. The V-parameter BP was used in [13]
to reduce average energy usage for a multihop wireless
network. A better energy-delay tradeoff was introduced
in [14] for the special case of wireless downlinks. The
work in [15] used ETX metric with V-parameter BP to de-
crease average packet transmissions. The authors in [16]
restricted BP to the number of hop-counts on each flow,
assuming that each node knows a-priori its hop distance
from all others. Using greedy embedding, [17] modified
BP scheduling by giving priority to the links with a shorter
hyperbolic distance to the final destination.

This paper follows our recent research on developing
a wireless routing protocol inspired by heat diffusion pro-
cess [18,19]. Specifically, here we extend the results of [18]
on the Dirichlet routing cost in two directions: First,
rather than taking a free-capacity directed graph as in [18],

we formalize Dirichlet’s Principle on a capacity-constrained
directed graph as the genuine representation of a data net-
work. Second, we consider multiclass networks that to-
gether with limited edge capacities make Dirichlet’s Prin-
ciple far more complicated and unorthodox.

Contribution. First, we propose a throughput-opti-
mal routing protocol that solves the cost minimization
problem (1) without requiring any information about net-
work topology or packet arrivals. This is the first time in
literature that a viable network-layer protocol can mini-
mize a general routing cost while ensuring queue stability.

Second, when all links are of unit cost factor, the pro-
posed protocol leads to minimum time average total queue
congestion in the network, which is proportional to aver-
age network delay by Little’s Theorem.

Third, under our routing protocol, the long-term av-
erage dynamics (fluid limits) of the wireless network com-
ply with Ohm’s law. This opens a way to take advantage
of tools from circuit theory, such as nonlinear resistive
networks, in the analysis and optimization of stochastic
packet networks under link interference.

Fourth, our routing protocol enjoys the same algorith-
mic structure, complexity, and overhead signaling as BP.
Thus all advanced improvements to BP (see [8] and refer-
ences therein) can easily be leveraged to further enhance
our protocol too. This also simplifies the software transi-
tion to practice from existing BP implementations.

Notation. For S as a set, |S| denotes its cardinality.
A superscript > denotes the transpose operation. For v
a vector, ‖v‖ := (v>v)1/2 denotes its norm. For v as a
block vector, diag(v) denotes its block diagonal matrix ex-
pansion. We denote the zero vector with 0, the vector of
all ones of size m with 1m, and the identity matrix of size
m with Im. Between vectors or matrices, the entrywise
(Schur) product is denoted with � and the tensor product
with ⊗. For two vectors u and v, the operators min{u,v}
and max{u,v}, also curly inequalities 4 and <, act en-
trywise. For x as a real number, bxc maps x to the largest
preceding integer, and dxe to the smallest following inte-
ger. The indicator function IX takes the value 1 if the
statement X is true, and 0 otherwise. For a vector v, we
define v+ := max{0, v}. On a graph, or a network, for a
value x corresponding to a directed edge ` from node i to
node j, we use the notation x` and xij interchangeably.

Note. The page limit prevents us to include the proofs,
which are available in technical report [20].

2. PRELIMINARIES
The idea of solving problem (1) has the root in dissi-

pative power minimization that naturally happens in the
course of electric conduction over a media, and is mathe-
matically explained by Dirichlet’s Principle. As the first
step to adopt this idea for a multiclass wireless network,
in Sec. 3 we fantasize a so-called multiclass nonlinear re-
sistive network, and generalize the concept of Dirichlet’s



Principle and dissipative power minimization on it. In-
spired by this, we propose in Sec. 4 a multiclass routing
protocol that solves problem (1), proved by showing that
under this protocol, the long-term average flow of packets
on the wireless network takes the form of electric currents
on its analogous nonlinear resistive network.

2.1 Stability and Throughput Optimality
A discrete-time stochastic process x(n) is stable if

x := lim sup
τ→∞

1/τ
∑τ−1

n=0
E{x(n)} <∞. (2)

The definition of stability and the overbar notation are
extended entrywise to vectors and matrices. A network is
stable if all its queues are stable. An arrival rate matrix is
stabilizable if there exists a routing policy to stabilize the
network. For a routing policy, stability region is the set of
all arrival rate matrices that it can stably support. Net-
work capacity region is the union of the stability regions
of all possible routing policies (probably unfeasible). A
routing policy is throughput-optimal if its stability region
coincides with the network capacity region; thus it secures
network stability for all stabilizable arrival rates.

2.2 Channel Interference
Contrary to wireline networks where links are indepen-

dent resources, two wireless links cannot simultaneously
transmit if they have interference. An interference model
specifies these restrictions on simultaneous transmissions.
Given an interference model, we define a maximal sched-
ule as a set of channels such that no two channels interfere
with each other, and no more channel can be added to it
without violating the constraints of interference model.
We describe a maximal schedule with a scheduling vector
π∈{0, 1}|E| where πij takes the value 1 if the channel ij is
included in the maximal schedule, and 0 otherwise. Given
a connectivity graph (V, E), we also define the scheduling
set Π as the collection of all maximal scheduling vectors.

The scheduling set varies according to interference model.
The results of this paper remain valid for the family of all
interference models under which a node is not allowed to
transmit to more than one neighbor at the same time.
Thus, in a most general case, a node may receive pack-
ets from several neighbors while sending packets over one
of its outgoing links. Interference constraints used with
all well-known network and link layer protocols, including
general K-hop interference models, fall in this family.

2.3 Time-Varying Topology
Network topology may vary in time due to node mobil-

ity and/or surrounding conditions, e.g. obstacle effect or
channel fading. We assume that the sets V and E change
far slower than channel states; thus we take them fixed
during the time of interest. Then, an unavailable channel
is characterized by a zero link capacity. Persistent varia-
tions, due to e.g. non-local mobility, can be caught in a

long scale regime that updates connectivity graph (V, E).
We also assume that channel states remain fixed during a
timeslot, while they may change across slots according to
some (unknown) probability laws.

Let a stochastic process S(n) =
(
S1(n), · · · , S|E|(n)

)
represent channel states at slot n, describing all uncontrol-
lable conditions that affect channel capacities, and possi-
bly link cost-factors. Assume that S(n) evolves according
to an ergodic stationary process and takes values in a finite
(but arbitrarily large) set S. For example, an irreducible
Markov chain or any i.i.d. sequence of stochastic matri-
ces are both ergodic and stationary. By Birkhoff’s ergodic
theorem, each state S ∈ S is of probability

s := P
{
S(n)=S

}
= lim sup

τ→∞
1/τ

∑τ−1

n=0
IS(n)=S

where
∑
S∈S s = 1. Though our proposed routing proto-

col does not require the state probabilities s, the existence
of s is important to establish the network capacity region,
and also for the theoretical analysis of our protocol.

2.4 State Model of Multiclass Network
Let q

(d)
i (n) represent the integer number of d-classes in

the node i at slot n. It is assumed that a packet leaves
the network as soon as reaching its destination; thus the
backlog of d-classes at the destination node d is zero for
all d ∈ K. Then the state variables of the queuing system
are represented by the hyper-vector

oq◦(n) :=
[
q

(1)
◦ (n), . . . , q

(|K|)
◦ (n)

]>∈ R(|V|−1)|K|

q
(d)
◦ (n) :=

[
q

(d)
1 (n), . . . , q

(d)
d−1(n), q

(d)
d+1(n), . . . , q

(d)
|V|(n)

]
where q

(d)
d (n) ≡ 0 is dropped from the set of states.

Notation. A subscript ◦ denotes a reduced array by
discarding the entries related to the destination node d.

Let a stochastic process a
(d)
i (n) be the number of ex-

ogenous d-classes arriving into the node i at slot n. Dis-
carding a

(d)
d (n) ≡ 0, the hyper-vector of node arrivals is

oa◦(n) :=
[
a

(1)
◦ (n), . . . ,a

(|K|)
◦ (n)

]>∈ R(|V|−1)|K|

a
(d)
◦ (n) :=

[
a
(d)
1 (n), . . . , a

(d)
d−1(n), a

(d)
d+1(n), . . . , a

(d)
|V|(n)

]
.

For a link ij ∈ E , the capacity µij(n), which is fre-
quently called link transmission rate in literature, counts
the maximum number of packets the link can transmit at
slot n. The link actual-transmission f

(d)
ij (n), on the other

hand, counts the number of d-packets genuinely sent over
the link at slot n — under a routing protocol. We form
the hyper-vector of link actual-transmissions as

ff(n) :=
[
f (1)(n), . . . ,f (|K|)(n)

]>∈ R|E||K|

f (d)(n) :=
[
f

(d)
1 (n), . . . , f

(d)
|E|(n)

]
.

Given a directed graph (V, E), let B denote the node-
edge incidence matrix in which Bi` — the entry related to
node i and edge j — takes the value 1 if node i is the tail
of directed edge `, −1 if i is the head, and 0 otherwise. For



a class d, let B(d)
◦ denote a reduction of B that discards

the row related to the destination node d. Extending this
structure to a multiclass framework, we get

IB◦ := diag
( [
B(1)
◦ , . . . ,B(|K|)

◦
] )
∈ R(|V|−1)|K|×|E||K|.

One can then verify that IB◦ff(n) is a hyper-vector in
which the entry corresponding to node i and class d is

(IB◦ff)
(d)
i (n) =

∑
b∈out(i)

f
(d)
ib (n)−

∑
a∈in(i)

f
(d)
ai (n)

where in(i) and out(i) respectively denote the set of in-
coming and outgoing neighbors of node i.

Using these ingredients, the ff -controlled, state dy-
namics of a multiclass queuing network is captured by

oq◦(n+ 1) = oq◦(n) + oa◦(n)− IB◦ff(n). (3)

2.5 V-Parameter Back-Pressure (BP) Algorithm
In the original BP [9], at every timeslot, each link re-

ceives a weight as the product of its queue differential
and its capacity, and then a set of non-interfering links
with maximum cumulative weight are scheduled for the
forwarding. To incorporate a cost function into the algo-
rithm, the V-parameter BP [8] penalizes each link with its
related cost via a user-assigned parameter V ∈ [0,∞) that
determines the worthiness of reducing the cost function at
the expense of increasing the network delay, while V = 0
recovers the original BP.

To reduce the Dirichlet routing cost, defined in (1),
as the cost function, at every timeslot n, the V-parameter
BP observes queue backlogs q

(d)
i (n), and estimates channel

capacities µij(n) and link cost factors ρ
(d)
ij (n), to make a

network-layer packet transmission decision as follows.

Weighing: On each directed link ij and for each class d
find q

(d)
ij (n) := q

(d)
i (n)− q(d)

j (n) and select the optimal class

d∗ij(n) := arg maxd∈K q
(d)
ij (n). (4)

Then give a weight to the link as

wij(n) := µij(n)
(
q

(d∗)
ij (n)− V ρ(d)

ij (n)µij(n)
)

+. (5)

Scheduling: Find the scheduling vector such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (6)

where ties are broken randomly.
Forwarding: On each activated link ij with wij(n)>0
transmit from the class d∗ij(n) at full capacity µij(n).

3. DIRICHLET’S PRINCIPLE
Consider a conducting medium M as a bounded con-

tinuous domain in a Euclidean space, with A(z) being the
current source injected into (with minus for the current
drawn from) the point z ∈ M. Let Q(z) be the induced
voltage potential on M, while being prescribed on the
boundary ∂M. Let vector function F (z) be the electrical
current passing through the point z. In the steady-state

equilibrated conduction, the principle of charge conserva-
tion asserts that the current entering into any bounded
region M′ ⊂M must be equal to the current leaving out
the region, i.e.

∫
∂M′ F (z) xℵ(z) =

∫
M′ A(z) where ℵ(z)

is the exterior normal, and x the projection operator. By
the Divergence theorem,

∫
M′ divF (z) =

∫
M′ A(z). As

M′ can be chosen infinitesimally small, the latter implies

divF (z) = A(z). (7)

By Ohm’s law, on the other hand, current between two
points is proportional to the gradient of voltage across
the points scaled by the conductivity of the material,

F (z) = −σ(z)∇Q(z). (8)

where the conductivity σ(z) is in general a positive defi-
nite symmetric matrix. Substituting (8) into (7), we get

div
(
σ(z)∇Q(z)

)
+A(z) = 0 (9)

which formulates the classical Poisson equation.
Dirichlet’s Principle states that Poisson’s equation (9)

has a unique solution that minimizes the Dirichlet energy

E
(
Q(z)

)
:=

∫
M

( 1

2
σ‖∇Q(z)‖2 −Q(z)A(z)

)
among all twice differentiable functions Q(z) that respect
the prescribed voltage potential on the boundary ∂M [1].

3.1 Prelude: Linear Resistive Networks
Rather than a smoothly distributed conductorM, con-

sider now a resistive network (V, E) in which two neigh-
boring nodes are connected via a linear lumped resistor.
Exogenous current is injected into (resp., drawn from) the
network via positive (resp., negative) current sources at-
tached to different nodes. Assume that voltage is fixed
to ground at a single node as reference, also referred to
as sink, which is analogous to a collapse of the bound-
ary ∂M to a point on the continuous domain. One may
visualize the reference as the node that collects the net
current injected into the network, i.e. algebraic sum of
current sources, and drains it back into the sources, so
that building a closed system.

To solve circuit problems, it is essential to assign an
arbitrary orientation to each edge with the understanding
that the particular choice of orientation has no impact on
the solutions. Accordingly, every edge variable is signed,
while a negative quantity is interpreted to be on the op-
posite direction of the edge orientation. Using the notion
of arbitrary orientation, the node-edge incident matrix B,
previously defined on a directed graph, is also defined on
the undirected graph here in the same way.

Let q represent the vector of node voltages, f the vec-
tor of edge currents, σ the vector of edge conductances,
and a the vector of node current sources. With d being
the reference node, we assume ad ≡ 0 and define the re-
duced arrays q◦, a◦ andB◦ through discarding the entries
related to the node d. Then the principle of charge conser-
vation in (7) becomes Kirchhoff’s Current Law (KCL) on



the network, asserting that at each non-grounded node,
the algebraic sum of currents must be zero,

B◦f = a◦. (10)

Ohm’s law in (8), on the other hand, becomes

f = diag(σ)B◦
>q◦. (11)

Substituting (11) into (10), we get

−L◦q◦ + a◦ = 0 with L◦ := B◦diag(σ)B◦
> (12)

as the graph combinatorial analog of the classical Poisson
equation. The matrix L◦, called the Dirichlet Laplacian,
is symmetric positive definite for a connected network.

Like the classical case, (12) has a unique solution that
minimizes the combinatorial Dirichlet energy

E(q◦) :=
1

2
q◦
>L◦q◦ − q◦>a◦. (13)

The proof is much simpler in the combinatorial case and
is directly concluded from the positive definiteness of L◦.

An important implication of Dirichlet’s Principle is the
minimization of power dissipation on a linear resistive net-
work. For a vector of currents f subject to KCL (10),
dissipative energy ER(f) := f>diag(σ)−1f , let f? be the
configuration of currents that minimize ER(f), and q?

the configuration of voltages that minimize E(q◦) in (13).
Then it is not difficult to shown that the f? and q? are
related to each other by Ohm’s law (11).

3.2 Capacitated Directed Networks
Rather than an undirected network with free-capacity

edges, consider now a network under both edge direction-
ality and edge capacity constraints. The electrical network
is of the same configuration as that in the linear resistive
network with the exception that here, rather than using
a linear resistor, we connect two neighboring nodes us-
ing a nonlinear resistor in series with an ideal diode. The
nonlinear resistor limits the current to the edge capac-
ity, while the ideal diode allows the current only along
the edge direction. For an edge ij with capacity µij , the
characteristic of nonlinear resistor is given by

rij =

{
1/σij if |qij | 6 µij/σij
|qij |/µij if |qij | > µij/σij

where σij is the conductance in linear regime when the
current is below the edge capacity (see Fig. 1).

On any electrical network, the KCL in (10) remains
unchanged. However, on our nonlinear resistive network,
Ohm’s law (11), however, must be modified to allow the
current in only one direction, and to limit it within the
edge capacity. Let the arbitrarily-chosen edge orientations
concur with the edge directions. Then, with µ being the
vector of edge capacities, the modified Ohm law becomes

f = min
{

diag(σ)
(
B◦
>q◦

)
+, µ

}
. (14)

Plugging (14) in (10) leads to the analogous of Poisson’s
equation on a capacity-constrained directed network as

−~L◦(q◦) + a◦ = 0

~L◦(q◦) := B◦min
{

diag(σ)
(
B◦
>q◦

)
+, µ

}
.

(15)

11 / ijσ −

ijf

ijq

ijr
ijμ

ijμ−

ijμ

ijμ−

1
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1
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ijf
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Figure 1: The nonlinear resistive edge with an ideal diode:
(left) The current-voltage curve of the resistor. (middle)
The resistive-voltage curve of the resistor. (right) The
current-voltage curve of the resistor and diode together.

We call ~L◦(·) as nonlinear Dirichlet Laplacian operator.
Contrary to the standard Laplacian L◦ on a linear re-

sistive network, ~L◦ here is an operand-dependent operator
that retains neither linearity nor symmetry. Thus the easy
way of proving Dirichlet’s Principle on free-capacity undi-
rected networks ceases to exist here, as we can no longer
claim that ~L◦q◦ in (15) is the directional derivative of
1
2 q◦
>~L◦q◦ along q◦. Nonetheless, the next theorem ex-

tends the concept of Dirichlet’s Principle, and from there
the merit of minimizing dissipative energy, to capacity-
constrained directed networks.

Theorem 1. Consider a capacitated directed network un-
der a feasible vector of current sources a◦, i.e. there exists
at least one configuration of currents f that satisfy KCL
at nodes. Then the nonlinear Poisson equation (15) has a
unique solution that minimizes the Dirichlet-like energy

~E(q◦) :=
1

2
q◦
> ~L◦(q◦)− q◦>a◦. (16)

Further, minimizing ~E(q◦) is equivalent to solving

Minimize: ~ER(f) := f>diag(σ)−1f

Subject to: 1) 0 4 f 4 µ
2) B◦f = a◦

(17)

which formulates the minimization of dissipative energy
subject to the network constraints and KCL at nodes.

3.3 Multiclass Networks
In a traditional electrical network, the total net charge

generated by all current sources is absorbed by one single
grounded node — the sink. A more complex scenario,
however, may be fantasized in parallel with multiclass
problems in data networking. Specifically, consider a set-
ting in which different types of charges are generated by
current sources, where each type of charge is absorbed by
a specific node as the sink of that charge. Using a similar
terminology, let us refer to each type of charge as a class.

In the absence of edge capacity constraints, each class
has its own independent conduction, so that the multiclass
network can be viewed as the collection of fully decoupled
uniclass networks with no mutual impact. When the edges
are of limited capacities, however, the conduction of dif-
ferent classes no longer happens independently, because
the way of allocating edge capacities to each class has a
direct impact on the conduction of that class, while the
sum of allocated capacities on each edge is bounded. For



example, allocating the total capacity of one edge to only
one class means eliminating that edge for all other classes.

Consider now a multiclass electrical network (V, E ,K)
subject to both edge directionality and edge capacity con-
straints. Let 0 6 θ

(d)
ij 6 1 represent the portion of total

capacity of the edge ij devoted to the class d, i.e.,

µ
(d)
ij = θ

(d)
ij µij with

∑
d∈K θ

(d)
ij 6 1. (18)

We accordingly form θ(d)∈ R|E| as the vector of edge ca-
pacity factors for the class d. Endowing edges with the
possibility of having different conductivities for different
classes, we also let σ(d)∈ R|E| be the vector of d-conductivity
on edges. If one can figure out the vector θ(d) for each
class d, then the conduction of each class will readily
comply with the uniclass equations (14)–(15). To have
a compact formulation, let us form the hyper-vectors oq◦,
oa◦, and ff conformably structured as their counterparts
defined in Sec. 2.4, and also oσ and θθ in a similar way.
Then the steady-state electric conduction on a multiclass
capacity-constrained directed network is described by

IB◦ff = oa◦. (19)

ff = min
{

diag(oσ)
(
IB◦
>
oq◦
)

+, θθ�(1|K|⊗ µ)
}

(20)

−I~L◦(oq◦) + oa◦ = 0

I~L◦(oq◦) := IB◦min
{

diag(oσ)
(
IB◦
>
oq◦
)

+, θθ�(1|K|⊗ µ)
}
.
(21)

The term (1|K| ⊗ µ) extends µ ∈ R|E| to be of size |E||K|
and so can be used in a multiclass fashion, where its entry-
wise product with θθ shapes (18) in a hyper-vector form.

To answer the crucial question of how to allocate edge
capacities to different classes, we first introduce a key
property of the uniclass Ohm law in the next theorem.

Theorem 2. On a uniclass resistive network with capacity-
free undirected edges (resp., capacity-constrained directed
edges), the electrical current assigned by the linear Ohm
law (11) (resp., by the nonlinear Ohm law (14)) uniquely
minimizes the functional ‖diag(σ)B◦

>q◦ − f‖ among all
admissible currents that respect KCL at nodes.

Extending this result to a multiclass resistive network,
the vector of multiclass currents ff must minimize the mul-
ticlass functional ‖diag(oσ)IB◦

>
oq◦ − ff‖. In the absence of

edge capacity constraints, this is readily concluded from
Th. 2 together with the flow independency among differ-
ent classes. Under limited edge capacities, however, the
configuration of ff depends on the configuration of edge
capacity factors θθ; thus the minimizing ff determines θθ,

θθ = arg minθθ ‖diag(oσ)IB◦
>
oq◦ − ff‖

subject to:
∑
d∈K θ

(d) 4 1|E|.
(22)

While the optimal ff that solves (22) is unique, the
related θθ is not necessarily unique, i.e. different θθ may
lead to the same optimal ff . In Fig 2, for example, it is
easy to confirm that to solve (22), two units of current
destined for node a (resp., node b) should be sent via edge
sa (resp., edge sb) and one unit via edges sc and ca (resp.,
edges sc and cb). Thus any division of edge capacities

11 / ijσ −

1
ij ijμ σ −

1/σ ij

a

c

b

2

2

1

1
1 1

33
s

Figure 2: Node s injects two classes of electrical currents
with intensity 3, one destined for node a and the other for
node b. For all resistors σij =1, and for all edges µij =5.

between the two classes is admissible as far as it provides
for class a (resp., class b) the capacity of at least two on
edge sa (resp., edge sb) and the capacity of at least one
on edges sc and ca (resp., edges sc and cb).

The upshot of this section is the next theorem that ex-
tends the concept of Dirichlet’s Principle, and from there
the merit of minimizing dissipative energy, to multiclass
conduction on capacity-constrained directed networks.

Theorem 3. Consider a multiclass capacitated directed
network under a feasible vector of current sources oa◦, i.e.
there exists at least one configuration of multiclass cur-
rents ff that satisfy the multiclass KCL at nodes. Then
the nonlinear Poisson equation (21) has a unique solution
that minimizes the multiclass Dirichlet-like energy

~E(oq◦) :=
1

2
oq◦
> ~L◦(oq◦)− oq◦

>
oa◦. (23)

Further, minimizing ~E(oq◦) under the edge capacity allo-
cation (22) is equivalent to solving

Minimize: ~ER(ff) := ff>diag(oσ)−1ff

Subject to: 1) 0 4
∑
d∈K f

(d) 4 µ
2) IB◦ff = oa◦

(24)

which formulates the minimization of dissipative energy
subject to the network constraints and the multiclass KCL.

4. DIRICHLET-BASED ROUTING PROTOCOL
On a multiclass data network, BP-based schemes trans-

mit packets from only one class over each activated link
at each timeslot. First, when the number of packets from
individual classes is not enough to fill up the link capaci-
ties, network resources are squandered by this single class
transmission policy. In other words, the larger capacity
of network would be utilized, and so the average network
delay would decrease, if the capacity of each activated
link were properly filled up with packets from different
classes. Second, even if the links could be stuffed with
individual classes, still, as shown in [19], blindly sending
the maximum number of packets from only one class on
each link would merely deplete the network resources with
even negative impact on delay performance.

Our proposed multiclass routing protocol here is an
answer to the question of how a dynamic routing policy,
with no routing path constraint, can effectively utilize the
maximum timeslot resources. Our solution is inspired by
the multiclass electric conduction developed in the previ-
ous section, telling us that a dissipative energy minimizing
policy is supposed to send different classes on each acti-



vated link. Further, the optimal capacity allocation (22)
suggests that a class d should receive a piece of capacity of
edge ij proportional to σ

(d)
ij q

(d)
ij , i.e. its queue differential

scaled by its related link profit-factor — reciprocal of the
link cost-factor.

The new routing protocol has the same algorithmic
structure, complexity, and overhead as BP policy, which
provides a convenient way of unifying it with the previ-
ous works based on BP. At every timeslot n, it observes
queue backlogs qi(n), and estimates channel capacities
µij(n) and link cost factors ρ

(d)
ij (n), to make a network-

layer packet transmission decision as follows.

Weighing: On every directed link ij and for each class d

find q
(d)
ij (n) := q

(d)
i (n)− q(d)

j (n) and create a set

Kij(n) ⊆ K such that q
(d)
ij (n) > 0 , ∀d ∈ Kij(n).

Fix f̂
(d)
ij (n) = 0 for each d /∈ Kij(n), and first find f̂

(d)
ij (n)

for every d ∈ Kij(n) by solving the optimization problem

Minimize:
∑

d∈Kij(n)

(
ρ

(d)
ij (n)−1 q

(d)
ij (n)− f̂ (d)

ij (n)
)2

Subject to:


∑
d∈Kij(n) f̂

(d)
ij (n) 6 µij(n)

0 6 f̂
(d)
ij (n) 6 q

(d)
ij (n), ∀d ∈ Kij(n)

(25)

where f̂
(d)
ij (n) denotes the number of packets the link would

transmit if it were activated — thus a predicted value
which would not necessarily be realized. Then give a
weight to each class d ∈ Kij(n) as

w
(d)
ij (n) := 2 ρ

(d)
ij (n)−1 q

(d)
ij (n) f̂

(d)
ij (n)−

(
f̂

(d)
ij (n)

)2
(26)

and aggregate them to determine the final link weight as

wij(n) :=
∑

d∈Kij(n)
w

(d)
ij (n). (27)

Scheduling: Find the scheduling vector, in the same way
as BP, using the max-weight scheduling (6).
Forwarding: On each activated link ij, transmit f̂

(d)
ij (n)

number of packets from the class d.

Discriminating link transmission predictions f̂
(d)
ij (n),

link actual transmissions f
(d)
ij (n), and link capacities µij(n)

from each other is crucial to understand the algorithm.
Another point is that like BP, our algorithm also rests
on a centralized scheduling whose complexity can be pro-
hibitive in practice. Fortunately, much progress has been
made to ease this difficulty by designing decentralized
schedulers with an arbitrary tradeoff between complexity
and closeness to the centralized performance [21].

Problem (25) is a standard least-norm optimization
with variable bounds that can be solved in fast polynomial
time at each node, i.e. in a fully decentralized manner. A
related algorithm is developed as follows.

To simplify the notation, let us drop the overhat sym-
bol and the time variable (n). First observe that

if
∑
d∈Kij

q
(d)
ij /ρ

(d)
ij 6 µij then f

(d)
ij = q

(d)
ij /ρ

(d)
ij

5= Unique optimal solution in the 
absence of variable bounds 
and integer constraints

Two optimal solutions in the 
presence of variable bounds 
and integer constraints

(2)
ijf ( )n

6=ijμ ( )n

6=ijμ ( )n
(1)
ijf ( )n

(1)
ijf ( )n (2)

ijf+ ijμ=( )n ( )n

4=

(                 ,                  )q(1)
ij ( )n ρij ( )n(1) q(2)

ij ( )n ρij ( )n(2)

q(1)
ij ( )n ρij ( )n(1)

q(2)
ij ( )n ρij ( )n(2)

p =

:P

Figure 3: Geometry of solving (25) for a two-class case when

q
(1)
ij (n)/ρ

(1)
ij (n) + q

(2)
ij (n)/ρ

(2)
ij (n) > µij(n).

for each d ∈ Kij , and the problem is solved. Thus let∑
d∈Kij

q
(d)
ij /ρ

(d)
ij > µij .

This converts the first constraint from inequality into equal-
ity, viz.

∑
d∈Kij

f
(d)
ij = µij . Then a basic Lagrange argu-

ment shows that in the absence of lower variable bounds
and integer constraints, the problem has the following
unique solution for each d ∈ Kij :

f
(d)
ij = q

(d)
ij /ρ

(d)
ij +

(
µij −

∑
d∈Kij

q
(d)
ij /ρ

(d)
ij

)/
|Kij |.

By geometry, the latter reads the projection of the point

p := ( q
(1)
ij /ρ

(1)
ij , · · · , q

(|Kij |)
ij /ρ

(|Kij |)
ij ) onto the hyperplane

P :
∑
d∈Kij

f
(d)
ij = µij .

Under integer constraints, P becomes an integer hyper-
grid and the optimal solution(s) will be the vertex(es)
of this hypergrid with the shortest Euclidean distance to
the point p. Note that the solution to the integer prob-
lem is not necessarily unique. Subjecting the solution to
the lower variable bounds, it must also meet f

(d)
ij > 0,

∀ d ∈ Kij . Based on this procedure, the following algo-
rithm solves (25) for

∑
d∈Kij

q
(d)
ij /ρ

(d)
ij > µij , while Fig. 3

gives a graphical demonstration for a two-class case.

S1: Let h =
(∑

d∈Kij(n)ρ
(d)
ij (n)−1q

(d)
ij (n)−µij(n)

)/
|Kij(n)|

and ∀d ∈ Kij(n) take f̂
(d)
ij (n) = ρ

(d)
ij (n)−1q

(d)
ij (n)− h.

S2: Find d1 = arg mind∈Kij(n) f̂
(d)
ij (n) and if f̂

(d1)
ij (n)< 0,

then remove d1 from Kij(n) and go back to S1.

S3: Let r = µij(n)−
∑
d∈Kij(n)

⌊
f̂

(d)
ij (n)

⌋
. For r randomly

chosen classes in Kij(n) assign f̂
(d)
ij (n) =

⌈
f̂

(d)
ij (n)

⌉
and

for other classes in Kij(n) assign f̂
(d)
ij (n) =

⌊
f̂

(d)
ij (n)

⌋
.

Observe that S1 finds the optimal solution in the ab-
sence of variable bounds and integer constraints, S2 en-
sures that the solution meets the variable lower bounds,
and S3 determines an integer solution by finding a vertex
on the integer hypergrid P with the shortest distance to
the initial solution obtained by S1-S2. The term “r ran-
domly chosen classes” in S3 comes due to the fact that



the integer problem may have more than one solution.
When the initial solution of S1-S2 is integer, it will be the
solution to the integer problem too, and so unique. Other-
wise, there potentially exist several vertices on the integer
hypergrid with equal distance from the non-integer initial
solution and shorter than the distance of all other vertices.
This is best shown in Fig. 3.

We remark that on a uniclass network, link transmis-
sion predictions and link weights are simplified to

f̂ij(n) := min
{
ρij(n)−1qij(n)+, µij(n)

}
wij(n) := 2 ρij(n)−1qij(n) f̂ij(n)−

(
f̂ij(n)

)2
.

This recovers our Pareto-optimal HD policy with β = 1,
proposed for uniclass networks in [18].

5. ANALYSIS OF OPTIMAL PERFORMANCE
In Sec. 3, we developed multiclass nonlinear electric

conduction on resistive networks with capacity-constrained
directed edges. In Sec. 4, on the other hand, we developed
a routing protocol for multiclass interfering wireless net-
works. The former describes a deterministic continuous-
time process, while the latter leads to a stochastic time-
slotted process. This section shows how these two seem-
ingly different problems are rigorously correlated with each
other. It specifically shows that in a long-term average ba-
sis, packet flow on a wireless network governed by our pro-
posed routing protocol complies with electrical conduction
on a suitably-defined resistive network, where the pivot is
the notion of fluid limit. We also show the throughput
optimality of our routing protocol and its delay minimiza-
tion performance under uniform link cost-factors.

5.1 Throughput Optimality
Throughput optimality, as defined in Sec. 2.1, is an

important quality factor of our proposed routing protocol.

Theorem 4. Consider a stochastic multiclass wireless
network with arrivals and channel states being i.i.d. ran-
dom variables over timeslots and with respect to each other,
and subject to an interference model that prohibits trans-
mission to more than one neighbor at a timeslot. Then our
proposed routing protocol in Sec. 4 is throughput-optimal
in the sense that it secures network stability for any sta-
bilizable matrix of arrival rates.

5.2 Minimum Cost Routing
Fluid limit of a stochastic process is the limit dynamics

obtained by scaling in time and amplitude. Under very
mild conditions, it is shown that these scaled trajectories
converge to a set of deterministic equations called fluid
model. Using this deterministic model, one can analyze
the rate-level, rather than packet-level, behavior of the
original stochastic process. For the details, we refer the
interested reader to [22] and references therein.

LetX(ω, t) be a realization of a continuous-time stochas-
tic process X along an arbitrary sample path ω, and de-

fine the scaled process Xr(ω, t) := X(ω, rt)/r for any
r > 0. A deterministic function X̃(t) is called a fluid limit
if there exist a sequence r and a sample path ω such that
limr→∞X

r(ω, t)→ X̃(t) uniformly on compact sets. For
a stable queuing network, the existence of fluid limits is
guaranteed if exogenous arrivals are of finite variance. It is
further shown that each fluid limit is Lipschitz-continuous,
and so differentiable, almost everywhere with respect to
Lebesgue measure on [0,∞) [22, 23]. Note that the fluid
limit is independent of sample path.

Theorem 5. Consider a stochastic multiclass wireless
network under a stabilizable vector of packet arrivals oa◦(n),
and subject to an interference model that prohibits trans-
mission to more than one neighbor at a timeslot. Suppose
that the traffic is governed by our proposed routing pro-
tocol in Sec. 4. Then the fluid model of the network is
described by the conduction equations (19)–(22) where in
those equations, oa◦ is replaced by the expected time aver-
age of packet arrivals, µ by the expected time average of
link capacities, and oσ by the inverse of the expected time
average of link cost-factors from the wireless network, and
where the expected time average is defined in (2).

This theorem together with Th. 3 lead to the goal of
this paper on the minimum cost routing.

Corollary 1. Consider a stochastic multiclass wireless
network under a stabilizable vector of packet arrivals oa◦(n),
and subject to an interference model that prohibits trans-
mission to more than one neighbor at a timeslot. Then
our proposed routing protocol in Sec. 4 solves the mini-
mum cost routing problem (1).

To our knowledge, this is the first time a feasible network-
layer routing policy asserts the strict minimization of a
routing penalty subject to network stability. Note that in
the V-parameter BP [8], the [O(V ), O(1/V )] delay-cost
tradeoff prevents minimizing the average routing cost sub-
ject to network stability, i.e. finite queue congestion.

5.3 Average Network Delay Minimization

Theorem 6. Consider a stochastic multiclass wireless
network with arrivals and channel states being i.i.d. ran-
dom variables over timeslots and with respect to each other,
and subject to an interference model that prohibits trans-
mission to more than one neighbor at a timeslot. Suppose
that all wireless links are of unit cost factor. Consider a
class of network-layer routing policies that act based only
on current queue congestion and current channel states.
Within this class, our proposed routing protocol in Sec. 4
minimizes the average network delay by solving

Minimize: lim sup
τ→∞

1

τ

τ−1∑
n=0

E
{∑
i∈V

∑
d∈K

q
(d)
i (n)

}
Subject to: 0 6

∑
d∈K f

(d)
ij (n) 6 µij(n), ∀ij ∈ E .

(28)
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Figure 4: Comparing the performance of our proposed routing protocol and V-parameter BP with V=0.8.

Note that by Little’s Theorem, for a given packet ar-
rival rate, the expected time average total queue conges-
tion in (28) is proportional to long-term average end-to-
end network delay. Hence, minimizing (28) indeed ensures
minimizing average network delay. In the light of Th. 5,
this result should not be very surprising, as when all the
links are of equal cost factors, the minimization of the
Dirichlet routing cost is equivalent to the minimization of
average total routing path on the network, which is closely
related to the average network delay.

6. SIMULATION RESULTS
We consider a wireless network with 50 nodes ran-

domly distributed on a surface. Links are placed between
every two nodes whose proximity distance is less than a
threshold, and extra links are added to make the network
connected. Links are considered as two-way wireless chan-
nels, i.e. for any directed link ij ∈ E there exists ji ∈ E
with the same capacity. The network runs under 1-hop
interference model, i.e. links with common node cannot
transmit at the same time. At every timeslot, the capac-
ity of each link ij follows a Gaussian distribution with the
mean mij and the variance equal to 150. To assign mij

to different links, we adopt Shannon capacity with power
transmission Pij , noise intensity Nij , and a bandwidth of
1500, viz. mij = 1500 log2(1 + Pij/Nij). We randomly
assign a noise intensity Nij ∈ [1, 5] to each link at first
and keep it fixed during the simulation.

Assume that every node sends packets to every other
node, forming a multiclass multihop wireless network. Dif-
ferent classes are generated at each node following Pois-

son’s random variables with parameter λ, where all of
them are i.i.d. over timeslots and with respect to each
other. To support this traffic, we assume that each node
can expend 30 units of transmission power per timeslot,
which under 1-hop interference model leads to Pij = 30.
Each link receives a cost factor ρij ∈ [1, 10] for all classes
at first that remains constant during the simulation.

The top panels in Fig. 4 display the timeslot evolution
of total routing penaltyR(n) :=

∑
ij∈E

∑
d∈K ρij

(
f

(d)
ij (n)

)
2

for three arrival rates corresponding to the Poisson pa-
rameters λ = 1, 5, 10 packets per timeslot, comparing the
performance of our routing protocol and V-parameter BP
with V = 0.8. Note that the Dirichlet routing cost, de-
fined in (1), is the expected time average of R(n), where
the expected time average is defined in (2). The bottom
panels display the timeslot evolution of total number of
packets for the same Poisson parameters.

Long-term average performance of the two policies are
compared in Fig. 5 as a function of the arrival rate λ
growing from 1 to 10 in unit steps. The average is taken
on the last 40000 slots, when the system runs for 50000
slots starting from zero initial condition. For λ = 1, av-
erage total number of packets under our protocol is only
312K packets, compared with 29400K packets under the
V-parameter BP; likewise, the Dirichlet routing cost under
our protocol is only 5100K units, compared with 91000K
units under the V-parameter BP. This difference in per-
formance gets even larger by the growth of λ.

Besides the long-term average performance in both
queue congestion and routing cost, the top panels of Fig. 4
clearly show much smaller steady-state oscillations, and
much faster transient-time response in the network under
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Figure 5: Expected time average total number of packets in the network against the exogenous arrival rates changing
from λ = 1 to λ = 10. Dashed lines display third degree polynomial interpolation.

our routing protocol. Further, while our routing proto-
col acts immediately to the traffic rate, the V-parameter
BP waits until the network reaches a minimum total queue
congestion, which is bigger than 8000K packets for V = 0.8,
while this dead-band grows with the increase of V .

7. CONCLUSION
We developed a network-layer routing protocol for mul-

ticlass multihop wireless networks that minimizes a gen-
eral quadratic routing penalty, called the Dirichlet routing
cost, subject to throughput optimality. The protocol acts
dynamically with no prescribed routing path information,
and requires no knowledge of arrival statistics and topol-
ogy probabilities, which make it useful on time-varying
mobile and ad-hoc networks. We also showed that the
long-term average behavior of the stochastic wireless net-
work under our routing protocol complies with the flow of
electrical charge on its underlying graph. In doing so, we
fully developed a novel concept of multiclass electric con-
duction on a resistive network with capacity-constrained
directed edges, which brings stochastic interfering wireless
and deterministic electrical networking together.
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