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Abstract—In this paper, we map the PMU data to a graph
via the visibility algorithm to generate the PMU visibility graph.
Applying complex network analysis to this graph unravels several
hidden features in the PMU data. The applications of the
PMU visibility graphs in the real power grid include anomaly
detection, topology identification, and state estimation. We show
that the PMU visibility graph is not random and could not be
modeled by the classical Erdős-Rényi model. On the contrary, the
graph represents a scale-free network with a heavy-tailed degree
distribution. So, we fit its degree distribution to a power-law
distribution to find the best model and we perform goodness-
of-fit analysis on the estimated distribution. Lastly, it is argued
that power-law degree distribution of the PMU visibility graph
reveals the nonstationarity and fractality in the PMU data.

I. INTRODUCTION

Deciphering the unknown unknowns (UUs) (e.g., hidden
statistical characteristics and conservation principles) that
characterize the dynamics of complex systems promises to
provide efficient algorithms for anomaly detection, self-healing
and self-optimizing in engineered Artificial Intelligence (AI)-
based systems. As a prominent example of an evolving com-
plex system, engineering the autonomous smart grid requires
a deep understanding of the real-time wide area monitoring
(WAM) data (e.g., phasor measurement unit (PMU) signals)
in order to provide a higher degree of observability, depend-
ability, security and reliability while overcoming data science
challenges (e.g., incomplete, heterogeneous, multi-modal and
noisy data streams).

Since the introduction of first PMU in 2005, the PMU data
has been used in several applications, like fault detection, pro-
tection and control, and load modeling. Due to the advantages
of PMUs, an increasing number of PMUs are being deployed
in the power grid all over the world. There are approximately
2000 PMUs installed across North America based on North
American SynchroPhasor Initiative (NASPI) report [1].

Massive amount of data is currently collected by phasor
measurement units and smart meters from all over the grid.
The data is exceeding the traditional storage and processing
capacilities of the power utility. In [2] and [3], the authors point
to the need of classifying the PMU data under the category of
“Big Data". That is justifiable due to the high volume, high
traffic, and variability of the collected data.

Extracting the UUs and the hidden laws of "healthy" power
grid operation needs advanced data science techniques. This
is an important stage to gain knowledge and insight about the

PMU data [4]. As part of the development of the smart grid,
it is urgent to build fast and novel algorithms capable of pro-
cessing the data and help in decision making in several facets
of the power system. That includes fault detection, predictive
maintenance, transient stability, topology identification [5].

The hidden features and statistical characteristics in data
can be revealed by transforming the time series to a graph or
complex network [6][7]. In [7], the authors introduce the map-
ping of pseudoperiodic time series to complex network where
the vertices are the cycles and the edges are abstracting the
temporal correlation between cycles. A generalized mapping
was defined in [6] by transforming the time series to a visibility
graph. In the visibility graph, the vertices are the samples
in the time series and the edges exist if their corresponding
samples are line-of-sight visible despite the "walls" from the
time samples due to the signal value samples.

We have recently shown existence of long-range dependence
in PMU data using Detrended Fluctuation Analysis (DFA) [8]
and Fractional ARIMA (ARFIMA) models [9]. In [10], the
authors assert that visibility graph degree distribution of frac-
tional Brownian motion (fBm) follows a power law. Moreover,
a relationship between the Hurst exponent of fBm and scal-
ing parameter of the power law was derived. However, the
estimation of the scaling parameter of the degree distribution
was inaccurate due to the use of continuous power-law formula
instead of the discrete one. In addition, goodness-of-fit analysis
was not performed to evaluate the power-law fit.

In this paper, we generate the visibility graphs of a large
data set of PMU data (voltage magnitude, frequency, phase
angle) and we show that their degree distributions have heavy
tails. Then, we estimate the parameters of the best power-law
fit using Maximum Likelihood Estimation (MLE). At the end,
we perform goodness-of-fit analysis to test the plausibility of
the power-law model.

The rest of the paper is organized as follows: in Sec. II, we
introduce the visibility algorithm and apply it to PMU data.
Sec. III shows the characteristics of the PMU visibility graph.
In Sec. IV, we fit the degree distributions of the graphs to
power-law distributions. Sec. V is the conclusion.

II. NATURAL VISIBILITY GRAPH

In this section, we explain the criterion of mapping the
time series to a graph using the visibility algorithm. We
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subsequently apply the algorithm on three sample time series
of PMU data: voltage magnitude, frequency, and phase angle.

A. Visibility algorithm

The visibility algorithm transforms a time series into a graph
by mapping time-stamped data points into specific vertices and
drawing edges among these vertices if they have a direct link
that does not intersect the height wall of any other data point
in between.

Assuming a time series x(t) of N data points, its corre-
sponding graph consists of N vertices and any vertex pair (i, j)
in the graph has an edge if the corresponding two data points,
(ti, xi) and (tj , xj), are line-of-sight visible. The visibility
between the two data points exists if all the data points (tk, xk)
between data points i and j satisfy Eq. (1).

xk < xj + (xi − xj)
tj − tk
tj − ti

(1)

To illustrate the visibility algorithm, assume we have a
sample time series and its corresponding graph as in Fig. 1. All
the data points, shown in Fig. 1(a), are mapped to vertices in
the graph, as shown in Fig. 1(b). The links exist between any
two data points if they are visible to each other by satisfying
Eq. (1). These links are mapped to edges in the visibility
graph. The resulting graph of the visibility algorithm is called
natural visibility graph. This graph is invariant, undirected, and
connected.

Fig. 1. From time series to a visibility graph

B. Visibility Graph of PMU data

Throughout this paper, we use real PMU data collected
from the École Polytechnique Fédérale de Lausanne (EPFL)
campus grid during the period 2014-2016 [11]. Three 100-
sample time series of voltage magnitude (red), frequency
(blue), and phase angle (green) are shown in Figs. 2 (a)-(c).
The visibility algorithm was implemented by an open-source
Fortran program [6] that computes the adjacency matrix of the
visibility graph. The visibility graphs of three time series are
shown in Figs. 2 (d)-(f).

The three visibility graphs of PMU data are undirected
and connected graphs. The size of the vertex in the graph
is proportional to the degree of the vertex. That means the
large vertices have higher degrees than small ones. Moreover,
the number inside the vertex refers to its corresponding data
point in the time series.

In Fig. 2(a), we have the visibility graph of the voltage
time series. The graph consists of 100 vertices and 412 edges.
We can notice that vertices #55 and #75 have higher degrees
compared to other vertices. That is justifiable because the
sample #55 has high visibility of the samples to its right and
sample #75 has high visibility of the samples to its left in the
time series.

Fig. 2(b) shows the visibility graph corresponding to fre-
quency time series. The graph has 100 vertices and 260 edges.
Vertices #26, #54, and #72 in the graph have the highest
degrees because of the high visibility of their corresponding
samples in the time series. From the time series, it can be
noticed that three samples have high values that enable them
to have better visibility in both directions.

Fig. 2(c) shows the visibility graph corresponding to phase
angle time series. The graph has 100 vertices and 334 edges.
Vertices #5 and #7 have the highest degrees in the graph
because their corresponding samples in the time series are
located at the beginning of the series and have visibility to
many samples to their right.

III. CHARACTERISTICS OF PMU VISIBILITY GRAPH

We focus here on calculating the degree distribution of
PMU visibility graph. Afterwards, we show that the PMU
visibility graph looks like a scale-free network with a heavy-
tailed degree distribution.

A. Random vs. Scale-Free Graphs

An undirected and connected graph, G(V,E), has a set of
vertices, V , and a set of edges, E. The degree, k(v), of a vertex
v ∈ V represents the number of edges associated with that
vertex. Furthermore, the probability that a vertex in the graph
has a degree k is shown in Eq. (2). P (k) is called the graph
degree distribution. The degree distribution carries important
information about the complexity of the graph structure.

P (k) =
# of vertices with degree k

# of all vertices
=

Nk
N

(2)

In graph theory, a random graph is a graph that consists
of vertices and edges where the presence of an edge between
any two vertices is random [12]. The Erdős-Rényi [13] model
G(n, p) was the first to model random graphs where the pres-
ence of an edge between any two vertices has probability p.
The degree distribution of Erdős-Rényi model is the binomial
distribution which asymptotically converges to the Poisson
distribution as the number of vertices (n) increases (n→∞).
In the Erdős-Rényi model, the vertices are more likely to have
degrees around the mean (np) of the binomial distribution. The
probability of having vertices with higher or smaller degrees
decays as we move away from the mean.



Fig. 2. The visibility graphs of three 100-sample time series of PMU data

Although the model was popular and able to model a few
number of networks, it failed to model several other real-
world networks. The degree distributions of these networks
do not fit a binomial distribution, but they follow a power-
law distribution (p(k) ∼ k−α). The parameter α is called the
scaling parameter.

Due to the shortcomings of the random graph model,
the scale-free network was introduced by Barabási [14] to
model graphs and networks that possess a power-law degree
distribution. The scale-free network model has two important
features, growth and preferential connectivity [14]. That means
the new added vertices to the network prefer to connect to
high-degree vertices rather than small-degree vertices. The
high-degree vertices are known as hubs. These two properties
yield the power-law behavior in the degree distribution.

B. Degree Distribution

To investigate the characteristics of PMU visibility graphs,
we have chosen three 105-sample time series of PMU data
from the EPFL campus grid, as shown in Figs. 3 (a)-(c). The
linear and logarithmic plots of the degree distributions are
shown in Figs. 3 (d)-(f). By ignoring the first and last vertices,
the lowest degree of the visibility graph is 2 because each
vertex is connected at least to its neighbor vertices.

The degree distributions indicate that the PMU visibility
graphs have hybrid structure between random and scale-free
graphs. The region of low-degrees in the distribution has ver-
tices that have a tendency to connect randomly to other vertices
similar to the random graph. These vertices correspond to the
PMU data points with no large or sudden deviations from
the rated value or the average in their neighborhoods. So, the
vertices have low degrees because their data points do not have
high visibility to other points in the series.

On the other hand, the right region of the degree distribution
is a heavy-tail distribution that decays like a power law. The
discrete form of a power-law distribution is defined by Eq. (3),

P (k) =
k−α

ζ(α, kmin)
, (3)

where ζ(.) is the Hurwitz zeta function as shown in Eq. (4),

ζ(α, kmin) =

∞∑
n=0

(n+ kmin)
−α
. (4)

α is the scaling parameter and kmin is the lower bound of
the scaling region in the power law. The estimation of α and
kmin of PMU visibility graphs is carried out in Sec. IV.

The tail of distribution represents the vertices that have high
degrees and behave like hubs in scale-free graphs where other
vertices have preference to connect to them. The corresponding
data points of the hubs are part of large or sudden deviations
from the rated value in the PMU data. These deviations enable
them to have higher visibility compared to the other points
in the series. The three degree distributions of PMU data
are clearly having different scaling parameters (α) that could
quantify the dynamics of the data.

IV. SCALING IN PMU VISIBILITY GRAPHS

We estimate the scaling parameter of the power law for
several PMU visibility graphs. Then, we test the plausibility
of the power-law hypothesis using goodness-of-fit analysis.

A. Estimation of the scaling parameter in a power-law distri-
bution

It is clear that the degree distribution does not follow a
power law over the full range of k. So, finding the range
(k > kmin) in which the distribution closely follows a power
law is necessary to have accurate estimation of the scaling



Fig. 3. Degree Distributions of PMU visibility graphs of three 100,000-sample time series

parameter. The empirical Complementary CDF (CCDF) of
PMU visibility graph represents the probability of having a
vertex with a degree higher than the degree k. The CCDF has
also a power-law behavior that is more visually obvious in the
empirical CCDF compared to the degree distribution.

The fitting of the empirical CCDF to a power-law distribu-
tion is performed via Maximum Liklihood Estimation (MLE)
combined with Kolmogorov-Smirnov (KS) statistic [15]. Start-
ing from kmin = 2, we use MLE to estimate the scaling
parameter of the empirical CCDF for values of k ≥ kmin.
Subsequently, we calculate the maximum distance (KS statis-
tic) between the empirical CCDF of the visibility graph and
the fitted model. Then, we repeat these two steps for each
kmin greater than 2. At the end, the best fitting power-law
model is the one that has the minimum KS statistic among
all fitted models. The estimated parameters (α and kmin) are
corresponding to the model with the minimum KS statistic.

The CCDFs of the PMU visibility graphs for three sample
time series (voltage, frequency, and angle) are shown in
Figs. 4 (a)-(c). The best power-law fits of the three CCDFs
are shown using a dotted line with scaling parameters of
αv = 4.37, αf = 3.55, and αa = 4.09.

Using MLE and KS statistic, we estimate the scaling param-
eters of the power-law distributions for 1200 PMU visibility
graphs of voltage magnitude, frequency, and phase angle. The
densities of the scaling parameters for each variable are shown
in Figs. 5 (a)-(c). The variability in the scaling parameters
among different PMU data variables is related and proportional
to the values of their Hurst exponents [10].

B. Goodness-of-fit analysis

To assess the validity of fitting the empirical CCDF of the
PMU visibility graph to a power-law distribution, we inves-

TABLE I. Power-law fits of 1200 PMU visibility graphs
(voltage, frequency, and phase angle)

Parameter Voltage Frequency Angle

% of graphs with p ≥ 0.1 20.5% 8.3% 13.5%

Scaling parameter (α) 4.8 3.7 3.9

Lower bound (kmin) 97.8 72.5 40.2

# of points in tail (ntail) 1139.5 1629.4 2981

tigate the statistical goodness-of-fit by comparing maximum
distance (KS statistic) between the empirical CCDF and the
postulated model to the distances of synthetic data sets drawn
from the same postulated model.

For each empirical CCDF, we generate 1000 synthetic data
sets from the postulated model. Then, for each synthetic
CCDF, we calculate the maximum distance between the syn-
thetic data and its best power-law fit. At significance level of
0.10, we define the p-value to be the fraction of synthetic data
with a distance higher than the distance of the empirical data.
If p < 0.1, we can reject the null hypothesis and the power-law
model is not a plausible fit for the empirical data. Otherwise,
we can not reject the power-law model as a good fit of data.

We apply the goodness-of-fit test on three empirical CCDF
of PMU visibility graphs as shown in Figs. 4 (a)-(c). After
estimating the best model (α, kmin) of the three empirical
distributions, we generate 1000 synthetic data sets to calculate
the p-value. It seems the power-law fit is a plausible fit for the
three distributions with p-values higher than 0.1.

We can apply similarly the goodness-of-fit test on 1200
PMU visibility graphs. The detailed results are shown in
Table I. The results show that the power law could be a



Fig. 4. Complementary Cumulative Distribution Functions of PMU visibility graphs of three 100,000-sample time series

Fig. 5. Sample density functions of the scaling parameters of 1200 PMU visibility graphs of voltage, frequency, and angle

plausible fit for 20.5% of voltage visibility graphs, 8.3%
of frequency visibility graphs, and 13.5% of angle visibility
graphs. The low percentage of empirical distributions passing
the goodness-of-fit test could be a result of the dwindles at
the end of the degree distribution. In this region, the vertices
are not represented by enough samples as result of the series
size.

V. CONCLUSION

In this paper, we introduced the PMU visibility graph
to study the hidden statistical properties in the PMU data.
Then, we showed that the graph is scale-free with heavy-
tailed distribution like a power law. The goodness-of-analysis
indicated that the power law could be more plausible fit for the
voltage and phase angle compared to the frequency. The degree
distribution hybrid structure and the variability in the estimated
scaling parameters among different PMU data variables reveals
the nonstationary and fractal properties of the PMU data [10].

In the future, we will fit the distributions of the PMU vis-
ibility graphs to other heavy-tailed distributions (Log-normal,
Weibull, α-stable, etc.). In addition, a rigorous statistical
comparison will be performed between the different fitted
model via the likelihood ratio test.
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