
Smart Transmission is an essential, or maybe 

the most essential, pillar for the Smart Grid
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Evolution to more reliable, safe and secure grid
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Contribution: Inspired from Riemannian 

geometry, we investigate the reliability of 

power grid from the topology of its hidden 

metric space. 

Key claim: Extreme load at specific parts of 

a large power grid can occur as a 

consequence of the local negative 

curvature in its hidden metric space. 

Intellectual merits:

1) We draw a new course in the topological 

study of power grid. 

2) We extend the Riemannian geometry 

metaphor to the power grid. 

3) We address a unifying approach to deal 

with power and data networks. 

4) We provide an analytical measure for the 

criticality of lines and stations, applicable 

to reliability assessment and flow control.

To analyze this 

large complex 

network we 

need to use all 

The tools at our 

disposal. 

Time and again, 

we have been 

pushed beyond 

the limit of the 

existing 

techniques and 

have had to

create new and 

better tools. 

Local Curvature vs. Curvature 

in the Large

Gromov Thin Triangle Condition

allows to determine whether a graph 

is negatively curved in the very large 

scale.

For a triangle drawn on a negatively 

curved surface, the sum of the 

angles is less than     ,  giving it a 

thin appearance. 

Scaled Gromov Property

provides us with an extension to 

some medium scale, and by the 

same token to the concept of 

nonnegatively curved graphs. 



Tessellation of the hyperbolic 

plane. All triangles and heptagons 

are of the same hyperbolic size but 

the size of their Euclidean 

representations exponentially 

decreases. 

Hyperbolic lines intersect to form 

triangle ABC. The sum of its angles                                                

1 . There are 

infinitely many lines parallel to line 

L1 and go through a point C that 

does not belong to L1.
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Large Scale Networks

● Hard to visualize due to scale

● Hard to realize the essential 

characteristics for overall 

functionality, reliability and security

● Is there a way to summarize the 

critical network information?

Under some conditions, the network 

can be approximated by a 

Riemannian manifold. Then a 

promising direction is to look at 

two main fundamental features 

of this manifold: 

Dimension  &  Curvature

Rocketfuel database AT&T with 10152 nodes 

and 28638 links, as described in “The Large 

Scale Curvature of Networks, by O. Narayan, 

I. Saniee, arXiv:0907.1478 (July 2009)”

Moment of Inertia

The moment of inertia of a weighted graph with respect to a node     is defined by                                           ,

for some constants             and             . 

Negatively Curved Network

Consider a large, but finite, negatively curved graph, subject to uniformly distributed demand for commodities. 

Then, there are some specific nodes with very high traffic, which are the ones of least moment of inertia. If the 

graph is non-negatively curved, then both the traffic and inertia are more evenly distributed than in the case of 

a negatively curved graph. Furthermore, if the graph is positively curved with enough symmetry, both the traffic 

and inertia are uniformly distributed. 
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Traffic in the Poincare disk

The source to target 

geodesic [s(x,y), t(x’,y’)] 

arches towards centre so that 

its average length in the 

small ball X=Br(0) is 

considerably larger than in 

the Euclidean case. The 

optimal paths are maximally 

distributed at the center. 

Traffic in Euclidean disk

The source s(x,y) sends 

commodities to the 

destination t(x,y) along a 

straight line that enters the 

small ball X along PQ. The 

traffic load is the average 

length of PQ. The optimal 

paths are uniformly 

distributed 

Maintenance Scheduling

Fuel Allocation

Emission Allowance

Optimal Operation Cost

Mid-term Operation

Reliable Power Generation

Topology-constrained 

Optimal Power Flow

Short-term Operation

Generation Resource Planning

Transmission Planning

Long-term Operation

SCADA / System Monitoring

Contingency Analysis

Real-time Reliability Assessment

Hierarchical Reliability Analysis

Challenges in Modeling Power with Traffic 

● Traffic needs to be expressed by a simple 

variable as the rate of commodities passing 

through a node or a link. However, electrical 

power requires two variables to be identified, 

a generalized coordinate (charge) and a 

generalized force (voltage). 

● A commodity like a message has a specific 

header and is transferred from source to 

destination through an optimal path. 

However, electrical power flows along all 

transmission lines and stations from 

generating source to consuming loads. 

Power Flow Equations
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Resistive Graph vs. Transmission Grid

Definition: The virtual resistive grid associated with a specific steady-state power flow condition is defined as a 

resistive graph isomorphic to the power grid, in which the resistance of each link is equal to                                          .

● All variables of the system, when evaluated in a specific steady-state mode, are assumed constant in short-term analysis, 

even though their values can change in medium- and long-term operation. 

● The root of fluctuations in the system is the variation of power supply/demand, happening in buses. Then, deviation of 

voltage magnitude  and phase angle  will be the consequence of those variations. Accordingly, the virtual resistive grid will only 

have current sources in its nodes as metaphors for the fluctuation of bus complex powers, where the stationary value of each 

current source is zero, corresponding to no power fluctuation in the bus supply/demand. 

Theorem: Consider the virtual resistive grid associated with a specific steady-state mode. Let a set of complex current 

sources        injecting into the nodes, resulting in a set of node complex voltages       and a set of link complex currents

. Then, the fluctuation of line complex power and bus complex voltage in the power grid satisfy                            

and                               , iff the fluctuation of net complex power injection into the buses satisfy                . 
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● In a data network, limitation is on routers with packet drops, 

whereas in power grid limitation is on lines with overload trips. 

● In a data network both send/receive and congestion occur in nodes, 

whereas in power grid supply/demand occurs in buses (nodes) but 

overloading happens in lines (links). 

Weighted Electrical Centrality (Inverse Inertia)

Assume a current source      is injected into node      in the virtual 

resistive grid. Link            receives a current        , and         

represents a measure of electrical closeness between line            

and bus      . Weighted electrical centrality for a link             is defined 

by the sum of the weighted closeness between this link and all nodes 

in the virtual resistive grid, i.e., 

where        is the bus net apparent power,                       is the bus 

operation risk factor, and      is the number of nodes in the grid. Then, 

the normalized moment of inertia of the power grid with respect to a 

line is defined as 

for a constant             .
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Contrast between Packet Congestion and Power Overloading Hyperbolic Resistive Grid

Theorem: If the resistive graph is 

Gromov hyperbolic, then for any 

pair of nodes              ,  we have ,k lx x

 ( , ) ( , )eff k l k lR x x O R x x

Negatively Curved Power Grid

Corollary1: Consider the virtual resistive grid associated with 

a specific steady-state mode of the power grid with a set of 

bus operation risk factors. If this resistive grid is Gromov

hyperbolic, then under uniform distribution of power 

fluctuations in supply/demand, the lines with least moments of 

inertia experience most fluctuations in their transmission load. 

Reliable Transmission

Corrollary2: Consider the negatively curved 

power grid in Corollary 1. Then for a reliable 

power transmission under uniform distribution 

of power fluctuations in supply/demand, 

highest free capacity must be allocated to the 

lines with lowest moments of inertia. 

Remark:
If a line is in high utilization, the red flag is already raised, even in a traditional dispatch. 

However, the claim here is that for a line with respect to which the power grid has low moment of inertia, the 

red flag must be raised in quite a lower utilization compared to that in a traditional dispatch. Such a line, 

even with lower utilization, may be at higher risk of overloading in the presence of 

disturbance in supply/demand. 

(1) The grid is locally negatively curved with respect to some lines and buses. (2) Number 1 line has zero moment of 

inertia with 458 MVA transmission load. This line is the only one connecting the power grid to its reference bus, namely 

swing bus. (3) Number 0 to 50 lines are in high centrality with respect to the fluctuations of power supply/demand in 

buses. To have a reliable power grid, these lines must operate quite far away their rated capacities. (4) Number 51 to 

180 lines are in medium centrality, where a collection of lines with highest transmitting power occurs. 
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