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Abstract

The robustness of quantum control in the presence of uncertainties is important for practical

applications but their quantum nature poses many challenges for traditional robust control. In addition

to uncertainties in the system and control Hamiltonians and initial state preparation, there is uncertainty

about interactions with the environment leading to decoherence. This paper investigates the robust

performance of control schemes for open quantum systems subject to such uncertainties. A general

formalism is developed, where performance is measured based on the transmission of a dynamic

perturbation or initial state preparation error to a final density operator error. This formulation makes

it possible to apply tools from classical robust control, especially structured singular value analysis, to

assess robust performance of controlled, open quantum systems. However, there are additional difficulties

that must be overcome, especially at low frequency (s ≈ 0). For example, at s = 0, the Bloch

equations for the density operator are singular, and this causes lack of continuity of the structured

singular value. We address this issue by analyzing the dynamics on invariant subspaces and defining a

pseudo-inverse that enables us to formulate a specialized version of the matrix inversion lemma. The

concepts are demonstrated with an example of two qubits in a leaky cavity under laser driving fields and
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spontaneous emission. In addition, a new performance index is introduced for this system. Instead of the

tracking or transfer fidelity error, performance is measured by the steady-steady entanglement generated,

which is quantified by a non-linear function of the system state called concurrence. Simulations show

that there is no conflict between this performance index, its log-sensitivity and stability margin under

decoherence, unlike for conventional control problems where a trade-off between the tracking error and

its log-sensitivity usually exists.

Index Terms

Quantum information and control, uncertain systems, robust control, H-infinity control.

.

I. INTRODUCTION

Quantum control offers a variety of techniques to steer the dynamics of quantum systems.

This is essential to enable a wide range of applications for quantum technologies. However,

uncertainties arising from limited knowledge of Hamiltonians, decoherence processes and initial

state preparation errors alter quantum dynamics and the effectiveness of the control schemes.

While classical robust control has developed effective solutions for such situations, they do

not apply straightforwardly to quantum control. To consider the robustness of quantum control

strategies in the presence of uncertainties, we develop a general formalism where the performance

is the δ-strength structured uncertain transmission Tz,w(s, δ) (of the usual Laplace frequency

parameter s), from the generalized “noise” w (e.g., decoherence, preparation errors) to the

density operator error z. It is tacitly assumed that this response has been made “small” by the

control design under nominal values of the Hamiltonian parameters and decoherence (δ = 0).

Robust performance is hence defined as the ability of Tz,w(s, δ) to remain within identifiable

bounds when δ �= 0. Since uncertainties in Hamiltonians and, to a lesser extent, Lindbladian

decoherence are structured with strength δ, it is natural to quantify robustness of the performance

using structured singular values. A generic difficulty in dealing with quantum systems is that

the constancy of the trace of the density matrix ρ imposes a pole at s = 0 in the Tz,w(s, δ)

dynamics. This creates a singularity of the dynamics at low frequencies, s ≈ 0, mandating some

revision of the traditional machinery of the structured singular value and a specially dedicated

matrix #-inversion lemma, not to be confused with the matrix pseudo-inversion lemma [1], [2],

is required. This singularity situation is reminiscent of deliberately adding an integrator along
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the open-loop dynamics, and hence a pole at s = 0, to ensure the asymptotic tracking error

vanishes [3].

After reviewing quantum dynamics and specific uncertainties in Sec. II, we introduce in Sec. III

a novel, general formalism that reduces robustness against all uncertainties to enforcing the single

transmission Tz,w to be robust against Hamiltonian parameter uncertainties [4] and decoherence

strength [5]. Preparation error response requires a different formulation departing from classical

robust performance, as treated in [6], [7]. In Sec. IV the case of pure dephasing in the Hamiltonian

basis is developed and analytic bounds for the error transmission Tz,w are derived. Sec. V

addresses generic dissipation and develops a generalized framework to deal with the s = 0

singularity. Robust performance for generic dissipative dynamics is illustrated by a case study

of two qubits in a cavity in Sec. VI. While this is a simple example, it allows the formulation of

another innovation in robust control in that it considers a case where the performance measure

is given by the concurrence, a measure of entanglement between the two qubits in the cavity,

which is a nonlinear function of the system state (Sec. VI-E). Although the cavity is dissipative,

it shows a lack of conflict between the concurrence and its log-sensitivity [8], while other pairs

of performance measures still show classical conflicts. For convenience, Table I summarises the

notation used in this paper.

II. QUANTUM DYNAMICS AND UNCERTAINTIES

We briefly review quantum dynamics with uncertainties to set up the basic formalism of our

approach.

A. Schrödinger and Liouville Equations

The dynamics of a quantum system, whose pure states |Ψ(t)〉 are wavefunctions in a Hilbert

space H = C
N , are typically described by the time-dependent Schrödinger equation, d

dt
|Ψ(t)〉 =

−ıH |Ψ(t)〉 (in a system of units where the reduced Planck Constant � = 1), or the quantum

Liouville equation for density operators ρ,

d
dt
ρ(t) = −ı[H, ρ(t)], (1)

where H is the Hamiltonian of the system, ρ is a (bounded) Hermitian operator on H with

Tr(ρ) = 1 and [A,B] = AB −BA is the usual matrix commutator. For pure states, the density

operator is simply the projector onto |Ψ〉, i.e., ρ = |Ψ〉 〈Ψ|. If dimH = N < ∞, H and ρ can be
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TABLE I: Notation

H Hilbert space of quantum system � C
N .

Herm Hermitian operators H → H.

ρ N ×N Hermitian density operator of Trace 1.

H N ×N Hermitian Hamiltonian operator.

L(V ) N ×N Lindbladian with jump operator(s) V (Eq. (2)).

δ Strength of decoherence or strength of general uncertainty.

r N2-dimensional Block representation vector of ρ.

z N2-dimensional Bloch representation vector of error on ρ.

w Extraneous disturbance (noise or preparation error).

Tz,w Transmission from w to z.

A,S N2 ×N2 Bloch representations of nominal H

and nominal L(V ), resp. (Eq. (5)).

Φ(s) sI −A.

S N2 ×N2 Bloch representation of disturbance on A for

enhanced uncertainty structure (Eqs. (47)-(48)).

σx, σy, σz Pauli operators (Eq. (42)).

represented by N ×N Hermitian matrices. The advantage of density operators and the quantum

Liouville equation is that they can easily be extended to describe open system dynamics by

adding a Lindbladian term,

L(V )ρ = V ρV † − 1
2
(V †V ρ+ ρV †V ), (2)

to the right-hand side of Eq. (1), resulting in the Liouville-Lindblad master equation

d
dt
ρ(t) = −ı[H, ρ(t)] + δL(V )ρ(t), (3)

where δ is the decoherence rate, which can be interpreted as the strength of the structured

perturbation defined by L(V ).

B. Initial State Preparation Errors versus Dephasing

When studying quantum dynamics subject to a variety of structured perturbations, it is impor-

tant to note that some of these perturbations may be indistinguishable, in particular, initial state

preparation error and decoherence. If we measure the difference between the actual resulting

state ρ̃ and a desired state ρ, we cannot determine if the error at a particular time t is the result

of dynamic dephasing of a perfectly prepared pure initial state, a mixed initial state evolving
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perfectly according to Hamiltonian dynamics, or a combination of both. This is illustrated with

a simple example that also serves as a “warm-up exercise.”

Example 1: Consider a two-level system with |0〉 = (1, 0)T and |1〉 = (0, 1)T . Assume

the system is prepared in a pure state |ψ0〉 = (|0〉 + |1〉)/√2 and evolves under the diagonal

Hamiltonian H = ωσz with σz = diag(−1, 1) while dephasing V = σz acts in the Hamiltonian

basis ([H, V ] = 0) at a rate δ. In this case equation (3) gives

ρ0 = ρ(0) =
1

2

⎡⎣1 1

1 1

⎤⎦ , ρ(t) =
1

2

⎡⎣e2ıωt e−2δt

e−2δt e−2ıωt

⎤⎦ .

Alternatively, if we initially prepare a mixed state ρ̃0 that evolves under the same Hamiltonian

H = ωσz without dephasing then we obtain

ρ̃0 = ρ(0) =
1

2

⎡⎣ 1 e−τδ

e−τδ 1

⎤⎦ , ρ̃(t) =
1

2

⎡⎣e2ıωt e−τδ

e−τδ e−2ıωt

⎤⎦ .

Clearly, the two solutions are indistinguishable at t = τ/2.

C. Genericity and Stability of Hamiltonian Eigenstructure

To be able to develop a general formalism and prove certain results we make some assumptions

about genericity of the eigenstructure of the Hamiltonian, and whether multiple eigenvalues, if

any, will survive under physical parameter drift. Clearly changing multiplicity of the eigenvalues

may give rise to unstable dynamics. Specifically, consider a quantum system with Hilbert-

space dimension N and let nk = rank(Πk), where {Πk}N̄≤N
k=1 is the family of projectors onto

the respective eigenspaces of the Hamiltonian associated with the eigenvalues λk(H) with∑N̄
k=1 nk = N . Such an eigenstructure is in general unstable under perturbation in the sense that

eigenvalues with multiplicity greater than 1 will split into several lower multiplicity eigenvalues

under universal unfolding [9]. Securing stability of the eigenstructure of H (and V ) requires

N̄ = N , an assumption that can be justified invoking genericity. Such issue specialized to energy

landscape traces back to von Neumann and Wigner [10] and was further developed in [11], [12].

Definition 1: A property P of a set of matrices M is said to be generic if the subset of

matrices where P holds is open and dense in M for a relevant topology on M.

Theorem 1: For N ≥ 2, the subset Mn1,n2,...,nN̄
⊂ H(N) of the set of N × N Hermitian

matrices with eigenvalues with multiplicities n1, n2, . . . , nN̄ is a R
∗-homogeneous sub-manifold

of codimension
(∑N̄

k=1 n
2
k

)
−N̄ in H(N). Moreover, the subset V ⊂ H(N) of the set of N×N
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Hermitian matrices with multiple eigenvalues is a real algebraic variety V of codimension 3 in

H(N).

See [11, Corollary 4.12].

Corollary 1: The property P of “no multiple eigenvalues” is generic in H(N).

Corollary 2: In an Hermitian, continuously real, p-parameterized family Hp, embedded in

H(N) with H0 ∈ H(N) \ V (that is, H0 has no multiple eigenvalues), generically, a three-

dimensional (real) perturbation p =
(
p1, p2, p3

)
is necessary to reach multiple eigenvalues. Under

nongeneric conditions, more than three parameters are needed, unless there exists a unique k∗

such that nk∗ = 2 and nk �=k∗ = 1 in which case three parameters are still enough.

See Appendix.

Practically speaking, from the proof in the Appendix, the argument can be reversed to arbi-

trarily split a multiple eigenvalue into several simple eigenvalues under the V-generic condition

that 3 uncertain parameters are enough. The simplest system of two coupled qubits already has

16 parameters in its 4×4 Hamiltonian, all of which are uncertain to some degree. If we consider

the simplest case of one and only one double eigenvalue, we have codim (Mn1=2,n2=n3=1) =

3. Therefore, the double eigenvalue can be arbitrarily split with 3 parameters. Note, how-

ever, that any higher multiplicity structure of the eigenvalues (precisely, N̄ < 3) would create

codim
(
Mn1,n2,...,nN̄

)
> 3 and therefore more than 3 parameters would be needed to achieve an

arbitrary splitting. To put it simply, given the high number of uncertain parameters in quantum

systems, the “no multiple eigenvalues” assumption is reasonable.

Remark 1: An early version of Corollary 2 is in [10]. The difference is that, here, we have

clarified what is meant by “in general” (“im allgemeinen”) on [10, p. 553] while referring to

the sufficiency of 3 parameters. Precisely, across V the most “general” singularities are those of

the smallest codimension, which happens to be 3.

D. Bloch Equation

To simplify the analysis we reformulate the quantum dynamics Eq. (3) as a linear ODE for a

real state vector r,

d
dt
r(t) = (A+ δS)r(t), (4)

by expanding ρ and the Hermitian dynamical generator(s) with respect to a suitable basis for

the operators on the Hilbert space H, e.g., the generalized Pauli or Gell-Mann basis [13]. For
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example, if {σn}N2

n=1 is an orthonormal basis for the N×N Hermitian matrices with σN2 = 1√
N
I

then r = (rn)
N2

n=1 with rn = Tr(σnρ). This leads to

Amn = Tr(ıHσm, σn]), (5a)

Smn = Tr(V σmV σn − 1
2
V 2{σm,σn}). (5b)

Observe that A is real, anti-symmetric, while S is symmetric. From rN2 = Tr
(

1√
N
ρ
)
= 1√

N
,

it follows that ṙN2(t) ≡ 0. So the last row of A + δS vanishes for all δ. Thus, in general

rank(A+δS) ≤ N2−1, ∀δ. Moreover, rank(A) ≤ N2−1 and rank(S) ≤ N2−1, separately, as

this rank deficiency is a consequence of the choice of the basis operator σN2 and independent

of the dynamical generators.

E. Control and State Feedback

We are concerned with the performance of controlled quantum systems. The most natural

formulation of quantum control is a control-dependent Hamiltonian H = H[f ], leading to a

non-linear control system. In the simplest case, where H[f ] = H0 +
∑M

m=1 fm(t)Hm is linear

in the controls fm(t), we obtain a bilinear control system with the Bloch equation

ṙ(t) =

[
A0 +

M∑
m=1

fm(t)Am

]
r(t), (6)

where A0, (A1, . . . , AM) are N2×N2 real matrices describing the system and control dynamics,

respectively. However, the dynamics can be equivalently written as a linear system,

ṙ(t) = Ar(t) + Bu(t), (7)

if we set A = A0, B = I and define the state-feedback

u(r, t) =

[
M∑

m=1

fm(t)Am

]
r(t). (8)

If the fm(t) are time-independent controls, the resulting system is a linear time-invariant (LTI)

system with autonomous state feedback [4]. Note, however, that stabilization of such systems by

choosing some fm to produce specified eigenvalues for A +
∑

m fmAm does not reduce to the

well-known pole placement method; the latter requires feedback of the form u(t) = Kr(t) with

K completely free except for its size, whereas here K is constrained to be
∑

m fmAm [14].

Note that
∑M

m=1 fmAm can also model system errors, with Am being the structure of the

uncertainty and fm its strength. We will take this path of approach in the following section.
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III. ROBUST PERFORMANCE IN OPEN QUANTUM SYSTEMS

Performance of a controlled quantum system under uncertainties can be characterized by a

transmission function Tz,w. To rigorously develop this framework, consider an unperturbed and

a perturbed system with state vectors ru and rp, respectively, evolving according to

ṙu(t) = Aru(t), (9a)

ṙp(t) = (A+ δS)rp(t), (9b)

where A describes dynamics of the ideal unperturbed system and δS is a perturbation to the

dynamics of structure S and magnitude δ. The resulting error vector z(t) = rp(t)−ru(t) satisfies

either of the dynamics

ż(t) = (A+ δS)z(t) + δSwu(t), (10a)

ż(t) = Az(t) + δSwp(t), (10b)

with feedback wu(t) = ru(t) and wp(t) = rp(t), respectively.

A case can be made for Eq. (10b), as the error z(t) is the “noise response” to a perturbed

signal and hence the formulation is in line with the “disturbance rejection” paradigm. But a case

can also be made for Eq. (10a) as the error dynamics are the real perturbed dynamics, but driven

by an unperturbed purely oscillatory signal with known eigenfrequencies, so that the frequency

sweep can be limited to finitely many known frequencies.

From another perspective, the transfer matrices of the unperturbed, perturbed cases, T u
z,wu

,

T p
z,wp

, resp., are the variations of (sI −A)−1 relative to either the unperturbed dynamics or the

perturbed dynamics as a function of δ ≥ 0:

T u
z,wu

:= (sI − A− δS)−1δS

=
[
(sI − A− δS)−1 − (sI − A)−1

] [
(sI − A)−1

]−1
,

T p
z,wp

:= (sI − A)−1δS

=
[
(sI − A− δS)−1 − (sI − A)−1

] [
(sI − A− δS)−1

]−1
.

Whether the variation of the error transmission matrix should be scaled relative to the in-

accurate, but known model or the true, but unknown dynamics is a matter of preference, with

the former perceived as more appropriate [15, Sec. II.C]. Therefore, after briefly analyzing both

points of view in the next two subsections, the “unperturbed” case will be the preferred method.
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A. Unperturbed State Feedback

Firstly, consider the point of view taken by Eq. (10a) of unperturbed state feedback. Taking

its Laplace transform yields

(sI − A− δS)ẑ(s) = δSŵu(s) + z(0). (11)

If sI − A− δS is invertible and there is no initial state preparation error, z(0) = 0, then

ẑ(s) = (sI − A− δS)−1δSŵu(s) = T u
z,wu

(s)ŵu(s). (12)

The formulation of Eq. (12) enables structured singular value analysis [6], [7]. Assuming that

Φ(s) := (sI − A) is invertible, by simple matrix manipulation, we get

(Φ(s)− δS)−1δS = (I − Φ(s)−1S(δI))−1Φ(s)−1S(δI). (13)

The above reveals that the error response T u
z,wu

:= (sI − A− δS)−1δS is obtained from⎛⎝ v

ẑ(s)

⎞⎠ =

⎛⎝Φ(s)−1S Φ(s)−1S

I 0

⎞⎠
︸ ︷︷ ︸

Gz,wu (s)

⎛⎝ η

ŵu(s)

⎞⎠ , (14)

after the feedback η = (δI)v. Next, a fictitious feedback wu = Δfz allows us to compute

‖T u
z,wu

(s)‖ = 1/min{‖Δf‖ : det(I + T u
z,wu

(s)Δf ) = 0}. Putting the two feedbacks together

as Δ =

⎛⎝δI 0

0 Δf

⎞⎠ and using the matrix inversion lemma yields the robust performance

theorem [7, Th. 10.8]:

Theorem 2: If Φ(s) is invertible, ‖T u
z,w(s)‖ ≤ μD(G(s)) for δ < 1/μD(G(s)), where D is

the structure defined by the block-diagonal matrix diag(M1,M2) where M1 is an N2 ×N2 real

diagonal matrix, M2 is an N2 ×N2 complex matrix, and

μD(G(s)) =
1

min{‖Δ ∈ D‖ : det(I +G(s)Δ) = 0}
is the structured singular value specific to D.

It is important to note that the representation of the uncertainty as diagonal feedback about a

“certain” plant has a problem when Φ(s) is not invertible. Unfortunately, when A is the Bloch

matrix of an open quantum system then it has an eigenvalue at 0 so that Φ(s) has a pole at s = 0,

invalidating the above representation. This issue, which is often overlooked in the application of

the matrix inversion lemma [1], [2], is central in the proof of Th. 2. It is examined in Secs. V-A

and V-B, where a specialized “pseudo-inverse” will be introduced to deal with this singularity.
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Remark 2: The authors of [3] faced a similar problem in the μ-synthesis of a PI disk drive

controller. They report significant numerical difficulties at “low frequency,” obviously due to

the presence of the open-loop pole at s = 0. To obviate such difficulties, they elect to do the

μ-design at “medium to high frequencies” and then add the PI component of the controller. In

Secs. V-A and V-B, we address this difficulty by looking at the μ-analysis all the way down to

s = 0.

B. Perturbed State Feedback

Next, let us briefly consider the point of view taken by Eq. (10b) of perturbed state feedback.

Taking its Laplace transform yields

(sI − A)ẑ(s) = δSŵp(s) + z(0). (15)

If sI − A is invertible and there is no initial state preparation error, z(0) = 0, then

ẑ(s) = (sI − A)−1δSŵp(s) = T p
zwp

(s)ŵp(s). (16)

Bounding ‖T p
zwp

(s)‖ does not require the matrix inversion lemma nor the structured singular

value analysis. This apparent simplification, however, overlooks the fact that T p
zwp

(s), perturbed

by δ, is driven by a signal also perturbed by δ. Therefore, rigorous analysis of bounding ẑ(s)

would require further work. So in what follows, we instead consider the approach where the

driving signal is unperturbed.

C. Initial State Preparation Error

The previous subsections assumed that the initial state was prepared perfectly. We can also

treat initial state preparation error in this framework from both the unperturbed and perturbed

points of view.

Introducing z(0) in Eq. (10a) and restricting Eq. (11) to the initial state preparation error

yields in the unperturbed case

(sI − A− δS)ẑ(s) = z(0). (17)

If sI − A− δS is invertible, this yields

ẑ(s) = (sI − A− δS)−1z(0) = T u
z,z0

z(0). (18)
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This is the path taken in [6], which required the matrix inversion lemma and the structured

singular values. Precisely, if Φ(s) (defined Sec. III-A) is invertible, we have

(Φ− δS)−1 = Φ−1 + Φ−1(δI)(I − SΦ−1(δI))−1SΦ−1.

It follows that T u
z,z0

(s) can be obtained from⎛⎝ v

ẑ(s)

⎞⎠ =

⎛⎝SΦ−1(s) SΦ−1(s)

Φ−1(s) Φ−1(s)

⎞⎠
︸ ︷︷ ︸

Gu
z,z0

(s)

⎛⎝ η

z0

⎞⎠ , (19)

after the feedback η = (δI)v and moreover ‖T u
z,z0

(s)‖ is simultaneously computed via the com-

pound feedback Δ =

⎛⎝δI 0

0 Δf

⎞⎠. The related robust performance theorem is a straightforward

adaptation of Th. 2 and is left to the reader.

In the perturbed case, introducing z(0) in the perturbed Eq. (10b), we obtain instead

ẑ(s) = (sI − A)−1z(0) = T p
z,z0

(s)z(0), (20)

assuming that sI−A is invertible. Bounding ‖T p
z,z0

(ıω)‖ amounts to a classical frequency sweep.

IV. PURE DEPHASING IN HAMILTONIAN BASIS

In this section we apply the formalism derived in the previous section to study the perfor-

mance of controlled quantum systems subject to dephasing in the Hamiltonian basis, a typically

undesired behavior commonly encountered for quantum systems interacting weakly with an

environment. In this special case we can assume that dephasing acts in the eigenbasis of the

Hamiltonian, i.e., [H, V ] = 0.

A. Quantum Dynamics subject to Pure Dephasing

With the added condition [H, V ] = 0 in the Lindblad master equations (2)-(3), we can say

much more than Sec. II-D about the Bloch equation. Firstly, we need the following lemmas and

corollary:

Lemma 1: Let P , Q be N ×N Hermitian operators on H that commute. Then

1) If the (orthonormalized) bases of the eigenspaces of P or Q associated with the multiple

egenvalues are constrained, then P and Q are simultaneously block diagonalizable via a

unitary transformation.
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2) If the (orthonormalized) bases of the eigenspaces of P and Q associated with multiple

eigenvalues are freely adjustable, then P and Q are simultaneously diagonalizable by a

unitary transformation.

See Appendix.

Corollary 3: Under the same conditions as Lemma 1, the kernel of one operator equals the

direct sum of selected invariant subspaces of the other. Moreover, if one such invariant subspace

corresponds to an eigenvalue �= 0 the kernels of P and Q are not coincidental.

See Appendix.

Lemma 2: Let P , Q be N ×N Hermitian operators. If Tr(P †Q) = 0 in the Lindblad master

equation, then ((Tr(P †σn))
N2

n=1)
†(Tr(Q†σn))

N2

n=1 = 0 in the Bloch representation.

Expand P and Q in terms of the basis {σn}N2

n=1 of the set of Hermitian N ×N operators to get

the result.

Secondly, we consider the solution to the Liouville-Lindblad equation. As H and V commute,

they can be simultaneously diagonalized and there exists a set of projectors {Πk(H)}N̄≤N
k=1 onto

the (orthogonal) simultaneous eigenspaces of H and V such that
∑N̄

k=1 Πk(H) = ICN is a

resolution of the identity on the full Hilbert space H and

H =
N̄∑
k=1

λk(H)Πk(H), V =
N̄∑
k=1

λk(V )Πk(H),

where λk(H) and λk(V ) are the respective real eigenvalues of H and V , and N̄ ≤ N is the

number of distinct eigenvalues of H .

Pre-/post-multiplying the master Eq. (3) with Lindblad term (2) by Πk(H) and Π�(H), re-

spectively, yields

Πk(H)ρ̇(t)Π�(H) = (−ıωk� + δγk�)Πk(H)ρ(t)Π�(H), (21)

with ωk� = λk(H)− λ�(H) and γk� = −1
2
(λk(V )− λ�(V ))2 ≤ 0. The solution to this equation

is

Πk(H)ρ(t)Π�(H) = e−t(ıωk�−δγk�)Πk(H)ρ0Π�(H).

Since
∑N̄

k=1 Πk(H) = I , the full solution is found as ρ(t) =
∑N̄

k,�=1 Πk(H)ρ(t)Π�(H), which

yields

ρ(t) =
N̄∑

k,�=1

e−t(ıωk�−δγk�)Πk(H)ρ0Π�(H). (22)
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Moreover, from the above it is easily verified that

Πkρ(t)Πk = Πkρ0Πk, k = 1, . . . , N̄ .

Therefore, remembering that
∑N̄

k=1 Πk(H) = ICN , the solution ρ(t) has N̄ constant directions.

Theorem 3: Let N̄ = N . If [H, V ] = 0 in the quantum master Equation (3), then [A, S] = 0 in

the Bloch equation and furthermore the kernels of A and S coincide and are both N -dimensional.

For A and S to commute, we have to show that they have the same eigenspaces. Let us

begin with the kernel, the eigenspace associated with the 0-eigenvalue. Recall that the invariant

directions are {Πkρ0Πk}Nk=1. Therefore, in the Bloch representation, we easily find a basis for

the kernel of A+ δS:

uN2−N+k = (Tr((Πkρ0Πk)σn))
N2

n=1, k = 1, . . . , N.

Note that this kernel basis does not depend on δ and therefore this is the common kernel of A and

S. We further have the freedom to orthonormalize this basis using the Gram-Schmidt process.

Next, regarding the generically nonvanishing eigenvalues, elementary manipulations show that

(−ıAdH +δL(V ))(Πkρ0Π�) = (−ıωk� + δγk�)(Πkρ0Π�).

In other words, (Πkρ0Π�) is an eigenvector of the right-hand side of the quantum master

Equation (3) associated with the eigenvalue −ıωk� + δγk� �= 0. In the Bloch representation,

therefore, the eigenvectors associated with the nonvanishing eigenvalues of A+ δS are

uk �=� = (Tr((Πkρ0Π�)σn))
N2

n=1, 1 ≤ k �= � ≤ N. (23)

The eigenvalues remain the same, as can be seen from the commutativity of the following

diagram:

Herm
−ıAdH +δL(V )−→ Herm

↓ ↓
R

N2 A+δS−→ R
N2

together with the linearity of the Bloch representation ↓. Let us relabel the eigenvectors in

Eq. (23) as {un}N2−N
n=1 . By Lemma 2, this set is orthonormal. Together with the kernel, they

define a unitary matrix

U =
(
u1 · · · uN2−N uN2−N+1 · · · uN2

)
that diagonalizes A + δS for all δ. Again, it is important to observe that U does not depend

on δ. It remains to show that such transformation simultaneously diagonalizes A and S. Setting
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δ = 0 implies that U diagonalizes A. Then note that U also diagonalizes 1
δ+1

A+ δ
1+δ

S. Setting

δ ↑ ∞ implies that U diagonalizes S as well. Therefore A and S have the same eigenvectors

and hence [A, S] = 0.

Remark 3: Lemma 1 in its second form is known, although proved via minimal polynomial

methods [16] rather that via invariant subspaces, as done in the Appendix. The statement of the

lemma in its first form is, however, believed to be novel.

B. Pure Dephasing as Perturbation of Hamiltonian Dynamics

The above formulation allows us to study the performance of a quantum process under pure

dephasing. In this case A is the Bloch matrix for a system subject to Hamiltonian dynamics

and the perturbation S is the Bloch representation of the pure dephasing L(V ) with strength δ.

Recalling [H, V ] = 0, then by Th. 3, A and S are N2 × N2 matrices of rank ≤ N2 − N with

equality in the generic case. More specifically, A and S are simultaneously diagonalizable [5]

by a complex unitary matrix U ,

U †AU = diag(Ω, 0), (24a)

U †SU = diag(Γ, 0), (24b)

where Ω and Γ are diagonal matrices of rank N2−N in the generic case, with purely imaginary

entries ıωk �=� = ı(λk(H)−λ�(H)) for Ω and purely real and negative entries γk �=� = −1
2
(λk(V )−

λ�(V ))2 for Γ (see [5]). This allows us to rewrite Eqs. (10a) and (10b) as

U †ż = U †(A+ δS)z + δU †Swu(t), (25a)

U †ż = U †Az + δU †Swp(t). (25b)

By setting

ζ = U †z, υu = U †wu, υp = U †wp, (26)

we obtain

ζ̇ = diag(Ω + δΓ, 0)ζ + δ diag(Γ, 0)υu, (27a)

ζ̇ = diag(Ω, 0)ζ + δ diag(Γ, 0)υp. (27b)
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Note that, despite the real form of the Bloch equations, ζ and υ are complex, as U † is in general

a complex unitary operator, although we could easily define an equivalent real form. Finally, we

can partition the vectors ζ and υ so that⎛⎝Ω 0

0 0

⎞⎠⎛⎝ζ1

ζ2

⎞⎠ =

⎛⎝Ωζ1

0

⎞⎠ , (28a)

⎛⎝Γ 0

0 0

⎞⎠⎛⎝υ1

υ2

⎞⎠ =

⎛⎝Γυ1

0

⎞⎠ . (28b)

We clearly have ζ̇2 = 0, i.e., ζ2(t) is constant. Therefore the dynamics of the system are

completely determined by ζ1(0) and the reduced model Bloch equation

ζ̇1 = (Ω + δΓ)ζ1 + δΓυu,1, (29a)

ζ̇1 = Ωζ1 + δΓυp,1. (29b)

Generally both Ω and Ω + δΓ are invertible, and taking the Laplace transform yields

ζ̂1(s) = (sI − Ω− δΓ)−1δΓυ̂u,1(s), (30a)

ζ̂1(s) = (sI − Ω)−1δΓυ̂p,1(s). (30b)

Therefore,

ζ̂1 = T u
ζ1,υu,1

(s)υ̂u,1 = T p
ζ1,υp,1

(s)υ̂p,1, (31)

where the transfer function from the input υ̂u,1(s) or υ̂p,1(s) to the state ζ̂1(s) is

T u
ζ1,υu,1

(s) = (sI − Ω− δΓ)−1δΓ, (32a)

T p
ζ1,υp,1

(s) = (sI − Ω)−1δΓ. (32b)

Taking Ω = diag(ıωk,�) and Γ = diag(γk,�) < 0 we obtain

T u
ζ1,υu,1

(ıω, δ) = diag((ıω − ıωk� − δγk�)
−1) diag(δγk�)

= diag

(
δγk�

ıω − ıωk� − δγk�

)
.

Taking the norm to be the largest singular value yields

‖T u
ζ1,υu,1

(ıω, δ)‖∞ = max
ω,(k,�)

∣∣∣∣ δγk�
ı(ω − ωk�)− δγk�

∣∣∣∣ = 1, (33)

where the bound is obtained for ω = ωk,�, i.e., if ω is an eigenfrequency of the system, for all

δ, including the limit δ → 0.
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The problem can also be tackled using the robust performance approach of Sec. III-A culmi-

nating in Th. 2. Setting Φ(s) = sI − Ω, we have

G =

⎛⎝Φ−1(s)Γ Φ−1(s)Γ

I 0

⎞⎠ , Δ = diag(δI,Δf ),

and

det(I +GΔ) = det[I + δΦ−1(s)Γ− δΦ−1(s)ΓΔf ].

If the fictitious feedback Δf is diagonal, it can be shown (although not completely trivially, as

shown in the Appendix) that the optimal Δf yields ‖T u
ζ1,υu,1

‖ = 1/‖Δf‖. With this diagonal

structure, the above determinant vanishes if

1 + δ
γk�

s− ıωk�

− δ
γk�

s− ıωk�

(Δf )k� = 0,

for some k, �. The above can be solved for (Δf )k� as

(Δf )k� =
s− ıωk�

δγk�
+ 1,

which assumes its minimum of 1 for s = ıωk� and ∀δ > 0. Choosing δ ≤ 1 yields min ‖Δ‖ = 1.

Thus, μD(G(s)) = 1, which is consistent with Eq. (33). Note that relaxation of the diagonal

structure of Δf to a fully populated matrix would yield ‖T u
ζ1,υu,1

‖, as is well known, and this

would not change the result.

The calculation for T p
ζ1,υp,1

is similar, but without the γ terms in the denominator, and the

norm diverges when the frequencies are resonant.

C. Hamiltonian Uncertainty and Dephasing as Perturbations

If there is uncertainty in the Hamiltonian in addition to dephasing, the situation becomes more

complex. Here, we model Hamiltonian uncertainty by parameterizing the Hamiltonian. That is,

assume Hε depends continuously on ε ∈ E where E is compact and comprises 0 in its interior

where H0 is the nominal Hamiltonian. To enforce dephasing acting in the eigenbasis of the

Hamiltonian, we must choose a quantum jump operator Vε satisfying [Hε, Vε] = 0 that depends

continuously on ε. If Hε is continuous, under the condition that dim ε ≤ 3, generically, the

eigenvalues of Hε do not cross [10], [11], [17]. Therefore, the eigenvectors {uk(ε)}Nk=1 of Hε

form a continuous orthonormal basis and

Vε = U †
ε diag(λ1(Vε), · · · , λN(Vε))Uε,

August 30, 2020 DRAFT



PREPRINT 18

where

Uε =
(
u1(ε) · · · uN(ε)

)
and the eigenvalues λk(Vε) can be chosen arbitrarily provided they are real, positive and remain

simple as ε varies (that is, the eigenvalues λk(Vε) do not cross under varying ε).

Going to the Bloch representation, we define ωk�(ε) = λk(Hε) − λ�(Hε) and γk�(ε) =

−1
2
(λk(Vε) − λ�(Vε))

2. If Aε and Sε are the Bloch representations of Hε and L(Vε), resp.,

by the proof of Theorem 3, the k �= � eigenvalues −(ıωk�(ε) + δγk�(ε)) of Aε + δSε do not

cross. Therefore, we can simultaneously diagonalize Aε and Sε, hence Aε + δSε for all ε with

the unitary operators Uε. The latter operator happens to be continuous under the no-crossing

hypothesis,

U †
ε (Aε + δSε)Uε = diag(Ωε + δΓε, 0), (34)

where Ωε, Γε display the perturbed eigenfrequencies, dampings, resp., on their diagonals. We

can proceed as before and set

ζε = U †
εzε, υε = U †

εw, (35)

to obtain, in the unperturbed case,

ζ̇ε = U †
ε (Aε + δSε)UεU

†
εz + δU †

εSUεU
†
εwu, (36)

= diag(Ωε + δΓε, 0)ζε + diag(δΓε, 0)υε, (37)

where ζε and υε are complex as U †
ε is a complex unitary operator.

Note that should crossing of eigenvalues occur, we can still proceed with block-diagonalization

invoking Doležal’s theorem [18].

V. GENERAL DISSIPATIVE DYNAMICS

We extend and apply the formalism of Sec. III to the general case of dissipative systems

where [H, V ] �= 0 and where the uncertainty manifests as decoherence and/or in the Hamiltonian.

We therefore slightly generalize the uncertainty structure developed in Sec. II, Eq. (5). As in

Sec. IV-C, the Hamiltonian Hp depends continuously on a parameter p and, in addition to a global

decoherence rate δ, the jump operator Vq will be made dependent on a parameter q to allow

for collective versus independent dissipation. This results in the (A+ δS) Bloch matrix having

generic rank N2−1 because of the constancy of the trace, where the nominal A comprises both

the nominal Hamiltonian and decoherence dynamics, and all uncertainties are relegated to δS .
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The main objective of this section is to address difficulties in setting up robust performance due

to the rank deficiency of the Bloch matrix. Similar difficulties in classical systems are reported

in [3] and circumvented by decoupling the design at low frequency from the design at medium

to high frequency. Here we address such issues exactly at s = 0.

Despite its inconvenience, the rank deficiency of the N2×N2 matrix A+δS can be exploited.

It is customary in physics to define a reduced (N2− 1)× (N2− 1) Bloch matrix A+ δS of full

rank. This leads to an inhomogeneous Bloch equation for the reduced Bloch vector s where the

trace component of r in Eq. (4) has been removed:

d
dt
s(t) = (A+ δS)s(t) + c. (38)

This equation is useful in some regards. If A+ δS is invertible (generic case) then the system

has a unique steady state sss = −(A+ δS)−1c and it can be shown that this state is globally

asymptotically stable [19]. Therefore, the steady state is independent of the initial state and

completely robust to initial state preparation errors. Indeed, a key application of this scheme

is quantum state preparation. However, the scheme is sensitive to uncertainty in both, the

Hamiltonian and the dissipative processes.

A. Noise Transmission

To deal with the singularity at s = 0 we define a “pseudo-inverse” that leads to a matrix

“pseudo-inversion” lemma.

Consider Eq. (11) in the generalized uncertainty structure with no initial state preparation

error. The problem of the singularity of Φ(s) := sI − A at s = 0 raised in Sec. III-A can be

traced back to whether the equation

(Φ(s)− δS)ẑ(s) = δSŵu(s) (39)

is solvable for ẑ(s) when the invertibility of Φ(s)− δS is not guaranteed.

One might wish to utilize existing matrix pseudo-inversion lemmas such as [1], [2]: (A +

δS)‡ = A‡ − A‡δ
(
I + SA‡δ

)‡ SA‡ where (·)‡ is the Moore-Penrose pseudo-inverse. Unfortu-

nately, this lemma in general fails in the present situation, as it requires that A and S are Hermi-

tian, nonnegatively defined and under a condition reminiscent of Col{S} ⊆ Col{A}. However,

we can define a suitable #-inverse by considering the structure of the problem. Specifically, we

have
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Lemma 3: For the Bloch representation A+δS relative to the Pauli or Gell-Mann basis where

σN2 = 1√
N
I , which implies that rN2 = Tr(ρ) ≡ 1, the last rows of A and S vanish. In the case

of dephasing in the Hamiltonian eigenbasis, considered previously, the last column vanishes as

well. In general, the last column involves the decoherence rates.

From the above lemma, it follows that the matrices Φ(0) and S are structured as follows:

−A = Φ(0) =

⎛⎝ Φ11 φ12

0 0

⎞⎠ , S =

⎛⎝ S11 S12

0 0

⎞⎠ . (40)

Hence, under the assumption that Φ11(0) − δS11 is invertible, Eq. (39) has a (nonunique)

solution. Here we retain the minimum norm solution ẑ(s) =
(
ẑ1(s)

T 0T
)T

for the reason that

together with a matrix pseudo-inversion-like lemma it leads to a robust performance result. The

key is to define an operator (·)# such that the minimum norm solution can be expressed as

ẑ(s) = (Φ(0)− δS)#δSû(s)

Definition 2: For a general matrix structured as

M =

⎛⎝ M11 m12

0 0

⎞⎠ ,

where M11 is invertible, the #-inverse is defined as

M# =

⎛⎝ M−1
11 0

0 0

⎞⎠ .

Note that this is not the Moore-Penrose pseudo-inverse.

To summarize, we have

Theorem 4: With matrices Φ(0) and S structured as Eq. (40), under the assumption that

Φ11(0) − δS11 is invertible, the minimum norm solution to Eq. (39) can be written as ẑ(s) =

(Φ(0)− δS)#δSŵ(s).

With this result, we define

Tz,wu(0) = (Φ(0)− δS)#δS.

To get to robust performance, observe that the #-inversion has a matrix #-inversion lemma,

Tz,wu(0) = (Φ(0)− δS)#δS = (I − Φ(0)#δS)−1Φ(0)#δS,
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and compare it with Eq. (13). Following the same path, instead of Eq. (14), we define

Gz,wu(0) =

⎛⎝Φ(0)#S Φ(0)#S
I 0

⎞⎠ .

The robust performance theorem at s = 0 is a straightforward adaptation of Th. 2 and we have

Corollary 4: lims→0 Gz,wu(s) = Gz,wu(0).

In [6], this result was approached heuristically by s ↓ 0.

B. Initial State Preparation Error Response

Finally, considering the initial state preparation error response, the coefficient matrices Φ(0) =

−A and A+δS in Eq. (17) are singular with rank N2−1, δ-generically, as in the previous case.

However, we can again solve Eq. (17) in its enhanced perturbation structure, by remembering

that the last (N2th) row of A and S vanish as a corollary of the constancy of the trace, and

that zN2(0) = 0 as any prepared state must be represented by a density of trace 1. Therefore,

Eq. (17) has the exact solution ẑ(0) = (−A−δS)#z(0), leading to the transfer matrix T u
z,z0

(0) =

(−A− δS)#.

Lemma 4: Under the same assumptions as in Th. 4 and provided I + SA#δ is invertible, as

it generically is, the matrix #-inversion lemma

(A+ δS)# = A# − A#δ
(
I + SA#δ

)−1 SA#

holds.

It follows from the lemma that the uncertainty can be represented as diagonal feedback η = (δI)v

wrapped around ⎛⎝ v

ẑ(s)

⎞⎠ =

⎛⎝SΦ(0)# SΦ(0)#
Φ(0)# Φ(0)#

⎞⎠
︸ ︷︷ ︸

G0
z,z0

⎛⎝ η

z0

⎞⎠ ,

as the substitute for Eq. (19). The chief difference relative to the Gz,wu case is that, contrary to

Corollary 4, there are cases of discontinuity, viz., lims→0 Gz,z0(s) �= G0
z,z0

, as the cavity example

in the next section exposes.
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VI. APPLICATION: TWO QUBITS IN A CAVITY

We apply the approach to a simple quantum system of two two-level atoms in a lossy cavity

designed to maximize entanglement generation between the atoms, or more broadly in the

quantum Internet [20]. The entanglement between the two qubits is measured by the concurrence

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (41)

where ρ is the density operator of the two qubits and the λk’s are the eigenvalues in decreasing

order of
√√

ρρ̃
√
ρ with ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy) [21], where ρ∗ = conj(ρ), and

σx =

⎛⎝0 1

1 0

⎞⎠ , σy =

⎛⎝ 0 ı

−ı 0

⎞⎠ , σz =

⎛⎝−1 0

0 1

⎞⎠ (42)

are the Pauli operators. Observe the slightly unusual way to write them.

The dynamics are described by the Lindblad equation

ρ̇(t) = −ı[Hα,Δ, ρ(t)] + L(Vγ)ρ(t). (43)

Hα,Δ is the Hamiltonian

Hα,Δ =
2∑

n=1

(
α∗
nσ

(n)
+ + αnσ

(n)
− +Δnσ

(n)
+ σ

(n)
−

)
,

where σ+ =

⎛⎝0 0

1 0

⎞⎠ is the raising operator, σ− := σ†
+ is the lowering operator, σ

(1)
± = σ±⊗I2×2,

and σ
(2)
± = I2×2 ⊗ σ±. The super-operator L(V )ρ = V ρV † − 1

2
(V †V ρ + ρV †V ) is a classical

Lindbladian with dissipation Vγ =
∑2

n=1 γnσ
(n)
− . After some calculations, it is found that

Hα,Δ =

⎛⎜⎜⎜⎜⎜⎝
0 α2 α1 0

α∗
2 Δ2 0 α1

α∗
1 0 Δ1 α2

0 α∗
1 α∗

2 Δ1 +Δ2

⎞⎟⎟⎟⎟⎟⎠ , (44)

Vγ =

⎛⎜⎜⎜⎜⎜⎝
0 γ2 γ1 0

0 0 0 γ1

0 0 0 γ2

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (45)
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Note that [Hα,Δ, Vγ] �= 0. For anti-symmetric detuning, Δ1 = −Δ2 = Δ, and symmetric driving,

α1 = α2 = α, γ1 = γ2 = γ and Δ, α and γ real, it is easy to show that

|Ψss〉 = 1√
Δ2 + 2α2

⎛⎜⎜⎜⎜⎜⎝
Δ

α

−α

0

⎞⎟⎟⎟⎟⎟⎠
is a steady state of the system, as Hα,Δ |Ψss〉 = 0 and Vγ |Ψss〉 = 0 and thus ρss = |Ψss〉 〈Ψss|
satisfies ρ̇ss = 0.

Since (as we shall explain below) this steady state is generically globally attractive, any initial

state converges to it, and its concurrence determines the performance. It can be shown that the

concurrence of the steady state is [22]

Css := C(ρss) =
1

1
2
(Δ/α)2 + 1

.

To maximize the concurrence we therefore want Δ/α to be as small as possible. However, in the

limit of no detuning, Δ → 0, the attractivity of the steady state is lost and there are trade-offs

in terms of the speed of convergence and robustness.

To examine the system’s robustness, we consider the nominal system dynamics in the Bloch

formulation,

d
dt
r(t) = Aα,Δ,γr(t), (46)

relative to the Pauli basis {ek⊗e� : k, � = 1, . . . , 4}, where (e1, e2, e3, e4) =
1√
2
(I2×2, σx, σy, σz).

It is tacitly assumed that the components are labeled so that z16 is the error on Tr(ρ) and hence

vanishes.

Aα,Δ,γ is a real 16 × 16 matrix whose last row vanishes but contrary to the case of pure

dephasing, it can be verified by symbolic computation that its last column depends exclusively

on γ and does not vanish for γ > 0. It can further be verified that for α �= 0, γ �= 0 and Δ �= 0

the rank of Aα,Δ,γ is 15; more specifically, the eigenvalues of Aα,Δ,γ have negative real parts

except for one eigenvalue that is always 0 due to the trace constraint for ρ. Generally, we have

stability for all non-zero detunings but for Δ = 0 the rank drops to 14, implying that there is

a one-dimensional subspace of steady states. Aα,Δ,0 corresponds to unitary evolution and hence

the eigenvalues of Aα,Δ,0 are purely imaginary. Furthermore, rank(Aα,Δ,0) = 10, which is a

nongeneric result due to α1 = α2 and Δ1 = −Δ2 (generically, its rank is 12). Thus, in this case,
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(a) Δ = 0 (b) Δ = 0.1 (c) Δ = 1

Fig. 1: Error gain ‖T S
z,wu

(ıω)‖ as a function of frequency for the structured uncertainties in

Eq. (48) and different detunings Δ ∈ {0, 0.1, 1}. Due to the pairwise similarities S1 ∼ S2,

S3 ∼ S4, and S6 ∼ S7, S2,S4, and S6 are not plotted.

(a) Maximum gain ‖T δS
z,wu

(ıω)‖∞ (b) Frequency for which maximum gain ‖T δS
z,wu

(ıω)‖ is

achieved

Fig. 2: The maximum gain for the structured uncertainties in Eq. (48) suggest that for small δ

(δ < 0.1) the system is most sensitive to perturbations of type S1 while for larger δ sensitivity

to S3 dominates.

we can interpret the decoherence A0,0,γ as a stabilizing controller for the plant Aα,Δ,0 and state

feedback w(t) = A0,0,γr(t).
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A. Structured Uncertainties

To assess the robustness, a structured uncertainty δS , not limited to decoherence, is added to

the nominal A resulting in the perturbed dynamics

d
dt
r(t) = (Aα,Δ,γ + δS(α1, α2,Δ1,Δ2; γ1, γ2))r(t), (47)

where S(α1, α2,Δ1,Δ2; γ1, γ2), with αi = 0, 1,Δi = 0,±1; γi = 0, 1 is the structure of the

perturbation of A brought about by Hamiltonian parameters (those �= 0) allowed to drift or

decoherence rates becoming uncertain. Specifically, we define the following structured perturba-

tions:

S1 = S(1, 0, 0, 0; 0, 0), (48a)

S2 = S(0, 1, 0, 0; 0, 0), (48b)

S3 = S(0, 0, 1, 0; 0, 0), (48c)

S4 = S(0, 0, 0,−1; 0, 0), (48d)

S5 = S(0, 0, 0, 0; 1, 1), (48e)

S6 = S(0, 0, 0, 0; 1, 0), (48f)

S7 = S(0, 0, 0, 0; 0, 1). (48g)

Note that S5 is a collective dissipation, while S6, S7 are structured perturbations corresponding to

single qubit spontaneous emission given by the Bloch representations of the dissipation operators

V1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , V2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , resp.

B. Frequency Responses given Uncertainties

The resulting error gains ‖T S
z,wu

(s)‖, as functions of frequency s = ıω, for the seven per-

turbations are shown in Fig. 1 for nominal plant and controller parameters of α1 = α2 = 1,

γ1 = γ2 = 1 and Δ1(= Δ) = −Δ2 ∈ {0, 0.1, 1}. Due to symmetry, the effects of S1 and

S2 are the same, and similarly for S3 and S4, and S6 and S7, respectively. Hence, it suffices

to consider four perturbations. Observe that except for S5 the bound (33) is violated here as
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we are dealing with general dissipation, not the dephasing in the Hamiltonian basis. Our low-

frequency focus arises due to the fact that in many quantum systems, 1/f noise commonly arises

in similar systems, e.g. laser flicker noise in atomic clock systems [23] and magnetic flux noise

in superconducting qubits [24].

For δ = 0, the gain plot ‖Φ−1(s)‖ versus frequency in Fig. 1 shows that the norm is maximal

for s = 0 but this is not the case in general. For Δ = 0.1 the gain is maximal at s = 0, except

for S5, but for Δ = 1 the maximum over s = ıω of ‖T S
z,wu

(s)‖ is not assumed for s = 0. Fig. 2

also confirms this. The maximum of ‖T S
z,wu

(ıω)‖ depends on the perturbation Sk and strength

δ and is not always assumed at ω = 0. The plot suggests that the system is more sensitive

to perturbations S3 in the detuning. Note that other work suggests that robust solutions can be

found outside of the regime where Δ1 = −Δ2 [21], but such investigations are outside of the

scope of this work.

C. Noise Transmission

Another way to assess robustness against parameter variation is to assign a bound on the error

transmission ‖Tzw(s)‖∞ ≤ μ, and find out for what δ the error remains below the bound μ.

This is essentially what the structured singular value does, as summarized in Th. 2.

Lemma 5: For the cavity example, if γ1 �= 0 and γ2 �= 0, the submatrices Φ11 and S11 of Φ(0)

and S , resp., of Eq. (40) are invertible.

Therefore the results of Sec. V-A apply.

Fig. 3a shows simulation results for the structured uncertainties S1,S3,S5,S7 as a function of

frequency on a frequency scale comparable with Fig. 1. Overall, μD behaves well, except for

S1, a fact consistent across this study. Simulation results for the structured singular values as

s decreases to 0 along the real axis are shown in Fig. 3b. Except for the lower bound on S1

they show continuity of μD(Tz,wu(s)) and the discrepancy between the upper and lower bounds

is very mild (not visible on a log-scale), except for S1. The asymmetry of the perturbation of

the driving fields for S1 is often detrimental to entanglement generation, which may explain its

notably different behavior. While this argument is strengthened by the fact that replacing S1 by a

symmetric perturbation of the coupling strengths, (1, 1, 0, 0; 0, 0), makes the behavior disappear,

we do not have a full explanation for it.

It is observed that the minimum structured “destabilizing” perturbation Δ need not be unique

for the reason that Gz,wu(0) is singular. We argue that this does not cause problems. That
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(a) Frequency sweep (b) �(s) sweep

Fig. 3: Bounds on the μD of the error transmission Tzwu for the structured uncertainties in

Eq. (48) under frequency sweep s = ıω (a, upper bounds only) and for s ↓ 0 along the real axis

(b). Upper and lower bounds in (b) coincide for S3, S5, and S7 but diverge for S1. S1 displays

similarly aberrant behavior under frequency sweep (a).

Gz,wu(0) is singular is easily seen from Eq. (40). More specifically, Gz,wu(0) has one vanishing

row and one vanishing column. This causes the solution to det(I + Gz,wu(0)Δ) = 0 to have

a completely arbitrary row and a completely arbitrary column. Part of this nonuniqueness is

removed by restricting the solutions to be of minimum norm, but even if the minimum norm

solution is not unique, its size ‖Δ‖ is uniquely defined.

D. Initial State Preparation Error Response

At s = 0, the 16× 16 matrices Aα,Δ,γ and Aα,Δ,γ + δSk of Eq. (17), evaluated at (α,Δ; γ) =

(1, 1, 0.1,−0.1; 1, 1), are singular with rank 15. δ-generically Sk has rank 15 for Sk �= S5 and

rank 14 for Sk = S5. The nongeneric δ-values are computed as generalized eigenvalues of A+δS
viewed as a pencil of matrices and are given in Table II.

To solve Eq. (17) for the cavity under uncertainty Sk, remember that the last (16th) rows of

both A and Sk vanish as a corollary of the constancy of the trace and that z16(0) = 0 provided

the prepared state is a genuine density of trace 1. Therefore, Eq. (17) has the exact solution

ẑ(0) = (−A− δSk)
#z(0), leading to the transfer matrix T u

z,z0
(0) = (−A− δSk)

#. In this case,

the matrix #-inversion lemma (A + δSk)
# = A# − A#δ

(
I + SkA

#δ
)# SkA

# holds and the
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TABLE II: Real, finite generalized eigenvalues of A+ δSk.

coefficient matrix real, finite generalized eigenvalues

A+ δS1 none

A+ δS2 none

A+ δS3 −2, −2

A+ δS4 −2, −2

A+ δS5 nine-fold 0, ±1.0989

A+ δS6 0.0057, 0.6346, 1.0462, 2.6465

A+ δS7 0.0057, 0.6346, 1.0462, 2.6465

uncertainty can be represented as a diagonal feedback η = (δI)v via⎛⎝ v

ẑ(s)

⎞⎠ =

⎛⎝SkΦ(0)
# SkΦ(0)

#

Φ#(0) Φ#(0)

⎞⎠
︸ ︷︷ ︸

G0
z,z0

⎛⎝ η

z0

⎞⎠ ,

as the substitute for Eq. (19). The chief difference relative to the Gz,wu case is that, contrary to

Corollary 4, lims→0 Gz,z0(s) �= G0
z,z0

. In fact, Gz,z0(s) diverges as s → 0, causing μD(Gz,z0(s))

to diverge as s ↓ 0, as shown by Fig 4.

E. Concurrence versus Log-Sensitivity

If we measure the performance of the control scheme by the concurrence Css of the steady-

state, as shown by Fig. 5, there is concordance between Css and its log-sensitivity, i.e. they both

decrease with increasing detuning. This is contrary to the classical conflict between the sensitivity

function S and its log-sensitivity, the complementary sensitivity T , for which S + T = 1 holds.

The concordance between the log-sensitivity of Css and maxn{�λn(A)} could also be interpreted

as anticlassical because these are two figures of merit that both improve without conflict as the

detuning increases. However, the concordance between Css and maxn{�λn(A)} is classical since

it means the higher the performance the lower the stability margin.

VII. CONCLUSION

We have developed a general robust performance formalism for controlled quantum processes,

adapted to coherent and decoherent quantum systems subject to a variety of structured uncertain-

ties. Besides some uncertain parameters that can be treated classically, quantum systems introduce
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Fig. 4: Upper bounds on μD of initial state error transmission Tz,z0(s) for the structured

uncertainties in Eq. (48) for s decreasing to 0 along the real axis.

uncertainties such as initial state preparation error and decoherence. Another typical feature

described by Liouville-like equations is a singularity at s = 0 of the open-loop dynamics, due to

constancy of the trace. While this poses a challenge for structured singular value analysis, our

novel formalism is able to deal with the density operator error response to structured uncertainties,

including initial state preparation error.

Proceeding from the general Lindblad equation gives this overall formalism wide physical

applicability—to be more specific, XX and Heisenberg chains, quantum spintronic systems,

tight-binding models, and cold atoms in optical lattices, to name but a few.

Moreover, we considered the concurrence as the feedback performance in the same way as

classical control defines a generalized error as performance. By its very definition, the classical

error is linear in the state and the salient difference brought about by the concurrence is that it

is nonlinear in the state (and that it has to be maximized rather than minimized). Here, we have

August 30, 2020 DRAFT



PREPRINT 30

Fig. 5: Maximum real part of eigenvalues of A+S, concurrence of steady-state and log sensitivity

of steady-state concurrence as a function of detuning for α = γ = 1. Observe that all three

figures of merit are concordant, that is, they all decrease with increasing detuning. Interpreting

Css as performance and maxn �λn(A) as stability margin, note their anticlassical, nonconflicting

behavior.

limited ourselves to add some structured perturbation to the density evolution and observe the

resulting variation of concurrence. However, putting a bound on the concurrence and assessing

how much structured perturbation would be tolerated before the concurrence bound is reached

would be a nonlinear version of the robust performance problem, which we believe is widely

open.

APPENDIX

Proof of Lemma 1. Let PVλi
= λiVλi

and QWμj
= μjWμj

define the eigenvalues λi, μj and

orthonormalized eigenbases Vλi
,Wμj

of P and Q, resp. From PQ = QP simple linear algebra
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leads to

QVλi
⊆ {Vλi

}, PWμj
⊆ {Wμj

}, (49)

where {Vλi
}, {Wμj

} denote the subspaces spanned by the (orthonormal) columns of Vλi
and

Wμj
, resp.

It follows from Eq. (49), right equation, that Wμj
is an invariant subspace of P and therefore

it must be made up of eigensubspaces of P . To express Wμj
in terms of such eigensubspaces of

P , choose a set I(j) of i-indexes such that {Wμj
} ⊆ ⊕i∈I(j){VλI(j)

}. In each {VλI(j)
}, choose a

basis V̄λI(j)
such that

{Wμj
} = ⊕i∈I(j){V̄λI(j)

}. (50)

Case #1. Assume both bases �jWμj
and �iVλi

are given. In the preceding,

�iVλi
=

(
Vλ1 Vλ2 · · ·

)
(51)

is shorthand denoting the various basis elements arranged columnwise in matrix format. To refine

the subspace equality to an equality between bases, choose a rotation Rμj
such that

Wμj
=

(
�i∈I(j)V̄λI(j)

)
Rμj

. (52)

Substituting Wμj
by its value given by Eq. (52) in the eigenvalue/eigenvector equations yields

P (�iVλi
) = (�iVλi

) diag{λi},

Q
(
�j

(
�i∈I(j)V̄λi

Rμj

))
=

(
�j

(
�i∈I(j)V̄λi

Rμj

))
diag{μj}.

Upon relabeling the first equation, we get

P
(
�j �i∈I(j) V̄λi

)
=

(
�j ⊕i∈I(j) Vλi

)
diag{ΛI(j)},

Q
(
�j

(
�i∈I(j)V̄λi

Rμj

))
=

(
�j

(
�i∈I(j)V̄λi

Rμj

))
diag{μj}.

Equating the two orthogonal transformation matrices yields

P
(
�j ⊕i∈I(j) V̄λi

)
=

(
�j �i∈I(j) Vλi

)
diag{ΛI(j)},

Q
(
�j

(⊕i∈I(j)V̄λi

))
=

(
�j

(
�i∈I(j)V̄λi

))
diag{μjR

†
μj
}.

In other words, the transformation �j ⊕i∈I(j) V̄λi
simultaneously block diagonalizes P and Q.

Case #2. If we utilize the freedom in choosing the basis Vλi
, Eq. (52) is simplified to

Wμj
= �i∈I(j)V̄λI(j)

.
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The rotations are no longer needed and P and Q are simultaneously diagonalizable. �
Proof of Corollary 2. Consider Hp∗ = argminHp∈V d(Hp, H0), defining a projection π :

H(N) → V orthogonal to the stratum of V that contains H0. Assume, for the moment, that Hp∗

is a differentiable point of V. Let σV be an orthonormal basis of the tangent space of V at Hp∗ .

Complete this basis to an orthonormal basis {eV,σ1,σ2,σ3} of H(N). Then the coordinates

of (HP ∗ − H0) relative to {σ1,σ2,σ3} are the three parameters necessary to reach multiple

eigenvalues. We show that such a situation is generic in V. Since Hp∗ is differentiable in V,

there exists a neighborhood NHp∗ where this V-genericity remains valid. Since π is continuous,

π−1(NHp∗ ) is a neighborhood of H0 where the differentiability of the projection holds; hence

V-genericity. If Hp∗ is a singular point, it belongs to a manifold Mn1,n2,...,nN̄
of the algebraic

variety V. Construct a basis σM of the tangent space, and complete it to a basis of H(N), viz.,

σM,σ1, . . . ,σ(
∑N̄

k=1 n
2
k)−N̄

. Clearly,
(∑N̄

k=1 n
2
k

)
− N̄ ≥ 3 parameters are needed, with equality

only if a unique k∗ nk∗ = 1 while for all other nk = 1 (see [11, p. 162] for the details regarding

that last inequality). �
Proof of Corollary 3. Setting μj = 0 in Eq. (50), {Wμj=0} becomes the kernel of Q and

ker(Q) = ⊕i∈I(j){V̄λI(j)
}. Therefore, the ker(Q) is made up of some invariant subspaces of P

and if one such invariant subspace has corresponding eigenvalue �= 0, the two kernels are not

coincidental. �
Note regarding end of Sec. IV-B. We prove that a diagonal Δf captures ‖T u

ζ1,υu,1
‖. Superscript

and subscripts are dropped for ease of notation. Consider

1/min
Δii

{‖ diag{Δii}‖ : det(I + diag{Tii} diag{Δii} = 0}. (53)

Assume minΔii
is achieved for Δ̂ii and that ‖ diag{Δ̂ii}‖ is achieved for |Δ̂oo|. It is claimed

that 1 + TooΔ̂oo = 0. Assume by contradiction that 1 + TjjΔ̂jj = 0 for j �= o. Then

det(I + diag{Tii} diag{Δ̂jj . . . Δ̂jj}) = 0

while

‖ diag{Δ̂jj . . . Δ̂jj}‖ = |Δ̂jj| < |Δ̂oo|,

which is a contradiction to the optimization in Eq. (53); hence, 1 + TooΔ̂oo = 0. Moreover,

1 + TiiΔ̂ii = 0, ∀i �= o. Hence, Δ̂oo is the minimum destabilizing perturbation and further

Eq. (53) equals |Too| = ‖ diag{Tii}‖. �
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