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Abstract—Installing Phasor Measurement Units (PMUs) in the
smart grid has played an important role in having more reliable
and secure grid. Due to the high sampling rate (50 samples/s),
PMU generates massive amount of data compared to the con-
ventional SCADA system. Understanding the mathematical and
statistical characteristics of the PMU data is a very crucial step to
perform accurate modeling and estimation of the power system
variables (Voltage (V ), frequency (f ), and phase angle (θ)). In
this paper, we show the non-stationarity of the PMU data by
applying Augmented Dickey-Fuller and Kwiatkowski-Phillips-
Schmidt-Shin tests on a large data set from the EPFL campus
grid. Then, we study the fractality of the PMU data by estimating
the differencing parameter (d) in the Autoregressive Fractionally
Integrated Moving Average (ARFIMA) model. Our results call
for adoption of ARFIMA models to model the PMU data in the
smart grid.

I. INTRODUCTION

Toward more reliable and secure power grid, the smart grid
concept has been introduced to revolutionize and overcome
several challenges and drawbacks in the conventional grid. The
smart grid plays an important role in integrating the renewable
energy resources and accommodating the increasing number
of electric vehicles. Additionally, the installation of advanced
control and wide-area monitoring systems as part of the smart
grid development is essential for more reliable and resilient
grid. Wide-area monitoring can be achieved via advanced
sensing devices, such as Phasor Measurement Units (PMUs),
installed at critical locations in the transmission system of the
grid. Recently, new high precision PMUs, known as micro-
PMUs (µPMUs) have been installed in the distribution system
[1].

The first prototype of PMU was introduced by researchers
at Virginia Tech in the early 1980s [2]. The PMU is a de-
vice that produces synchronized measurements of magnitude,
phase angle, and frequency of voltage and current signals
[3]. The synchronization is achieved using common time
source provided by Global Positioning System (GPS). The
PMUs have higher sampling rate of 30 − 50 samples per
second compared to the conventional Supervisory Control
And Data Acquisition (SCADA) system. The high sampling
rate enhances the visibility of the fast dynamic events in the
power grid. Moreover, the synchronized PMU data with high
precision provide more accurate real-time monitoring of the
smart grid.
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The rapid increase in number of installed PMUs has pro-
duced massive amount of data measurements from all over the
grid. These data have been exploited extensively to improve
the power system operation and control by developing new
algorithms and techniques in state estimation [4][5], event
detection [6][7], model validation [8][9], and anomaly detec-
tion [10]. Furthermore, statistical analysis of PMU data has
been used in stability and forecasting studies. The authors
of [11] show the existence of self-organized criticality in
blackout data. In [12], the authors show that the autocorrelation
and variance of frequency increase as the system approach
instability. The authors of [10] provide evidence of increasing
Hurst exponent of the frequency as the Indian grid approaching
the 2012 blackout.

In [13], we have shown that the PMU data (Voltage magni-
tude, frequency, and phase angle) possesses long-range mem-
ory using Detrended Fluctuation Analysis (DFA). ARFIMA
modeling of the power loads was suggested in [14], consis-
tently with the multi-fractality of such signals. Understanding
the statistical characteristics of PMU data is of great impor-
tance due to several applications in power system studies.

In this paper, we study the fractality of PMU data by
calculating the fractality parameters: scaling exponent (α),
power exponent (β), and differencing parameter (d). Then,
we show that Autoregressive Fractionally Integrated Moving
Average (ARFIMA) model is the best model describing the
short and long memories in PMU data based on the two
information criteria: Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC).

The paper is organized as follows: In Sec.II, we study the
stationarity of PMU data. Sec.III shows the fractality of PMU
data by calculating the differencing parameter of PMU data.
We determine the best ARFIMA model to fit the PMU data
in Sec. IV. Sec.V is the conclusion.

II. STATISTICAL CHARACTERISTICS OF PMU DATA

We first provide a description of the PMU data and the
power grid from which that data was collected. Then, we
investigate the stationarity of the data using unit root tests.

A. Overview of PMU Data

Typical phasor measurement units provide measurements
for the following variables in the power system: voltage (V ),
current (I), frequency (f ), active power (P ), and reactive
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Fig. 1. PMU data collected from the EPFL campus grid in 2014: (a) Voltage magnitude time series (b) Frequency time series
(c) Phase angle time series

power (Q). The measured voltages and currents are repre-
sented using the phasor format which consist of magnitude and
phase angle. In this paper, we use data collected from EPFL
campus grid as part of their real-time state estimation project
[15]. The rated voltage magnitude (line-line) and frequency
of the EPFL campus grid are 20 kV and 50 Hz, respectively.
Several PMUs were installed throughout the campus grid to
collect the data at sampling rate of 50 samples/s. We focus
our analysis on a large data set of voltage magnitude (V ),
frequency (f ), and phase angle (θ). The data set consists of
120,000 time series (1000 samples each) of the three variables
collected from the campus grid in January, April, June, and
December 2014 [16]. In Fig. 1, we show three 1000-sample
time series of voltage magnitude (red), frequency (blue), and
phase angle (green).

B. Stationarity

We study the stationarity of the PMU data using unit
root tests. They can classify the time series as stationary or
not based on the existence of unit root in the time series.
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) are two of the most popular unit root
tests, so we use them to check the stationarity of PMU data
(V , f , θ).

1) Augmented Dickey-Fuller (ADF) Test: The ADF test can
classify the time series as stationary or not using hypothesis
testing. The null hypothesis (H0) is that the time series is non-
stationary and unit root exists. The alternative hypothesis (H1)
is that the time series is stationary.

We conduct the ADF test on 120,000 time series of PMU
data (V, f, and θ), each time series contains 1000 samples
(20 seconds). Using the command ”adf.test” in R software,
we calculated the p−value for each time series to determine
its stationarity. The percentages of time series with p−values
above 0.01 (accept the null hypothesis (H0)) and time series
with p−values below or equal to 0.01 (reject the null hypoth-
esis (H0)) are shown in Table I.

The first column (p−value> 0.01) under the ADF test in
Table I shows that we can not reject the null hypothesis for

most of time series. Not rejecting the null hypothesis in the
ADF test indicates existence of unit root and non-stationarity
of time series. Most of the voltage and frequency time series
shows non-stationarity with percentages 88.16% and 96.86%,
respectively. However, the phase angle time series show non-
stationarity approximately for half the total number of time
series.

2) Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: It is
another statistical test to study the stationarity of time series
based on the unit root test. It is different than the ADF test in
the sense that the null hypothesis (H0) is the absence of the
unit root and the alternative hypothesis (H1) is the presence
of unit root.

Similarly, we applied the KPSS test to 120,000 time se-
ries of PMU data. We used the command ”KPSS.test” in
R software to determine the stationarity by calculating the
p−values. The percentages of time series with p−values above
0.01 (accept the null hypothesis (H0)) and time series with
p−values below or equal to 0.01 (reject the null hypothesis
(H0)) are shown in Table I.

The second column (p−value≤ 0.01) under the KPSS test
shows that most of PMU data are non-stationary. The percent-
age of non-stationary phase angle time series is the smallest
(78.63%) and the percentage of non-stationary frequency is
the highest (99.70%).The KPSS test provides a solid evidence
for existence of unit root and non-stationarity of PMU data
(V , f , and θ).

TABLE I. Percentages of stationary (2nd and 3rd columns) and
non-stationary (1st and 4th columns) time series.

ADF KPSS

p > 0.01 p ≤ 0.01 p > 0.01 p ≤ 0.01

Voltage 88.16% 11.84% 05.48% 94.52%

Frequency 96.86% 03.14% 00.30% 99.70%

Angle 45.88% 54.12% 21.37% 78.63%
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Fig. 2. Autocorrelation functions of PMU data: (a) Voltage magnitude (b) Frequency (c) Phase angle

III. FRACTALITY OF PMU DATA

Fractal time series have the unique characteristics of ex-
hibiting a slow (non-exponential) decay of the autocorrela-
tion function (ACF), heavy-tailed probability density function
(PDF), and power density function in the form 1/fβ . The
slow decay of the autocorrelation function indicates a long-
range memory (dependence) in the time series represented
by persistent correlation between the time series samples as
the lag increases. Fractality has been observed in wind speed,
brain signals, stocks market.

We investigate the fractality of PMU data by calculating
their autocorrelation functions (ACFs). The autocorrelation
functions of the voltage magnitude (red), frequency (blue), and
phase angle (green) are shown in Figs. 2 (a)-(c), respectively.
The autocorrelation functions show a slow hyperbolic decay
compared to exponentially decaying random time series. The
slow decay of the autocorrelation function could be a sign of
the existence of long-range memory in the PMU data.

Fig. 3. Fractality Parameters

We quantify the fractality and long-range dependence in
PMU data using fractality parameters, as shown in Fig. 3.
These parameters are: Scaling exponent (α), Differencing
parameter (d), and Power exponent (β). The relationships
among these parameters for non-stationary time series are
shown in Eq. (1):

d = α− 0.5 = β/2. (1)

In the bulk of this section, we estimate the three parameters
of the PMU data using three methods: (1) Detrended Fluctu-

ation Analysis (DFA), (2) Geweke and Porter-Hudak (GPH)
method, and (3) Power Spectral Density (PSD) method.

A. Detrended Fluctuation Analysis (DFA)

DFA is a robust method to estimate the scaling exponent
(α) for non-stationary time series. The method has been
first introduced to study the long-range dependence of DNA
nucleotides in 1994 [17]. One of the main advantages of DFA
method is dealing with the non-stationarity in the data using
detrending. The DFA has been used extensively to estimate
the scaling exponent in several research areas. Based on the
value of the scaling exponent, we can determine the statistical
characteristics (stationarity and correlation) of the time series.

We applied the DFA method on the PMU data (V , f ,
and θ) to calculate the scaling exponent as shown in Table
II. The results show that the voltage magnitude, frequency,
and phase angle time series have average scaling exponents
1.18, 1.58, and 1.00, respectively. The results show that most
of the time series are non-stationary (α ≥ 1) with scaling
exponents between 1 and 1.58. Moreover, the data have long-
range dependence (α 6= 0.5) that is not following the power
law. To model the PMU data, it would be important to estimate
the differencing parameter (d) using Eq. (1). The distributions
of the differencing parameter using DFA are shown in the first
columns in Figs. 4 (a)-(c).

TABLE II. The means and standard deviations (in parentheses)
of the scaling exponents (α) of voltage, frequency, and phase
angle.

V oltage Frequency Angle

Scaling exponent (α) 1.18 (0.18) 1.58 (0.21) 1.00 (0.27)

B. Geweke and Porter-Hudak (GPH) Method

GPH is a method to estimate the differencing parameter (d)
of time series independently of DFA. It estimates the differenc-
ing parameter using linear regression of the log periodogram.
The linear regression is performed in the low frequencies, so



Fig. 4. Boxplots of differencing parameters of PMU data using DFA, GPH, and PSD: (a) Voltage Magnitude (b) Frequency
(c) Phase Angle

these methods are suitable to estimate the differencing parame-
ter in non-stationary time series. We calculate the differencing
parameter of PMU data using the command ’fdGPH’ from
the package ’fracdiff’ in R software. The results are shown
in Table III. The differencing parameters of the PMU data
have means between 0.5 and 1.0. Similarly, that indicates the
non-stationarity (d > 0.5) and long-range memory (d > 0) of
the PMU data. The distributions of the differencing parameters
using GPH method are shown in the second columns in Figs. 4
(a)-(c) .

TABLE III. The means and standard deviations (in parenthe-
ses) of the differencing parameters (d) of voltage, frequency,
and phase angle.

V oltage Frequency Angle

Diff. parameter (d) 0.86 (0.17) 1.00 (0.14) 0.63 (0.26)

C. Power Spectral Density (PSD) Method

The PSD method [18] estimates the power exponent of non-
stationary time series after some modifications to improve the
accuracy of the PSD estimation. These modifications include
detrending the data using bridge detrending and estimating the
power exponent after excluding the high frequency component
of the PSD. Using the R code in [19], we estimate the power
exponent of PMU data as shown in Table IV. The power
exponents have mean values between pink noise (β = 1.00)
and brown noise (β = 2). It is clear from the power exponent
values that the signals are not random (β = 0) and possesses
a long-range memory. We further calculated the differencing
parameters of the PMU data from the PSD method using
Eq. (1). The distributions of the differencing parameter using
the PSD are shown in the third column in Fig. 4 (a)-(c).

IV. ARFIMA MODELS OF PMU DATA

ARFIMA is a stochastic model introduced by Granger
and Joyeux in 1980 [20]. This model is a generalization
of the ARIMA model (d is integer) developed by Box and

TABLE IV. The means and standard deviations (in parenthe-
ses) of the power exponents (β) of voltage, frequency, and
phase angle.

V oltage Frequency Angle

Power exponent (β) 1.70 (0.33) 1.83 (0.29) 1.36 (0.40)

Jenkins [21] in the sense that the differencing parameter (d)
could have a fractional (non-integer) values. The fractional
ARIMA (ARFIMA) models were able to embody the long-
range memory in the data by applying the fractional differenc-
ing. In case of nonlinearity, it appears that ARFIMA modeling
can be enhanced with machine learning; however, here the
degree of nonlinearity does not seem to require that machine
learning enhancement. We adopt the ARFIMA models to
capture the long-range memory in the PMU data (V ,f , and
θ).

A. ARFIMA Model

Since most of the PMU data is non-stationary, we need to
differentiate the PMU data to remove the non-stationarity as in
the ARIMA models. In Sec. III, we have shown the existence
of long-range memory in the PMU data by calculating the
three fractality parameters (α, d, and β). Moreover, we can
calculate the differencing parameter (d) from the scaling
exponent (α) and power exponent (β) using Eq. (1).

Let Xt be a zero-mean time series with long-range memory.
The ARFIMA(p, d, q) model of Xt is defined in Eq. (2):

(
1−

p∑
i=1

ΦiB
i

)
(1−B)dXt =

(
1 +

q∑
i=1

ΘiB
i

)
εt (2)

B is the delay operator, d is the differencing parameter,
and the term (1−B)d is the difference operator ∇d. The Φis
are the Auto Regressive (AR) parameters and the Θis are the
Moving Average (MA) parameters. (1 −

∑p
i=1 ΦiB

i) is the
autoregressive polynomial of order p and (1 +

∑q
i=1 ΘiB

i) is



the moving average polynomial of order q. The uncorrelated,
zero-mean residual is represented by εt.

The ARFIMA model becomes ARMA model when d = 0
and ARIMA models when d is integer. A time series with
long-range memory has differencing parameter (d) between 0
and 0.5 if it is stationary and differencing parameter between
0.5 and 1 if it is non-stationary. The ARMA and ARIMA
models can capture the short-range dependence only; however,
the ARFIMA models with fractional d can capture both the
short-range and long-range dependence. As expanded upon in
this paper, the difficulty is to compute the d parameter. Once
the latter is computed, the ARFIMA reduces to the classical
Box-Jenkins ARMA modeling of (1−B)

d
Xt.

B. Model Estimation

The estimation of the ARFIMA model parameters is sum-
marized in three steps. The first step is estimating the dif-
ferencing parameter (d). Then, we fit the time series to
ARFIMA(p, d, q) models using several combinations of au-
toregressive and moving average polynomials with different
orders. We cover all the combinations of p and q between 0
and 2, like (0, d, 0), (1, d, 0), (0, d, 1), ...(2, d, 2). Finally, we
use the two information criteria (AIC and BIC) to compare
the different models and choose the best fit.

We exploit the three steps mentioned above to find the best
ARFIMA models that fit the PMU data. We have chosen three
1000-sample time series of voltage, frequency, and phase angle
collected from the EPFL campus grid in 2014. We perform
steps 1 and 2 using the command ‘arfima’ from the ‘arfima’
package in R software. To calculate the values of the AIC
and BIC information criteria in step 3, we use the commands
‘AIC’ and ‘BIC’ from the package ‘stats’ in R software.

A comparison between the different ARFIMA models of
the voltage time series is shown in Table V. The results show
that the best ARIFMA model to fit the voltage time series
based on AIC and BIC values is ARFIMA(0, d, 1). The model
(0, d, 1) has the lowest AIC and BIC values between the other
models with values of −946.9 and −927.3, respectively. The
parameters of the best fit of the voltage time series are Θ1 =
−0.63 and d = 0.89.

In Table VI, we find the ARFIMA models of the frequency
time series and their AIC and BIC values. The best fit of the
frequnecy time series is ARFIMA(1, d, 2) with AIC and BIC
values of −13645.5 and −13616, respectively. The parameters
of the model (1, d, 2) are Φ1 = −0.92, Θ1 = −0.18, Θ2 =
0.61, and d = 0.94.

The ARFIMA models of the phase angle time series are
shown in Table VII. The ARFIMA model (1, d, 1) is the best
fit of phase angle time series based on AIC value of −29543
and BIC value of −29518.5. The parameters of the best model
to fit the phase angle time series are Φ1 = −0.18, Θ1 = 0.18,
and d = 0.83.

V. CONCLUSION

The starting point of this paper has been evidence of
non-stationarity in PMU data using unit root tests. We then

followed up with the DFA that capitalizes on non-stationarity
to compute the fractality parameters (α), showing existence of
long-range memory in the PMU data. This is further confirmed
by calculating the other fractality parameters (differencing
parameter d, and power exponent β), showing consistency
among different methods. Since most of the PMU data is non-
stationary, we need to differentiate the PMU data to remove
the non-stationarity, resulting in the ARFIMA model of the
PMU data. The next challenge is to formulate some “first
principles” that could justify such model.
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TABLE V. Values of the two information criteria (AIC and BIC) for multiple ARFIMA models of voltage time series from
EPFL campus grid.

Model AR parameters (Φ1,Φ2) MA parameters (Θ1,Θ2) Differencing parameter (d) AIC BIC

(0, d, 0) (0.00, 0.00) (0.00, 0.00) 1.23 − 739.8 − 725.0

(1, d, 0) (0.48, 0.00) (0.00, 0.00) 0.85 − 832.2 − 812.6

(0, d,1) (0.00,0.00) (−0.63,0.00) 0.89 − 946.9 − 927.3

(1, d, 1) (0.03, 0.00) (−0.62, 0.00) 0.87 − 945.1 − 920.5

(2, d, 0) (0.41,−0.31) (0.00, 0.00) 1.07 − 915.9 − 891.3

(0, d, 2) (0.00, 0.00) (−0.65,−0.02) 0.87 − 945.1 − 920.6

(2, d, 1) (0.04,−0.06) (−0.57, 0.00) 0.91 − 944.0 − 914.6

(1, d, 2) (−0.88, 0.00) (−1.54,−0.59) 0.88 − 946.0 − 916.5

(2, d, 2) (−0.73,−0.07) (−1.35,−0.50) 0.90 − 944.3 − 909.9

TABLE VI. Values of the two information criteria (AIC and BIC) for multiple ARFIMA models of frequency time series from
EPFL campus grid.

Model AR parameters (Φ1,Φ2) MA parameters (Θ1,Θ2) Differencing parameter (d) AIC BIC

(0, d, 0) (0.00, 0.00) (0.00, 0.00) 0.47 −13512.0 −13497.3

(1, d, 0) (−0.36, 0.00) (0.00, 0.00) 0.62 −13607.7 −13588.1

(0, d, 1) (0.00, 0.00) (0.61, 0.00) 0.84 −13633.0 −13613.4

(1, d, 1) (−0.08, 0.00) (0.62, 0.00) 0.88 −13634.6 −13610.1

(2, d, 0) (−0.51,−0.18) (0.00, 0.00) 0.70 −13628.0 −13603.5

(0, d, 2) (0.00, 0.00) (0.65,−0.05) 0.83 −13634.1 −13609.6

(2, d, 1) (−0.04, 0.06) (0.72, 0.00) 0.94 −13633.7 −13604.3

(1, d,2) (−0.92,0.00) (−0.18,0.61) 0.94 −13645.5 −13616.0

(2, d, 2) (−0.89, 0.02) (−0.16, 0.60) 0.93 −13643.7 −13609.4

TABLE VII. Values of the two information criteria (AIC and BIC) for multiple ARFIMA models of phase angle time series
from EPFL campus grid.

Mode AR parameters (Φ1,Φ2) MA parameters (Θ1,Θ2) Differencing parameter (d) AIC BIC

(0, d, 0) (0.00, 0.00) (0.00, 0.00) 0.17 −29399.1 −29384.3

(1, d, 0) (−0.18, 0.00) (0.00, 0.00) 0.83 −29418.7 −29399.1

(0, d, 1) (0.00, 0.00) (0.18, 0.00) 0.83 −29420.8 −29401.2

(1, d,1) (−0.18,0.00) (0.18,0.00) 0.83 −29543.0 −29518.5

(2, d, 0) (−0.18, 0.02) (0.00, 0.00) 0.83 −29414.1 −29389.6

(0, d, 2) (0.00, 0.00) (0.18,−0.02) 0.83 −29418.5 −29394.0

(2, d, 1) (−0.18, 0.02) (0.18, 0.00) 0.83 −29537.4 −29507.9

(1, d, 2) (−0.18, 0.00) (0.18,−0.02) 0.83 −29538.6 −29509.1

(2, d, 2) (−0.18, 0.02) (0.18,−0.02) 0.83 −29532.5 −29498.2
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