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Abstract—Analyzing the voltage stability of the smart grid
requires accurate mathematical models of the load. Several
static and dynamic load models were proposed, but most of
them did not incorporate the frequency component. In order to
build more accurate dynamic load models in the power system,
we must examine the mathematical characteristics (short range
versus long range dependence) of the power system variables.
Toward this end, we demonstrate that the voltage magnitude,
frequency, and voltage phase angle of Phasor Measurement Unit
data exhibits long-range dependence. Our findings call for the
development of a fractal modeling approach of the smart grid.

I. INTRODUCTION

The smart grid term was firstly introduced in 2005 [?] and
the objective was to make the grid stronger, smarter and more
secure. Simply speaking, the aim is to design a power grid that
it can cope with all new developments of renewable energy
plants and to sustain future energy demand such as the increase
of deployed plug-in hybrid electric vehicle (PHEV).

Aiming to design a smart grid that is efficient, reliable,
resilient, stable, and secure requires both a fundamental un-
derstanding of its dynamics and an accurate mathematical
modeling. For instance, in order to have a stable power grid,
the system should be able to regain the state of operating
equilibrium after being subjected to a disturbance with most
of the system variables remaining bounded [?]. The system
stability can be classified into: voltage, frequency, and rotor
angle stabilities. One fundamental challenge for ensuring
voltage stability of the power grid is represented by the voltage
collapse phenomenon in which the voltage drops to a low level
due to a system disturbance [?].

The voltage collapse phenomenon has been studied exten-
sively in the 80’s and 90’s. It was argued that the voltage
collapse is either static or dynamic in nature; several re-
searchers studied the voltage collapse from both aspects. In
the static case, the voltage collapse was studied by looking
at the feasibility of the load flow [?], the minimum singular
value of the Jacobian matrix [?], and static bifurcations of the
load flow equations [?]. The static approach describes the load
using the active and reactive powers, as shown in Eq. (1):

P (V ) + jQ(V ) = kp(V )np + jkq(V )nq (1)

where, kp and kq are the nominal active and reactive powers
respectively. Voltage collapse was studied dynamically by
investigating the interaction between the generator and the load
[?] and the interaction between the load and the On-Load Tap

Changer (OLTC) [?]. The popular dynamic load model was
introduced by Hill [?] by representing the active power as a
first-order nonlinear differential equation, as shown in Eq. (2):

TpṖd + Pd = Ps(VL) + kp(VL)V̇L (2)

The dynamic model represents the load recovery with time
constant (Tp) after a step change in the load voltage. The
system frequency in this model is assumed to be constant.

Even though many studies of the voltage collapse assumed
no change in the system frequency during the voltage drop,
there is still some debate on the need to investigate the
dynamics of the frequency during this phenomenon. In [?],
the author shows how the frequency dynamics can play a role
in the voltage collapse, and explains how constant frequency
assumption is not completely justifiable in case of a large
time constant of the voltage. More recently, the research
community and the government energy agency [?] advocate
for the necessity of a better dynamic load modeling that can
explain and describe the voltage and frequency variations over
multiple time scales (short and long).

Starting from these premises and aiming to build a more
accurate dynamic load model, in this paper, we perform
an in-depth statistical analysis of the power grid processes
and identify a few fundamental mathematical characteristics
that are essential for understanding the voltage collapse phe-
nomenon. Using real power system data, we demonstrate
the existence of fractal and non-stationary behavior in the
power grid that justifies the need for capturing the frequency
dependence as well as hints towards constructing long-range
memory (dependence) models of the power grid dynamics.
The remaining of the paper is organized as follows: Sec. II
summarizes the prior work and our novel contribution. Sec.
III describes the source of data used in our statistical analysis.
Sec. IV demonstrates that voltage magnitude (V ), frequency
(f ), and phase angle (θ) processes in the power grid exhibit
long range memory (correlations). Sec.V concludes the paper
and points out some future directions.

II. PRIOR WORK AND NOVEL CONTRIBUTION

The self-organized criticality has been discussed in the
context of blackout size in power system [?],[?]. In [?], a long-
range dependence in the electricity prices has been measured.
In the literature, the long-range dependence has not been
applied to power system times series (voltage magnitude (V ),
frequency (f ), and voltage phase angle (θ)). There are several
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methods to study the long-range dependence in time series.
For stationary time series, we can use methods like, R/S,
Variance, Absolute Moments, and Whittle.These methods do
not give accurate results in case of non-stationary time series.
However, Detrended Fluctuation Analysis (DFA) is a powerful
and robust method to examine the long-range dependence in
non-stationary time series. Our main contributions are:
• We first investigate the statistical properties of the real

power system data (voltage magnitude (V ), frequency (f ),
and phase angle (θ)) measured by several PMUs in Texas
synchrophasor network.

• Based on the observed non-stationarity, we employ the DFA
method to calculate the scaling exponent α of time series
(voltage magnitude (V ), frequency (f ), and phase angle (θ))
at different locations in the synchrophasor network. The
scaling exponents indicate the type of mathematical models
that should be constructed to describe the power system
dynamics.

III. STATISTICAL PROPERTIES OF THE POWER SYSTEM

We will first describe the power system data we use in our
analysis and then summarize our statistical analysis of several
Phasor Measurement Units (PMUs) time series at various
locations.

A. Description of the power system measurements

We use real data from the power system obtained through
several PMUs installed in the Texas synchrophasor network.
Texas synchrophasor network has several PMUs distributed
over several locations. The measured data of our interest are
voltage magnitude (in p.u.), frequency (in Hz), and voltage
phase angle (in degrees). These data are available online [?]
for three PMUs at three locations: Baylor University, Harris
Substation, and McDonald Observatory. There are four data
sets of measurements at each location with one hour duration
and at sampling rate of 30 samples/s. The data sets have been
recorded on 5/25/2015 (6:00-7:00 PM and 10:00-11:00 PM),
05/27/15 (12:00-1:00 PM), and 05/30/15 (9:00-10:00 AM).

The plots of the voltage magnitude (V ), frequency (f ), and
phase angle (θ) of data set 1 at Baylor university are shown in
Figs. 1(a), 1(b), and 1(c) . We unwrapped the measurements of
the phase angle, as shown in Fig. 1(d). The voltage magnitude
(V ) in Fig. 1(a) varies between 0.9632 and 0.9955 p.u., and the
frequency (f ) varies between 59.89 and 60.04 Hz, as shown in
Fig. 1(b). There are noticeable events around the 40th minute
of the voltage magnitude (V ) plot and around 3rd minute
in the frequency (f ) plot. Due to the low sampling rate (30
samples/s) of the measured data, the frequency components
of the data will be limited to 15 Hz and will not be useful to
detect any high-frequency events.

B. Statistical analysis of PMU measurements

Examining the stationarity of the PMU measurements is
very important for choosing the most appropriate mathematical
modeling framework. For instance, working under the assump-
tion that the processes are stationary and trying to construct

compact mathematical models (with few parameters) can lead
to misguiding conclusions (e.g., applying a stationary method
for quantifying long-range memory to a non-stationary time
series can lead to misleading exponents). Consequently, in
what follows, we investigate the stationarity of the voltage
magnitude (V ), frequency (f ), and phase angle (θ) by estimat-
ing their empirical cumulative distribution functions (CDFs)
over moving time intervals.

A process is called second-order stationary if its mean and
variance are constant over time, and the auto-covariance of
the data does not depend on time. Moreover, the stationarity
in the strict sense means the joint statistical distribution of
any subset of the time series does not depend on time. To
investigate the stationarity of the PMU data, we divide each
data set into four intervals each with 900 seconds length and
estimate their corresponding empirical CDFs for each data
set. Identical empirical CDFs indicate that the processes are
stationary; otherwise, they are non-stationary.

The empirical CDFs of the voltage magnitude (V ) in data
set 3 are shown in Fig. 1(e). The empirical CDFs of the voltage
magnitude (V ) are not identical and empirical CDF of the first
interval (black) is intersecting the empirical CDF of the second
interval (blue). Also, the empirical CDFs of the frequency
(f ), shown in Fig. 1(f), are not identical and the empirical
CDF of the first interval (black) is crossing the empirical
CDFs of the three other intervals (blue, green, and red). The
empirical CDFs of the phase angle (θ) and unwrapped phase
angle, shown in Figs. 1(g) and 1(h), are crossing each other
several times. So, the voltage magnitude (V ), frequency (f ),
and phase angle (θ) in data set 3 are non-stationary. The non-
stationarity has been confirmed for all the locations in the
Texas synchrophasor network.

IV. EXISTENCE OF LONG-RANGE DEPENDENCE

In this section, we first explain the DFA method, and then,
study the long-range dependence in the time series of the
voltage magnitude, frequency, and voltage phase angle.

A. Detrended Fluctuation Analysis (DFA)

The measured data of the voltage magnitude (V ), frequency
(f ), and phase angle (θ) in the power system are non-
stationary, therefore we will not be able to use methods like,
Variance, Absolute Moments, and R/S to confirm the long-
dependency in the data. That is because these methods were
derived based on the assumption that the data are stationary.
The DFA method was introduced in [?] to study the mosaic or-
ganization of DNA nucleotides. This method has been proven
as a robust method to show existence of long-dependency in
time series.

This method has been applied successfully in several non-
stationary data like, heartbeat fluctuation [?], daily temperature
[?], and wind speed [?]. For a data set y with N data points,
the DFA analysis can be summarized in four steps:



Fig. 1: (a) The voltage magnitude at Baylor University on 05/27/15 (12:00-1:00 PM) (b) The frequency at Baylor University on
05/27/15 (12:00-1:00 PM) (c) The voltage phase angle at Baylor University on 05/27/15 (12:00-1:00 PM) (d) The unwrapped
phase angle (e) The empirical CDFs of the voltage magnitude at four intervals (900 seconds each) (f) The empirical CDFs of
the frequency at four intervals (900 seconds each) (g) The empirical CDFs of the phase angle at four intervals (900 seconds
each) (h) The empirical CDFs of the unwrapped phase angle at four intervals (900 seconds each)

1) Subtract the data set average yavg from each data point
y(i) and integrate the data set using Eq. (3),

yint(k) =

k∑
i=1

(y(i)− yavg) (3)

2) Divide the integrated data set into equal-sized boxes n
and find the linear least square line yn inside each box.
Then, subtract the least square linear fitting yn(k) from
the integrated data yint(k) to generate the detrended data
yd, as shown in Eq. (4),

yd(k) = yint(k)− yn(k) (4)

3) Find the root mean square (rms) fluctuation of the de-
trended data yd using Eq. (5),

F (n) =

√√√√ 1

N

N∑
k=1

(yd(k))2 (5)

4) The second and third steps are repeated at different box
sizes n , and we find the least square line of the log-log
plot of F (n) versus n.

The slope of the least square linear fitting is called the scaling
exponent α. A linear relationship between log10(F (n)) and
log10(n) means F (n) ∝ nα. Based on the value of α, the

long-range dependence in the data can be determined. A
scaling exponent α between 0 and 0.5 means that the data
are anti-correlated. The measured data is random if α is equal
to 0.5. For α between 0.5 and 1, a long-range power-law
dependence exists in the data. Finally, α > 1 indicates long-
range dependence, but not in the power-law form. If the log-
log plot of F (n) versus n has one linear trend, then the data
is called mono-fractal. Some data sets exhibit a change in
the slope of the least square line at a transition point. This
phenomenon is called crossover and the data are considered
to possess multi-fractal characteristics.

B. Analysis of the power system data using DFA

As part of the DFA analysis, we have to find the root mean
square (rms) of fluctuation at different box sizes n. We choose
the box size (n) to change from 100 data points to 10,000 data
points with logarithmic step size equal to 10

1
10 . A logarithmic

spacing is preferred because choosing a linear spacing will
make the weight of the log-log plot higher by moving from
100 to 10,000. The range of the log 10(n) is from 2 to 4
with 0.1 step size. We applied the DFA method on four data
sets of voltage magnitude (V ), frequency (f ), and phase angle
(θ) at three different locations. So, our idea is to run the DFA
analysis on data sets that are distant in time and space to make
sure that results are robust and comparable.



Fig. 2: Log-log plots of the rms fluctuation function F (n) versus the box size n of V , f , and θ of different data sets: (a) Data
set 1 at Baylor University (b) Data set 2 at Baylor University (c) Data set 3 at Baylor University (d) Data set 4 at Baylor
University (e) Data set 1 at Harris Substation (f) Data set 2 at Harris Substation (g) Data set 3 at Harris Substation (h) Data
set 4 at Harris Substation

1) DFA analysis of the voltage magnitude: The DFA
analysis of the voltage magnitude (V ) at the three different
locations are shown in Table. I. The scaling exponents of
the four data sets at Baylor location are between 0.91 and
1.11. These values are close to the scaling exponent of the
white noise (1/f ) which has scaling exponent equal to 1.
At Harris location, the scaling exponents are in the range
of [0.81, 0.92] and they are also not far from the scaling
exponent 1 (white noise). The McDonald location has scaling
exponents between 1.30 and 1.37 which are clearly higher than
the other two locations. The McDonald PMU was installed in
the Texas synchrophasor network particularly at the McDonald
Observatory because it is among several wind power plants in
that part of the network [?]. Our explanation of the higher
scaling exponents at this location could be related to the
voltage fluctuation associated with the connected wind power
plants in the area [?]. Figs. 2 (a-h) show the rms fluctuation
function of the voltage magnitude (V ) at Baylor and Harris
using red-color data points. Finally, since the scaling exponent
at three locations varies between 0.81 and 1.37, long-range
dependence does exist in the voltage magnitude (V ).

2) DFA analysis of the frequency: The scaling exponents
of the frequency (f ) of the four data sets at each location are
shown in Table. I. The three locations (Baylor, Harris, and
McDonald) have similar scaling exponents between 1.45 and
1.54. All the data sets of the frequency (f ) exhibit long-range
dependence, but not in a power-low form. The frequency (f )

Data Baylor Harris McDonald
Set V f θ V f θ V f θ

#1 1.11 1.54 0.71 0.92 1.54 0.75 1.32 1.54 0.74
#2 1.11 1.53 0.66 0.81 1.53 0.63 1.30 1.53 0.64
#3 1.05 1.45 0.67 0.91 1.45 0.76 1.37 1.45 0.73
#4 0.91 1.49 0.63 0.89 1.49 0.64 1.32 1.49 0.64

TABLE I: Scaling exponents of voltage magnitude, frequency,
and phase angle for four data sets at three locations: Baylor
University, Harris Substation, and McDonald Observatory

has scaling exponents similar to Brownian noise which has 1.5
scaling exponent. The plots of the rms fluctuation function of
the frequency (f ) are shown in blue color in Figs. 2 (a-h) for
Baylor and Harris locations.

3) DFA analysis of the phase angle: The scaling
exponents of the phase angle (θ) data are shown in Table. I.
The scaling exponents of the phase angle (θ) varies between
0.63 and 0.76. Since the scaling exponents of the phase angle
(θ) are between 0.5 and 1, that means the phase angle (θ) data
have long-range power-law dependence. Figs. 2 (a-h) show the
rms fluctuation function of the phase angle (θ) in green color.

C. DFA analysis of the surrogate power system data

To show the robustness of our result, we generated a
randomly shuffled version of the PMU data (surrogate data),
which has an identical CDF compared to the original data.



Fig. 3: Log-log plots of the rms fluctuation function F (n) versus the box size n of original and surrogate data at: (a) Baylor
University (b) Harris Substation (c) McDonald Observatory

Then, we run the DFA analysis on both the original and
surrogate data to identify any change in the correlation. If
we observe a decrease in the scaling exponent α, the fractal
behavior is due to the temporal structure of the measured
data. This temporal structure plays a fundamental rule in
constructing an accurate mathematical model. We generated
log-log plots of the rms fluctuation function F (n) versus
n for the original and surrogate on three data sets at three
different locations, as shown in Fig. 3. The results show that
the scaling exponents of voltage magnitude (V ), frequency
(f ), and phase angle (θ) have changed to around 0.5 after the
random shuffling of the data. Of note, time series characterized
by 0.5 scaling exponent can be modeled through first order dif-
ferential equations. However, the observed temporal structure
characterized by scaling exponent higher than 0.5 implies that
the dynamics of the system variables should be characterized
through fractional order differential equations.

V. CONCLUSION

In this work, we performed a compressive statistical analysis
of the PMU measurements, which demonstrates the existence
of mono-fractality and non-stationarity as two main math-
ematical characteristics. These findings have recently been
corroborated by European PMU data analysis; furthermore,
the same analysis on India voltage collapse data seems to
indicate that monitoring the PMU fractal dimension is able to
anticipate imminent voltage collapse. The next challenge is to
develop models able to reproduce the long range dependency
of frequency, voltage and phase angle PMU data. Fractional
dynamics models would reproduce such long range depen-
dency. It is believed that the fractional powers of the frequency
in the Berg model, properly re-interpreted in the time domain,
would produce such models, as it has already been able to
anticipate hitherto unknown voltage collapse scenarios [?].
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[11] A. Király and I. M. Jánosi. Detrended fluctuation analysis of daily tem-
perature records: Geographic dependence over australia. Meteorology
and Atmospheric Physics, 88:119–128, April 2005.

[12] P. Kundur et al. Definition and classification of power system stability.
IEEE Transactions on Power Systems, 19(3):1287–1401, August 2004.

[13] H. G. Kwatny, A. K. Pasrija, and L.Y. Bahar. Static bifurcations
in electric power networks: Loss of steady-state stability and voltage
collapse. IEEE Transactions on Circuits and Systems, CAS-33(10):981–
991, October 1986.

[14] National Renewable Energy Laboratory (NREL). Algorithm for screen-
ing phasor measurement unit data for power system events and cat-
egories and common characteristics for events seen in phasor mea-
surement unit relative phase-angle differences and frequency signals.
Accessed November 2015.

[15] C.-K. Peng et al. Mosaic organization of dna nucleotides. Phys Rev E,
49(2), 1994.

[16] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantifi-
cation of scaling exponents and crossover phenomena in nonstationary
heartbeat time series. Chaos, 5, 1995.
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