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Abstract—We propose a new scheduling and routing approach,
the Heat Diffusion (HD) protocol, using combinatorial analogue
of the heat equation in mathematical physics. The algorithm
holds for systems subject to time-varying network conditions with
general packet arrivals and random topology states, including
ad-hoc networks with mobility. Compared to the well-known
backpressure policy, the HD protocol is generalized in form and
optimized in performance, which considers link penalties and
node capacities in the routing. It mitigates the packet looping
behavior of backpressure and attempts to communicate less over
links of higher costs and with the nodes of lower capacities. While
HD policy shows benefits over backpressure, it is developed using
the same underlying control laws. Therefore, it can easily leverage
all the theoretical works that have been done in improving
the original backpressure. For the same reason, it provides
a relatively easy path-way to modify existing applications of
backpressure to the optimized versions using HD protocol.

I. INTRODUCTION

Backpressure is a well-known algorithm for resource allo-
cation and data routing in wireless networks, which achieves
maximum throughput in the presence of time-varying network
conditions and without precisely knowing arrival rates. It as-
signs a weight to each link, equal to the maximum differential
backlog between transmitting and receiving nodes, and then
chooses link rates to maximize the sum of the products of
link rates and link weights. The algorithm, first called max-
weight, was originally proposed in [1] for routing traffic over
a multi-hop packet radio network with random packet arrivals
and fixed set of link selection options. Then the idea was
extended to ad-hoc mobile networks and was also combined
with optimization techniques [2]–[6].

In this paper, inspired by the heat diffusion process on
smooth manifolds, we introduce a new paradigm for the
problem of resource allocation and packet routing in multi-
hop wireless networks, referred to as Heat-Diffusion (HD)
protocol. We develop the HD protocol along the same line
as backpressure, as the differential queue length plays a main
role in the routing decision, and as we use a multiple stage
strategy to implement the algorithm. Our approach differs from
backpressure, as each stage of the algorithm is formulated
according to a metaphorical referral to the heat equation. The
ubiquitousness of heat equation in mathematics and physics
not only gives us a deeper insight into the resource allocation
and routing problem, but also provides us with a high flexi-
bility to derive an optimal solution for a very general class of
routing networks. However, for the heat equation to be more

than a metaphor, we need to bring it from smooth geometry
in which the heat lives to a purely combinatorial domain in
which the data network runs. To this end, we utilize the theory
of combinatorial calculus, which works with a cell complex as
a countable discrete domain, and preserves such fundamental
differential and integral operators as the Laplacian that convey
most of the physics of the process.

Before proceeding, it is valuable to have a heuristic com-
parison between HD protocol and the original backpressure.
Recall that the backpressure routing is anecdotally described
by the flow of water through a network of pipes under pressure
gradients. Certainly, the flow of packets in a data network is
restricted by the capacity of each link, and hence the model is
more relevant if pipes are replaced with buckets. Then we can
imagine a barrel of packets at each node, where the packets
may move from barrel i to barrel j if there is a communication
link from node i to node j, and for transferring packets, each
link uses a bucket whose capacity is equal to the link capacity.
Having this analogy, the original backpressure is based on two
assumptions: (i) all barrels are of the same storage capacity,
and (ii) all buckets require the same amount of work to transfer
the same number of packets. Technically, the first assumption
implies that all nodes have equal capacity, which may reflect
power, processing, and storage capability, while the second
assumption means that all links are of equal cost, which may
reflect power consumption, channel quality, and distance.

In contrast to the backpressure, the HD protocol considers
a variety of node capacities and link penalties on the network.
In this sense, the backpressure policy becomes a special case
of the HD protocol, while the latter also provides a better
performance under the influence of its ancestor, the heat
diffusion process. In particular, the HD protocol inherits from
the heat equation the property of jointly optimizing queue
backlogs versus capacity of each node, and routing cost versus
communication expense of each link. Furthermore, it is proved
that the HD protocol achieves maximum throughput of the
network in the sense that it guarantees stability of the queue
buffers under any arrival rate such that there exists a stabilizing
routing policy for it. We also notice that the notions of node
capacity and link cost may reflect different constraints from the
network. An example is a wireless sensor network in which
communications happen over lossy channels and nodes are
subject to different memory restrictions. Obviously, the former
can be modeled by link costs and the latter by node capacities.



Closing this introduction, in Sec. II we describe the dy-
namics and definitions of a standard wireless packet net-
work. Section III develops a pure combinatorial model of
heat diffusion on a directed and undirected graph, which
provides a solid theoretical background for the HD policy. We
introduce the HD algorithm in Sec. IV, where its designing
lines are compared with those from the backpressure policy.
Performance analysis and stability properties of the new policy
are discussed in Sec. V. The paper is concluded by Sec. VI.

II. SYSTEM MODELING AND DEFINITIONS

A routing network is described as a connected graph with N
stationary nodes and L directed edges. The network operates
in timeslots of the same length, denoted by n. A packet
is an atomic entity that must transmit from its source to
its destination, which are two distinct nodes in the routing
network. All packets are of equal size, and each packet leaves
the network layer as soon as reaching its destination. Each
node installs separate internal queues for packets with different
destinations. A packet destined to node d is called a d-packet.
At each timeslot, a network layer routing policy decides either
to transmit a packet to a neighboring node along one of the
outgoing edges, or to keep it in the queue at its current node.

We endow each routing edge (i, j) with two independent
parameters: (i) a link capacity µij(n), also known as link
transmission rate, and (ii) a link cost ρij(n). Furthermore,
we endow each routing node i with a node capacity Ci(n).
We assume that these parameters are fixed within a times-
lot n, while they may potentially change across the slots.
Specifically, link parameters can change randomly based on
the channel conditions and network topology states, and node
capacities can be updated according to the node power and
processing constraints.

Let Q(d)
i (n) represent the number of d-packets queued at the

network layer of node i at the beginning of timeslot n, where
Q

(i)
i (n) = 0 for all n. Notice that the queue contains both

random exogenous packet arrivals from the transport layer at
node i and endogenous packets forwarded through the network
layer. Let stochastic process A(d)

i (n) represent the exogenous
traffic generated at node i in timeslot n, where A(i)

i (n) = 0 for
all n. We assume no congestion control at the transport layer,
so that all incoming traffic arrives directly to the network layer.
Let f (d)ij (n) denote the actual number of d-packets transmitted
via link (i, j) at timeslot n, constrained as∑

d
f
(d)
ij (n) ≤ µij(n).

Assume that routing decision happens at the beginning of each
timeslot and packets are transferred to the network layer at the
end of each timeslot. Then the dynamics of the queue length
process for d-packets at node i is described as

Q
(d)
i (n+ 1) = Q

(d)
i (n)−D(d)

i (n) + E
(d)
i (n) (1)

D
(d)
i (n) =

∑
b∈out(i)

f
(d)
ib (n) (2)

E
(d)
i (n) = A

(d)
i (n) +

∑
a∈in(i)

f
(d)
ai (n) (3)

where D(d)
i (n) and E(d)

i (n) represent the total number of d-
packets departed from and arrived at node i, respectively, in
the timeslot n, and out(i) and in(i) denote the sets of outgoing
and incoming neighbors of node i, respectively.

Definition 1 (Network Stability): A queue Q(d)
i (n) is sta-

ble, if lim supn→∞E{Q
(d)
i (n)} <∞. A network is stable if

all its queues are stable.
Contrary to wireline networks where links are independent

resources, in the wireless case two links cannot be simultane-
ously activated if they have inter-link interference. A schedule
is defined as a set of links in which no two links interfere with
each other, and is called maximal if no more links can be added
to that without violating the interference constraints. Let each
maximal schedule S be represented as a {0, 1}N×N matrix,
referred to as scheduling matrix, such that the entry associated
with link (i, j) is set to 1 if the link is included in the maximal
schedule, and to 0 otherwise. We define scheduling set S as
a collection of all possible maximal schedules in the network,
which may be described by a finite (but arbitrarily large)
set. Note that this generalizes one-hop interference (primary
interference), two-hop interference (secondary interference),
or generally k-hop interference models popularly used in
literature [7]–[10].

Assume that the arrival processes are mutually independent
with long-term average expected values as

λ
(d)
i = limτ→∞ 1/τ

∑τ−1

n=0
E{A(d)

i (n)}

and then construct the overall traffic rate matrix λ = [λ
(d)
i ] for

i, d=1, . . . , N . We further assume that there is a deterministic
upper bound on the total exogenous arrivals to each node,
i.e.,

∑N
d=1A

(d)
i (n) ≤ Amax

i for all n. At each timeslot n, a
routing policy selects a scheduling matrix S(n) ∈ S, where
S(i, j)(n) = 1 indicates that the link (i, j) is activated and
may transmit at most µij(n) packets from node i to node j. A
routing policy stabilizes a traffic rate matrix λ, if it stabilizes
the network under λ, in the sense of Definition 1.

Definition 2 (Network Capacity): Given a routing policy,
its stability region is the set of all traffic rate matrices that can
be stabilized by it. Network capacity region Λ is the union of
the stability regions achieved by all possible routing policies,
including those of perfect precognition about random events.

Definition 3 (Throughput Maximizing Policy): A routing
policy is throughput-maximal, if it stabilizes all admissible
traffic rate matrices λ ∈ Λ.

Given a wireless network with time varying topology and
inter-link interference, for a traffic rate matrix λ to be ad-
missible, a necessary and sufficient condition is to have a
hyper-flow that jointly satisfies flow conservation for all nodes,
and rate constraints for all links, in a long-term average sense
[11]. Let f (d)ij denote the long-term average expected number
of d-packets transmitted through link (i, j), which takes the
value 0 for either i = j or i = d. Let scheduling set be
S = {S1, . . . ,S|S|}. Hyper-flow feasibility conditions in
long-term average are described by

λ
(d)
i =

∑
b∈out(i)

f
(d)
ib −

∑
a∈in(i)

f
(d)
ai (4)



∑N

i=1
λ
(d)
i =

∑
a∈in(d)

f
(d)
ad (5)∑N

d=1
f
(d)
ij ≤

∑|S|

k=1
αkSk(i, j)µij (6)

where µij = limτ→∞ 1/τ
∑τ−1
n=0 µij(n), and

∑|S|
k=1 αk = 1,

αk ≥ 0. For long-term average expected rates of d-packets,
(4) and (5) refer to flow conservation at intermediate nodes
i 6= d and destination nodes d, respectively.

Remark 1: Note that the resulting long-term averages of
link hyper-flows are not fixed, but depend on the resource
allocation and routing policy that determines which scheduling
matrix is picked up at each timeslot. In this sense, the convex
factor αk represents the long-term average fraction of timeslots
at which scheduling matrix Sk is chosen. Also note that the
constraints (4)–(6) imply that the network capacity region Λ
is convex, closed, and bounded. Furthermore, if λ ∈ Λ then
λ′ ∈ Λ for any traffic rate λ′ 4 λ.

III. COMBINATORIAL HEAT EQUATION

In combinatorial calculus, one works with a cell complex as
a countably discrete domain. In contrast to space discretiza-
tion, where the main goal is to find an accurate triangulation
of a space as the computational grid, here we deal with a
discrete domain, e.g., a graph, entirely as its own entity with
no reference to an underlying continuous process. In other
words, while the numerical partial differential equation puts
emphasis on the fidelity of the discrete approximation to the
desired analytical solution, combinatorial calculus establishes
a separate, equivalent framework that operates on a pure dis-
crete domain, of which a graph is a special case. Consequently,
the concerns of numerical discretization about approaching a
continuous solution in the limit are irrelevant in the context
of combinatorial calculus. Due to the space limitation, here
we use the related terminology and results from combinato-
rial calculus without precisely introducing them. For detailed
explanations, we refer interested readers to [12]–[15].

To derive the exact combinatorial version of heat equation,
we begin with the law of mass conservation, which requires
that the amount of heat in any region must either leave through
the boundary or have an external source at any time t,

∂

∂t

∫∫∫
X

QdV = −
∫∫
∂X

〈F, n〉dA+

∫∫∫
X

ΛdV

where Q(x, y, z, t) is a scalar field representing the spatial dis-
tribution of heat on a smooth manifold X , charted in (x, y, z)
local coordinates; F (x, y, z, t) is the flux of heat through the
boundary ∂X ; scalar field Λ(x, y, z, t) represent heat sources,
where a positive value indicates a source and a negative value
a sink; n and dA denote outward unit normal vector field
and surface element on the boundary, respectively; and dV
is the volume element on the manifold. A change in internal
energy per unit volume, ∇Q, is proportional to the change
in temperature, ∇U , through spatial heat capacity C(x, y, z),
i.e., ∇Q = C∇U . Choosing zero energy at absolute zero
temperature, this is rewritten as

Q(x, y, z, t) = C(x, y, z)U(x, y, z, t) (7)

Since X is arbitrary, considering (7), the mass conservation
equation is equivalent to

C
∂U

∂t
= −divF + Λ (8)

By Fick’s law of diffusion, the amount of flux is proportional
to the temperature gradient,

F = −σ∇U (9)

where σ(x, y, z) represents spatial thermal diffusivity, which
is proportional to thermal conductivity. Equation (9) states that
at each point, the amount of heat flux is proportional to the
temperature gradient. Putting (8) and (9) together yields

C
∂U

∂t
= σ∇2U + Λ (10)

where ∇2 denotes Laplace-Beltrami operator.
We now construct the combinatorial version of (7)–(10) on

an undirected graph as a 1-complex, where manifold X is
replaced by a 0-chain vector η0; variables Q, U , and Λ are
replaced by 0-cochain vectors Q, U , and λ, respectively, that
act as node functions on the graph; and flux F is replaced by a
1-cochain vector f that acts as an edge function on the graph.
Furthermore, the effects of nonuniform heat flux due to σ and
inhomogeneous heat capacity due to C are reflected as an edge
weight matrix σ and a node weight matrix C on the graph,
respectively. Thus the exact combinatorial version of the heat
equations on an undirected, weighted graph is obtained as

d(η>0 Q)

dt
= −(Bη0)>f + η>0 λ (11)

Q = diag(C)U (12)

f = diag(σ)B>U (13)

diag(C)
dU

dt
= −Bdiag(σ)B>U + λ (14)

where diag(v) denotes the diagonal matrix expansion of
vector v. Given a graph, matrix B represents node-edge
incidence matrix, in which B(i, `) is 1 if node i is the sending
node of oriented edge `, is −1 if i is the receiving node, and is
0 otherwise. Here, the term “orientation” refers to an arbitrary
choice of edge orientation in a cell complex, which should not
be confused with the edge direction in a directed network.

Remark 2: In the field of combinatorial calculus, the ma-
trix ∆0

w = [diag(C)]−1Bdiag(σ)B> is known as weighted
0-Laplace-deRham operator, which is a generalization of the
standard graph Laplacian BB> for an undirected graph.

We now consider how the diffusion changes when the
underlying graph is directed. With no loss of generality, let
the edge orientation match the edge direction. Assuming a
directed graph, the conservation of mass in (11) is unchanged,
but Fick’s law (13) is modified to permit the flow in only one
direction, that is,

f = max
{

0, diag(σ)B>U
}
. (15)

Therefore, diffusion on a directed graph is governed by

diag(C)
dU

dt
= −Bdiag(σ)B>diag(1(B>U�0))U + λ



where 1(v�0) is an indicator vector function, in which the
ith entry is 1 if vi > 0, and 0 otherwise. One may tempt to
consider matrix [diag(C)]−1Bdiag(σ)B>diag(1B>U�0) as
the Laplacian operator for a directed weighted graph, though
it is an operand-dependent operator.

IV. HEAT DIFFUSION ALGORITHM

This section introduces the main result of this paper, i.e.,
a throughput-maximal scheduling and forwarding mechanism
for a generalized routing network with the vectors of link
costs and node capacities as presented in Sec. II, using the
combinatorial heat equation derived in Sec. III. As the spirit
of our design resembles the backpressure algorithm, we first
provide the details of backpressure policy as follows.

Definition 4 (Backpressure Policy): At a timeslot n, for
each link (i, j), define Q

(d)
ij (n) = Q

(d)
i (n) − Q

(d)
j (n)

and do the following three stages (ties broken arbitrarily):
Weighting: find the link optimal d-packet to be served as
d∗ij(n) = arg maxdQ

(d)
ij (n) and the link optimal weight as

w∗ij(n) = µij(n)Q
(d∗)
ij (n). Scheduling: choose a scheduling

matrix S(n) ∈ arg maxS∈S
∑

(i,j) S(i, j)w∗ij(n). Forward-
ing: serve the queue holding packets destined to node d∗ij(n)
over the activated link (i, j) at maximum rate µij(n). If there
are not enough d∗-packets to send, transmit null packets.

The same way as backpressure policy, we design the HD
algorithm in three stages, albeit to formulate each stage we
inspire ourselves from the combinatorial heat equations of
Sec. III. In doing so, we associate with the flow of each d-
packet a corresponding flow of heat on the network, for which
node d is the single sink. In this analogy, the number of d-
packets at each node plays the role of heat quantity in the
combinatorial heat equations, where d-temperature at node i
is defined by U (d)

i = Q
(d)
i /Ci. At each timeslot, the algorithm

computes the weight attributed to each link in accordance with
a metaphorical view on the heat equation, which directly in-
fluences the stages of weighting and scheduling. Furthermore,
in the forwarding stage, the number of transferring packets
along each link is subject to homogenizing temperature over
the network as far as possible, by the same token that the heat
diffuses through a manifold.

To assign a weight to each link, let us look at the trait
of heat diffusion on a single link during one timeslot as
an adiabatic process. For ease of notation, we assume that
there is only one destination node of infinite capacity in the
network. Consider link (i, j) at timeslot n with differential
queue backlog Qij(n) = Qi(n)−Qj(n). For a while, assume
that there is no limit on capacity with links. This is required,
because combinatorial heat equation is not concerned with link
capacities, where we will relax this assumption very soon. Let
t denote the continuous-time within timeslot n of length T .
From (15), by σij = 1/ρij , one obtains

f̃ij(t) = max

{
0,

1

ρij

(
1 −1

)( Ũi(t)
Ũj(t)

)}
, t ∈ [0, T )

with initial conditions Ũi(0) = Ui(n) and Ũj(0) = Uj(n).

Here a tilde on the top signifies that we are working in
continuous-time.

Neglecting time constant of the process compared with the
length of timeslot, T , we get limt→T f̃ij(t) = 0. This is well-
justified in the sense that by a link capacity equal to µij , one
can transmit µij packets in a duration of time equal to the
link propagation delay, which is practically negligible. By the
law of mass conservation, Q̃i(0) + Q̃j(0) = Q̃i(T ) + Q̃j(T ),
where Q̃i(T ) = limt→T Q̃i(t). Furthermore, since the process
is thermally adiabatic and so insulated, if Ũi(0) > Ũj(0), then
Ũi(T ) = Ũj(T ). Otherwise, no diffusion happens and neither
Ũi nor Ũj is changing during t ∈ [0, T ). This equivalently
means that at the end of timeslot n, we have CjQ̃i(T ) =

CiQ̃j(T ), iff Ui(0) ≥ Ũj(0). By considering the laws of mass
conservation and adiabatic condition together,

Q̃i(T ) =
Ci(Q̃i(0) + Q̃j(0))

Ci + Cj
, Q̃j(T ) =

Cj(Q̃i(0) + Q̃j(0))

Ci + Cj

for Ũi(0) ≥ Ũj(0). Subtracting these two equations, and
replacing the initial conditions Q̃i(0) and Q̃j(0) by Qi(n) and
Qj(n), respectively, one calculates the maximum number of
packets that can be transmitted from node i to node j during
timeslot n as

fmax
ij (n) = max

{
0,

⌈
CjQi(n)− CiQj(n)

Ci + Cj

⌉}
(16)

where dxe returns the ceiling value of x.
To fix our initial assumption that link (i, j) is of infinite

capacity, we need to restrict fmax
ij (n) to the link capacity

µij(n). Furthermore, the number of transmitted packets can be
at most as many number of packets as Qi(n) holds. Putting all
these together, the actual number of packets transmitted from
node i to node j during timeslot n, under an adiabatic heat
diffusion condition on link (i, j), is given by

fij(n) = min
{
fmax
ij (n), Qi(n), µij(n)

}
. (17)

In the following, we design three stages of heat-diffusion
algorithm using expression (17).

Weighting Stage: At a timeslot n, for each link (i, j), the
algorithm first finds the optimal d-packet to transmit as

U
(d)
ij (n) = max

{
0,

Q
(d)
i (n)

Ci(n)
−
Q

(d)
j (n)

Cj(n)

}
(18)

d∗ij(n) = arg maxd U
(d)
ij (n)

where ties are broken arbitrarily. To attribute a weight to each
link, the algorithm performs the following:

Cij(n) =
Ci(n)Cj(n)

Ci(n) + Cj(n)

f
(d∗)
ij (n) = min

{⌈
Cij(n) U

(d∗)
ij (n)

⌉
, Q

(d∗)
i (n), µij(n)

}
(19)

w∗ij(n) =
(
f
(d∗)
ij (n)

)(
U

(d∗)
ij (n)

)
(20)

where Cij(n) = Ci(n), or equivalently Cj(n) =∞, whenever
j = d∗ij(n). This simply implies that each node is of infinite



capacity for the packets destined to it. It turns out that
equating queues is not applied when the receiving node is
the destination, where the maximum possible packets, i.e.,
min{Q(d∗)

i (n), µij(n)}, are transmitted.
Remark 3: In (19), the left most term inside the braces

is nonnegative, due to (18). Also note that this term is
equivalent to (16) for d∗-packet. This is addressed through
replacing U

(d∗)
ij (n) by (18) for d = d∗, and the fact that

Cj(n)Q
(d∗)
i (n)− Ci(n)Q

(d∗)
j (n) = 0, iff U (d∗)

ij (n) = 0.

Scheduling Stage: After assigning the optimal weight (20)
to each link, the scheduling matrix is chosen by solving a
centralized optimization problem (ties broken arbitrarily) as

S(n) ∈ arg max
S∈S

∑
(i,j)

S(i, j)w∗ij(n)/ρij(n). (21)

Remark 4: Take note of some important distinctions be-
tween backpressure and HD algorithms: (i) Using U

(d∗)
ij (n)

in (20), in lieu of Q(d∗)
ij (n) of backpressure policy, the HD

algorithm tends to transmit packets to the nodes of highest
capacity. (ii) Including link cost ρij(n) in (21), the HD
algorithm gives priority to the links of lowest penalty, when
possible to keep the network stable. (iii) Weighting based on
the actual number of transmittable packets f (d

∗)
ij (n) in (20),

in lieu of µij(n) of backpressure policy, the HD algorithm
attempts to optimize the performance of routing policy in light
and moderate traffic rates. As an example, consider two links
a and b with differential queue backlogs of 1 and 3, and link
capacitiess of 10 and 3, respectively. So the consequence of
activating link a is transmission of 1 packet, versus 3 packets
for link b. Observe that the backpressure policy selects link a,
while the HD algorithm chooses link b.

Forwarding Stage: Subsequent to the scheduling stage, each
activated link transmits f (d

∗)
ij (n) number of packets in accor-

dance with (19).
Remark 5: Despite the backpressure policy that forwards

the maximum possible number of d∗-packets across acti-
vated links, here packet forwarding is governed by diffusion
mechanism. This mitigates the packet looping behavior of
the backpressure policy. As an example, consider a network
with only 2 packets at node i, and with no new arrivals. Let
bidirectional link (i, j) be of the highest capacity, and greater
than 2, among all links connected to nodes i and j. Obviously,
routing under the backpressure policy loops these two packets
between nodes i and j forever. On the contrary, one can see
that the heat-diffusion algorithm successfully transmits both
packets to the destination without looping.

V. STABILITY AND PERFORMANCE

In this section, we will show that the HD algorithm supports
the entire capacity region Λ, in the sense that it stabilizes the
network whenever the rate matrix lies within Λ.

Proposition 1 (Throughput-Maximizing Policy): Consider
a routing network with N wireless nodes. The HD routing
algorithm stabilizes the network for any traffic rate matrix λ
strictly interior to the network capacity region Λ.

Proof: For simplicity, we consider only one destination
node in the network. We further assume Ci constant for all
nodes and ρij = 1 for all links. A complete proof for the
general case of multi-destination network with time-varying
Ci and ρij is given in [19]. Consider a Lyapunov energy
function V (n) = 1/2

∑
iQi(n)2/Ci and define Lyapunov

drift ∆V (n) = V (n + 1) − V (n). In the remaining part, we
drop n from all variables for the ease of notation. Using (1),
some mathematical manipulation yields

∆V =
∑

i

[ 1

2Ci
(E2

i +D2
i ) +

Qi
Ci

(Ei −Di)−
EiDi

Ci

]
From (2) and (3) we obtain

∆V ≤ BN +
∑

i

Qi
Ci
Ai −

∑
i

Qi
Ci

∑
a,b

(fib − fai) (22)

B =
1

2N

∑
i

1

Ci

[
(Amax

i +
∑

a
µmax
ai )2 + (

∑
b
µmax
ib )2

]
where constant µmax

ij stands for a deterministic upper bound
on µij(n). Since λ is assumed strictly interior to the capacity
region Λ, there exists a vector ε with positive entries such
that λ+ ε ⊆ Λ. Therefore, there exists a randomized routing
policy which stabilizes λ based only on the current topology
state and so independent of the queue occupancies [16]. Also
from feasibility condition (4), for any stabilizable traffic rate,
there exists a hyper-flow in long-term average such that

E
{∑

a,b
(f ′ib − f ′ai)

}
= λi + εi (23)

for some f ′ib and f ′ai. It is proved in [19] that the HD policy
minimizes the Lyapunov drift (22) compared to any other
policy, including backpressure. Also observe that∑

i

Qi
Ci

∑
a,b

(fib − fai) =
∑

(i,j)
fij(

Qi
Ci
− Qj
Cj

).

Considering these two facts, taking conditional expectation
with respect to Q(n) from (22), and using (23) yield

E {∆V |Q} ≤ BN −
∑

i

Qi
Ci
εi.

Defining ‖Q‖ =
∑
iQi and δ = mini(εi)/maxi(Ci) gives

E {∆V |Q} ≤ BN − δ‖Q‖. (24)

Hence, for ‖Q‖ > BN/δ, we get E{∆V | Q} < 0, and by
Proposition 2 of [17], the queuing system is stable.

Proposition 2 (Guaranteed Average Congestion): For the
wireless network of Proposition 1, the HD routing algorithm
guarantees bounded average queue occupancies as

lim
τ→∞

1

τ

∑τ−1

n=0

∑
i,d
E
{
Q

(d)
i (n)

}
≤ NB

δ
for some finite constants B > 0 and δ > 0.

Proof: Assume (24) holds for all timeslots. Taking ex-
pectation from (24), by the law of iterated expectations,

E{V (n+ 1)} − E{V (n)} ≤ BN − δ
∑

i
E{Qi(n)}.

Summing up the above inequality over timeslots n=0, . . . , τ−
1, and using telescopic series on the left hand side, we get

E{V (τ)} − E{V (0)} ≤ BNτ − δ
∑τ−1

n=0

∑
i
E{Qi(n)}



where V (0) is assumed to be finite, and V (τ) will be also
finite due to Proposition 1 that the HD policy stabilizes λ.
Dividing by τ and taking limit as τ →∞ yield the result.

Now, we introduce a heuristic fluid model of the heat-
diffusion algorithm. We assume that time is continuous and
the evolution of each queue is governed by the following
differential equation:

˙̃
Q

(d)

i = −
∑

b∈out(i)
f̃
(d)
ib +

∑
a∈in(i)

f̃
(d)
ai + λ

(d)
i (25)

for all i, d = 1, . . . , N , where dot on the top denotes the
continuous-time derivative. The HD algorithm assigns link
rates at every instant of time as described in Sec. IV. Then,
the following asymptotic stability result holds.

Proposition 3 (Long Term Average Convergence): Starting
from any initial condition Q̃(0), the states of the continuous-
time system (25) asymptotically converges to the states of a
traditional heat diffusion on a directed graph with edge weights
of σij = Cij/ρij , where Cij and ρij denote the long-term
averages of Cij and ρij , respectively.

Proof: We give a sketch of the proof only for one destina-
tion node, with Cij constant and ρij = 1. A general version of
this proposition is proved in [19]. We indicate variables in the
traditional heat diffusion system with superscript ∗. Consider
a node energy function as V (i) = 1/2Ci(Ũi − Ũ∗i )2. Taking
derivative, and substituting from (25) yield

V̇ (i) = λi(Ũi − Ũ∗i )− Ũi
∑

b
f̃ib + Ũ∗i

∑
b
f̃ib

+ Ũi
∑

a
f̃ai − Ũ∗i

∑
a
f̃ai.

Since λi is considered as the same input to both routing
network and traditional heat graph, by the Fick’s law (15)
developed for the directed graph, we provide

λi =
∑

b
σibŨ

∗
ib −

∑
a
σaiŨ

∗
ai

where from (12), Ũ∗ij = max
{

0, Q̃∗i /Ci − Q̃∗j/Cj} . Using

these equations in V̇ (i) and summing up over all nodes,

V̇ =
∑

i
V̇ (i)

=
∑

(i,j)

[
f̃ij(Ũ

∗
i − Ũ∗j )− f̃ij(Ũi − Ũj)

+ σijŨ
∗
ij(Ũi − Ũj)− σijŨ∗ij(Ũ∗i − Ũ∗j )

]
=
∑

(i,j)
(σijŨ

∗
ij − f̃ij)

(
(Ũi − Ũ∗i )− (Ũj − Ũ∗j )

)︸ ︷︷ ︸
M

.

exploration on (18)–(21), one can see that if M > 0, then
f̃ij > σijŨ

∗
ij and so V̇ < 0. Also if M < 0, it can be shown

that necessarily f̃ij < σijŨ
∗
ij and so V̇ < 0. These imply that

limt→∞ V → 0, and equivalently limt→∞ Ũi → Ũ∗i , which
concludes the proof.

VI. CONCLUSION

A new wireless routing strategy was developed that emulates
the heat diffusion and shows some benefits over the backpres-
sure policy. The new policy has been proved to stabilize the

network for any rate matrix in the interior of the capacity
region. A challenging question is what network, in the sense
of topology, has the largest capacity region. Preliminary results
[18] indicate that Euclidean networks have larger capacity
region than hyperbolic networks. In particular, Proposition 3
hinges the dynamics of HD routing policy with a traditional
heat diffusion system on graphs, which can open a door to
utilize the tools of continuous graph theory in the study of
packet based, time slotted routing networks. The effectiveness
of the HD algorithm has been examined through simulations,
though due to the space limitation, the results were not
included in this paper. For more detailed explanations and
simulation results, refer to the technical report [19].
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