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Abstract—Phasor Measurement Units (PMUs) are collecting
real-time measurements from the smart grid as part of the Wide-
Area Monitoring System (WAMS). The increase in the number
of installed PMUs at the transmission and distribution levels
of the grid is accompanied by an increasingly large amount of
collected data calling for advanced data analytics techniques. The
statistical characteristics of the PMU data are utilized to perform
accurate modeling and estimation of the power system variables
(voltage, frequency, and phase angle). Based on real PMU data
collected from the EPFL campus grid, we show that most of the
PMU data are non-stationary based on the Augmented Dickey-
Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests. Then, we
provide evidence for the fractality of PMU data by estimating
the differencing parameter (d) in the Autoregressive Fractionally
Integrated Moving Average (ARFIMA) model. Finally, it is shown
that the 2012 Indian blackout is accompanied by a change point
in the differencing parameter opening the road to event detection
by ARFIMA monitoring.

Index Terms—PMU Data, Long-Range Memory, ARFIMA
Models, Fractional Dynamics, Smart Grid

I. INTRODUCTION

SMART Grid (SG) is a modernized grid that overcomes
the challenges and issues in the conventional power grid.

Several challenges have arisen from the higher penetration of
renewable energy resources and increasing number of electric
vehicles. Therefore, wide-area monitoring, protection, and
control systems will have an important role in the future smart
grid by securing a reliable, secure, and efficient operation.

Wide-area monitoring systems collect real-time measure-
ments from all over the power grid via advanced sensing
devices, such as Phasor Measurement Units (PMUs). That
enables more accurate monitoring of the grid state in real
time. The PMU data is collected at higher sampling rate,
30-120 samples/s, that exposes the fast dynamic events and
contingencies in the power grid.

Understanding the statistical characteristics of PMU data
is of great importance due to several applications in power
system studies. The authors of [1] show the existence of
self-organized criticality in blackout data. In [2], the authors
show that the autocorrelation and variance of frequency time
series increase as the power system approaches instability.
The authors of [3] provide evidence for an increase in the
Hurst exponent of real frequency data collected from the
Indian grid before approaching the 2012 blackout [4]. This
increase could provide early-warning of catastrophic events
in the power system. A deeper aim of the present paper is to
provide stronger theoretical foundation of the Hurst exponent
results by corroborating them with data-driven models of
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the PMU time series, with the objective of transforming the
promising observations of [3][5] to detection of anomalies with
controllable false alarm rates in an autonomous smart grid.

In [6], we have shown that the PMU data (voltage mag-
nitude, frequency, and phase angle) is not random and pos-
sesses long-range memory with scaling exponent (α?) higher
than the one of short-memory data (α? = 0.5). The long-
range dependence in the PMU data was evaluated using
Detrended Fluctuation Analysis (DFA) [7] by calculating the
scaling exponents of several data sets from the synchrophasor
network in Texas. Modeling of long-memory data requires
ARFIMA models [8] that can capture both the short- and long-
range memories. Furthermore, the ARFIMA modeling of the
power loads was suggested in [9], consistently with the multi-
fractality of such signals.

In [10], we investigated the fractality of PMU data by cal-
culating the three fractality parameters: scaling exponent (α?),
power exponent (β), and differencing parameter (d). The
calculated differencing parameters from large data set of PMU
data had non-integer mean values, so the ARFIMA model
was adopted as the best model describing the short and long
memories. The selection of the best model was based on the
two information criteria: Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC).

In this paper, we extend our work on the ARFIMA mod-
eling [10] by first providing more accurate identification and
estimation of the PMU ARFIMA models, subject to a precise
significance level. In the identification phase, we estimate
the differencing parameter and the autoregressive and moving
average coefficients. Then, in the estimation phase, we use
these values as initial guess for the Whittle estimator to find
the parameters of best ARFIMA model. Secondly, we show
that ARFIMA models are well suited for PMU data because
their residuals follow Gaussian and α-stable distributions [11].
At the end, we validate our ARFIMA models by showing that
the residuals are uncorrelated and independent.

The paper is organized as follows: we study the stationarity
and fractality of PMU data in Sec. II and Sec. III, respectively.
In Sec. IV, we find the best ARFIMA models to fit the PMU
data. Analyzing the residuals of the ARFIMA models is car-
ried out in Sec. V. In Sec. VI, we exploit the ARFIMA models
to anticipate power blackouts. Sec. VII is the conclusion.

II. STATISTICAL CHARACTERISTICS OF PMU DATA

We first provide a description of the PMU data and the
power grid from which that data was collected. Then, we
investigate the stationarity of the data using unit root tests.

A. Overview of PMU Data
Typical PMUs provide measurements for the following vari-

ables in the power system: voltage (V ), current (I), frequency



Figure 1. PMU data collected from the EPFL campus grid in 2014: (a) Voltage magnitude (b) Frequency (c) Angle

(f ), active power (P ), and reactive power (Q). The measured
voltages and currents are represented using the phasor format
which consists of magnitude and phase angle. In this paper, we
use data collected from EPFL campus grid as part of their real-
time state estimation project [12]. The rated voltage magnitude
(line-line) and frequency of the EPFL campus grid are 20
kV and 50 Hz, respectively. Several PMUs were installed
throughout the campus grid to collect the data at sampling
rate of 50 samples/s. We focus our analysis on a large data
set of voltage magnitude (V ), frequency (f ), and unwrapped
phase angle (θ). The data set consists of 120,000 time series
(1000 samples each) of the three variables collected from the
campus grid in January, April, June, and December 2014 [13].
In Figs. 1 (a)-(c), we show 1000-sample time series of voltage
magnitude (red), frequency (blue), and angle (green).

B. Stationarity

We can have a glimpse at the stationarity or the lack thereof
of PMU data by calculating their autocorrelation functions
(ACFs). The autocorrelation functions of the voltage magni-
tude (red), frequency (blue), and phase angle (green) are shown
in Figs. 2 (a)-(c), respectively. The autocorrelation functions
show a slow hyperbolic decay compared to the exponentially
decaying one in random time series. The slow decay of the
autocorrelation function could be a sign of lack of stationarity.

More formally, we test the stationarity of PMU measure-
ments (V , f , and θ) using the Augmented Dickey-Fuller
(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit
root tests. Such tests can classify a time series as either
stationary or not, based on the existence of unit root in the
Auto-Regressive polynomial of the time series.

1) Augmented Dickey-Fuller (ADF) Test: The ADF test can
classify the time series as stationary or not using hypothesis
testing. The null hypothesis (H0) is that the time series is non-
stationary and a unit root exists. The alternative hypothesis
(H1) is that the time series is stationary.

We conduct the ADF test on 120,000 time series of PMU
data (V , f , and θ), each time series contains 1000 samples
(20 seconds). Using the command “adf.test” in R software,
we calculated the p-value for each time series to determine
its stationarity. The percentages of time series with p-values
above 0.01 (accept the null hypothesis (H0)) and time series
with p-values below or equal to 0.01 (reject the null hypothesis
(H0)) are shown in Table I.

2) Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: In con-
trast to the ADF test, the KPSS test considers that the null
hypothesis (H0) represents the absence of unit root and the

alternative hypothesis (H1) represents the presence of unit
root.

Similarly, we applied the KPSS test on 120,000 time series
of PMU data. We used the command “KPSS.test” in R
software to determine the stationarity by calculating the p-
values. The percentages of time series with p-values above
0.01 (accept the null hypothesis (H0)) and time series with p-
values below or equal to 0.01 (reject the null hypothesis (H0))
are shown in Table I.
Table I. Percentages of stationary (2nd and 3rd columns) and
non-stationary (1st and 4th columns) time series

PMU ADF KPSS

Data p > 0.01 p ≤ 0.01 p > 0.01 p ≤ 0.01

V oltage 81.33% 18.67% 06.38% 93.62%

Frequency 96.86% 03.14% 00.30% 99.70%

Angle 45.88% 54.12% 21.37% 78.63%

III. FRACTALITY OF PMU DATA

Fractal time series have the unique characteristics of exhibit-
ing a slow (non-exponential) decay of the autocorrelation func-
tion (ACF), heavy-tailed probability density function (PDF),
and power spectral density function in the form 1/fβ . The
slow decay of the autocorrelation function indicates a long-
range memory (dependence) in the time series, characterized
by persistent correlation between the time series samples as
the lag increases.

We quantify the fractality and long-range dependence in
PMU data using the fractality parameters, scaling exponent
(α?), differencing parameter (d), and power exponent (β).
The relationships among these parameters for non-stationary
Gaussian time series are shown in Eq. (1),

d = α? − 0.5 = β/2. (1)

In the bulk of this section, we estimate the three parameters
of the PMU data using three corroborating methods: (1)
Detrended Fluctuation Analysis (DFA) [7], (2) Geweke and
Porter-Hudak (GPH) method [14], and (3) Power Spectral
Density (PSD) method [15].

A. Detrended Fluctuation Analysis (DFA)

DFA is a robust method to estimate the scaling exponent
(α?) of non-stationary time series. The method was first
introduced in 1994 [7] to study the long-range dependence
of DNA nucleotides. One of the main advantages of DFA
method is dealing with the non-stationarity in the data using
detrending.



Figure 2. Autocorrelation functions of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

We applied the DFA method on the PMU data (V , f ,
and θ) to calculate the scaling exponent. The results show
that the voltage magnitude, frequency, and phase angle time
series have average scaling exponents of 1.18, 1.58, and 1.00,
respectively. Most of the voltage and frequency time series are
non-stationary with scaling exponents higher than 1 (α? ≥ 1).
Additionally, the angle time series have scaling exponents
distributed between 0.5 and 1.5. That means the angle time
series could be either stationary (α? < 1) or non-stationary
(α? > 1). The results are consistent with ADF and KPSS
tests on the angle time series.

Moreover, the data have long-range dependence (α? 6= 0.5)
that is not following the power law. Using Eq. (1), the distri-
butions of the differencing parameter (d) are shown in the first
columns in Figs. 3 (a)-(c).

B. Geweke and Porter-Hudak (GPH) Method

The GPH method [14] is a semi-parametric method to
estimate the differencing parameter (d). The method does not
assume any knowledge of the short-range memory component
of the series in non-stationary time series. It estimates the
differencing parameter using linear regression of the log
periodogram. The periodogram of any time series, m(t), with
n samples is defined as

In(ωk) =
1

2πn

∣∣∣∣ n−1∑
t=0

m(t)e−iωkt

∣∣∣∣
2

, (2)

where ωk represents the kth Fourier frequency, 2πk/n. On
the other hand, the spectral density of any weakly-stationary
time series, m(t), with long-range memory is

f(λ) = | 2 sin(λ/2) |−2df∗(λ). (3)

f∗(λ) is the spectral density of the short-range memory
component of the time series, m(t). By comparing the log-
arithm of the periodogram and the logarithm of the spectral
density at low frequencies, the estimation of the differencing
parameter (d̂) is performed by linear regression of log(In) on
−2 log |2 sin(λ/2)| at low frequencies.

We calculate the differencing parameter of PMU data using
the command “fdGPH” from the package “fracdiff” in R
software. The differencing parameters of the PMU data have
mean values between 0.5 and 1.0. Similarly, that indicates the
non-stationarity (d > 0.5) and long-range memory (d > 0) of
the PMU data. The distributions of the differencing parameter
using GPH method and Eq. (1) are shown in the second
columns in Figs. 3 (a)-(c).

C. Power Spectral Density (PSD) Method

The PSD method [15] estimates the power spectral density
exponent of non-stationary time series after some modifica-
tions to improve the accuracy of the PSD estimation. These
modifications include detrending the data using bridge de-
trending and estimating the power exponent after excluding the
high frequency component of the PSD. The power exponents
have mean values between pink noise (β = 1.00) and brown
noise (β = 2). It is clear from the power exponent values that
the signals are not random (β = 0) and possess a long-range
memory. We further calculated the differencing parameters
of the PMU data from the PSD method using Eq. (1). The
distributions of the differencing parameter using the PSD are
shown in the third column in Figs. 3 (a)-(c).

IV. ARFIMA MODELS OF PMU DATA

ARFIMA is a stochastic model, which was introduced by
Granger and Joyeux in 1980 [8]. This model is a generaliza-
tion of the ARIMA model (d is integer) developed by Box
and Jenkins [16] in the sense that the differencing parameter
(d) could have fractional (non-integer) values. The fractional
ARIMA (ARFIMA) models are capable of characterizing the
short-range and long-range memories in the data by applying
the fractional differencing on the time series.

A. Overview of ARFIMA Model

Let Xt be a zero-mean time series with long-range memory.
The ARFIMA(p, d, q) model of Xt is defined in Eq. (4),

Φp(B)∆dXt = Θq(B)εt. (4)

B is the backshift operator and d is the differencing
parameter. Φp(B) is the p−order autoregressive polynomial
(1−φ1B− ...−φpBp). Θq(B) is the q−order moving average
polynomial (1 + θ1B + ...+ θqB

q).
The innovations or residuals, εt, are i.i.d random variables.

They are uncorrelated with zero mean. The ARFIMA model
is well defined for α-stable innovations (0 < α < 2) with
infinite variance [11] and Gaussian innovations (α = 2) with
finite variance [8][17].

The term ∆d is the fractional difference operator, (1−B)
d,

with non-integer differencing parameter (d). The fractional dif-
ferencing can be defined as an infinite “binomial” expansion,

∆d = (1−B)d =

∞∑
k=0

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
(−B)

k
, (5)



Figure 3. Differencing parameters of PMU data using DFA, GPH, and PSD: (a) Voltage magnitude (b) Frequency (c) Angle

where Γ(·) is the Gamma function (
∞∫
0

sz−1e−sds).

Assuming that the polynomials, Φ(z) and Θ(z), have no
common roots and the polynomial, Φ(z), does not have roots
in the closed unit disk, the ARFIMA model can be solved for
the time series (Xt) as

Xt = Φ−1(B)Θ(B)(1−B)
−d
εt =

∞∑
k=0

ukεt−k, (6)

where the coefficients, uk’s, are resulting from the power
series expansion of Φ−1(z)Θ(z)(1− z)−d. In [11], it has been
shown that the series of the ARFIMA model with α-stable
innovations, as shown in Eq. (6), converges almost surely when

−∞ < d < 1− 1

α
. (7)

That means the ARFIMA model with α-stable innovations
(0 < α ≤ 2) is defined for d < 1− 1/α.

B. Model Identification

Throughout this section, we perform the identification of
the ARFIMA models on the three time series in Figs. 1 (a)-(c)
as a representative sample of the PMU data. Since ARFIMA
modeling is defined for stationary time series (−0.5 < d <
0.5), we should first differentiate the PMU time series (Xt) to
remove any non-stationarity. The first-differenced time series
will be converted to a stationary time series,

Yt = Xt −Xt−1 = (1−B)Xt. (8)

After the first differencing, the three resulting time series
of PMU data are shown in Figs. 4 (a)-(c). Now, applying the
ADF and KPSS tests on the three first-differenced time series
shows the stationarity of these series. At significance level of
0.01, the p-values of the two tests after differencing are shown
in the legends of Figs. 4 (a)-(c).

Then, the ARFIMA modeling of the PMU data will be
carried out on the first-differenced time series. The ARFIMA
model of the time series (Yt) becomes

Φ(B)(1−B)
d∗
Yt = Θ(B)εt, (9)

where d∗ = d− 1 and the time series (Yt) is stationary.
As expanded upon in this paper, the difficulty is to compute

the d∗ parameter. Once the latter is computed, the ARFIMA
reduces to the classical Box-Jenkins ARMA modeling of

(1−B)
d∗
Yt. So, the fractional differencing of the time se-

ries (Yt) generate a time series (Zt) possessing short-range
memory.

Using Eq. (5), we fractionally differentiate the three first-
differenced time series (Yt’s) of PMU data. The fractional
differencing is applied on each differenced time series based
on its own differencing parameter (d∗). The three fractionally
differenced time series (Zt’s) are shown in Figs. 5 (a)-(c). The
differencing parameters before and after fractional differencing
are shown in the legends of Fig. 4 and Fig. 5. It is clear that
fractionally differenced time series (Zt’s) have short-range
memory only with differencing parameters very close to 0.

Therefore, the three time series (Zt’s) of PMU data can now
be modeled using the ARMA model,

Φ(B)Zt = Θ(B)εt. (10)

Finally, we fit the time series, Zt, using ARMA models with
several combinations of autoregressive and moving average
polynomials. We cover all the combinations of p and q between
0 and 5, like (0, d, 0), (1, d, 0), (0, d, 1), ...(5, d, 5). Then, we
use the two information criteria (AIC and BIC) to compare the
different models and choose the best fit. We did not consider p
and q higher than 5 because both criteria have higher penalty
term for larger number of coefficients.

The best ARMA models of the voltage, frequency, and
phase angle are ARMA(0, 1), ARMA(0, 2), and ARMA(1, 2),
respectively. The differencing parameter (d∗ + 1) and the
ARMA model parameters constitute initial estimation of the
ARFIMA model. The first estimations of the ARFIMA models
for three time series of PMU data are shown in Table II.

Table II. Initial estimation of the ARFIMA models

Data Model (Φ1,Φ2) (Θ1,Θ2)

Voltage ARFIMA (0, 0.81, 1) ( − , − ) (+0.55, − )

Frequency ARFIMA (0, 0.89, 2) ( − , − ) (−0.38,−0.17)

Angle ARFIMA (1, 0.70, 2) (+0.61, − ) (−0.68,+0.20)

The steps and algorithm of the identification of the
ARFIMA model of a time series (Xt) are summarized below:
(1) Test the stationarity of the time series (Xt) via the ADF

and KPSS tests. If the time series (Xt) is stationary, we
can skip step (2) and go directly to step (3). In this case,
the time series (Yt) is equal to the time series (Xt).

(2) Differentiate the time series (Xt) to generate the station-
ary time series (Yt = Xt −Xt−1).

(3) Estimate the differencing parameter (d∗) of the series (Yt)
in the ARFIMA model (Φ(B)(1−B)

d∗
Yt = Θ(B)εt).



Figure 4. First-differenced time series (Yt) of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 5. Fractionally-differenced time series (Zt) of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

(4) Apply the fractional differencing on the time series (Yt)
to generate the time series (Zt = (1−B)d

∗
Yt) with short-

range memory only. The time series (Zt) can be modeled
via ARMA models (Φ(B)Zt = Θ(B)εt).

(5) Estimate the order and parameters of the best ARMA
model based on AIC and BIC criteria.

Algorithm 1: Identification of the ARFIMA models
Input: Xt

Output: model, d, aic, bic
1 set aic =∞, bic =∞;
2 get PADF and PKPSS of Xt ; // as shown in Sec.IIB

3 if PADF ≤ 0.01 and PKPSS ≥ 0.01 then
4 Yt ← Xt ;

5 else
6 Yt ← Xt −Xt−1 ;

7 get d∗ from Yt ; // as explained in Sec.III

8 d← d∗ + 1;
9 Zt ← (1−B)d

∗
Yt;

10 for p = 0 to 5 do
11 for q = 0 to 5 do
12 modeltemp ← fit (Zt, ARMA(p, q));
13 aictemp ← AIC (model);
14 bictemp ← BIC (model);
15 if aictemp < aic and bictemp < bic then
16 model← modeltemp;
17 aic← aictemp;
18 bic← bictemp;

C. Model Estimation

The estimation of the ARFIMA parameters can be con-
ducted using several estimation techniques in either the time
domain or the frequency domain [18]. One of the reliable
estimators of Gaussian and stable ARFIMA models is Whittle

approximate maximum liklihood estimation (MLE) [19][20].
The Whittle estimation of the ARFIMA parameters can be
achieved by minimizing

Q(ζ̂) =

m∑
j=1

I(λj)

f(λj , ζ̂)
, (11)

where I(λj) is the spectral density function of the time
series. The f(λj , ζ̂) function is the spectral density function
of the model at frequency (λj). The λj’s are the Fourier
frequencies, 2πj/m. ζ̂ is the vector of unknown parameters
(d∗, φ1, ..., φp, θ1, ..., θq).

We start with the parameters of the ARFIMA models in
Table II as initial values for the Whittle estimator. The best
ARFIMA models of the three PMU time series based on the
Whittle estimation are shown in Table III.

Table III. Best ARFIMA models of the three time series

Data ARFIMA Model

Voltage (1 −B)0.80Vt = (1 + 0.56B)εt

Frequency (1 −B)0.92Ft = (1 − 0.40B − 0.17B2)εt

Angle (1 − 0.61B)(1 −B)0.70Tt = (1−0.68B+0.20B2)εt

V. ANALYSIS OF RESIDUALS OF THE ARFIMA MODEL

Evaluating the goodness-of-fit of the PMU ARFIMA models
requires analyzing the residuals (ε̂t) of these models. Towards
that end, we first fit the distribution of the residuals to α-
stable distribution and calculate its parameters. This is a very
crucial step to be performed because the ARFIMA model is
well-defined for α-stable innovations (residuals).

Moreover, a good ARFIMA model of the data should result
in uncorrelated residuals to ensure all the information in the
data is represented in the model. So, we find the autocorre-
lation functions of the residuals to study the autocorrelation
between residual samples at different lags. Furthermore, we
use Ljung-Box test to check the independence of the residuals.



Figure 6. Residuals of ARFIMA models of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

A. Residuals of the ARFIMA Model

The residuals (ε̂t) or innovations of the ARFIMA model
can be estimated using

ε̂t = Φ(B)∆dΘ−1(B)Xt. (12)

We calculate the residuals of the ARFIMA models of
voltage (ARFIMA(0, d, 1)), frequency (ARFIMA(0, d, 2)) and
phase angle (ARFIMA(1, d, 2)). The resulting residuals of the
three models of PMU data are shown in Figs. 6 (a)-(c). Because
d > 1−1/α, expressing Xt as a series in ε̂t−j would result in
lack of almost sure absolute convergence [11, Sec. 7.13]. To
go around this difficulty, we utilize Eq. (11) to express Yt as a
series in εt−j . Now the relevant differencing parameter is d∗,
and since d∗ < 1 − 1/α, the representation of Yt as a series
in εt−j now converges absolutely almost surely.

It is worth fitting the residuals of the PMU ARFIMA models
to α-stable distribution and calculate its parameters (α, β, γ,
and δ) [11]. The histograms of the ARFIMA model residuals
and their best α-stable fit based on Koutrouvelis regression
method [21] are shown in Figs. 7 (a)-(c). To test the normality
of the model residuals, we generate the Q-Q plots for the
residuals of the ARFIMA models, as shown in Figs. 8 (a)-(c).

The residuals of the voltage ARFIMA model follows a
Gaussian distribution (α ≈ 2.0). For the voltage time series,
the ARFIMA Model is defined because its differencing pa-
rameter, dv∗ = −0.2, is less than 0.5.

The residuals of the ARFIMA models of the frequency and
angle time series follow α-stable distribution with α equals to
1.80 and 1.48, respectively. The differencing parameter (df ∗)
of the frequency time series is equal to −0.08 and smaller than
1 − (1.8)−1. Also, the differencing parameter (dt∗) of angle
time series is equal to −0.3 and smaller than 1 − (1.48)−1.
Satisfying this condition validates the derived models of Yt.

Comparing the ARFIMA modeling with the power flow
equations, it transpires that the "residuals" are, physically,
driving the fluctuating powers injected. The observed near
Gauss property of the "residuals," hence the power fluctu-
ations, corroborates the observation made in [22] that such
fluctuations at the output of a wind farm are Gaussian.

B. Correlation of the ARFIMA Model Residuals

Any significant dependence in the residuals of a fitted model
can be diagnosed by calculating the autocorrelation function
of the residuals. So, we calculate the autocorrelations (r̂k) of
the residuals (ε̂t) at different lags (k) using the equation,

r̂k =

∑n
t=k+1 ε̂tε̂t−k∑n

t=1 ε̂
2
t

. (13)

The autocorrelation functions of the residuals from the three
ARFIMA models of the PMU data are shown in Figs. 9 (a)-(c).
Inspecting graphically the first 50 individual autocorrelations
shows that most of the autocorrelations are within the 95%
confidence band (±1.96/

√
n), except a small number of

outliers. So, we can conclude that we have independent and
uncorrelated residuals of the ARFIMA models.

A more formal way of analyzing the dependence in the
residuals is through the Ljung-Box test [23]. The test was
introduced by Ljung and Box in 1978 as a modified version
of the Box and Pierce test [24]. The test provides joint instead
of individual testing of the adequacy of the fitted model. The
Ljung and Box test is based on the statistic,

Q(r̂) = n(n+ 2)

m∑
k=1

(n− k)−1r̂2k, (14)

where n is the size of the residuals series and m is the
number of lags. The statistic Q(r̂) would asymptotically
follow a Chi-squared (χ2) distribution with m−(p+q) degrees
of freedom under the assumption that the residuals (r̂k) are
normally distributed. The test tends to be more strict in case
of non-Gaussian and heavy tailed distributions.

The null hypothesis (H0) is that residuals are independent
and there is no lack of fit. On the other hand, the alternative
hypothesis (H1) indicates dependence among residuals and a
lack of fit. We can reject the null hypothesis of the test at
degrees of freedom, h or m− (p+ q), and significance level,
0.05, if Q(r̂) > χ2

0.95,h, where χ2
0.95,h is the 0.95-quantile

of the χ2-distribution at h degrees of freedom. The p-value
of the Ljung-Box test represents the probability of having Q
higher than the calculated, Q(r̂), in the corresponding χ2-
distribution. At significance level of 0.05, we reject the null
hypothesis (H0) if the p-value < 0.05 and we fail to reject the
null hypothesis (H0) if the p-value > 0.05.

As shown in Figs. 10 (a)-(c), the p-values of the residuals
of the three ARFIMA models are higher than the significance
level of 0.05 (dotted line), so we can not reject the Null
hypothesis (H0). That means we do not have evidence that
the residuals of the selected ARFIMA are autocorrelated.

VI. ANOMALY DETECTION VIA ARFIMA MODELS

A promising application of our proposed data models is
detecting anomalies and abnormal events in the power grid.
In our novel method, we aim to detect hidden changes in the
power system signals by tracking the changes in the param-
eters of the ARFIMA models as the system is approaching a
major transition.



Figure 7. Sample density functions of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 8. Quantile-quantile plots of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 9. Autocorrelation functions of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 10. P -values of Ljung-Box statistic of the ARFIMA residuals: (a) Voltage magnitude (b) Frequency (c) Angle

Power grids are often susceptible to unpredictable distur-
bances that could lead in the worst case scenario to a major
power blackout. One of the largest power blackouts in the
history is the 2012 Indian blackout [25]. The blackout had two
events occurring over two consecutive days and affected more
than 600 millions people. The recorded data of the system
frequency is shown in Fig. 11 (a).

To track the hidden changes in frequency time series of 2012
Indian blackout, we calculate the ARFIMA models inside a
sliding window toward the blackout. The size of the sliding
window is 16.67 minutes (1000 samples) with a shift of 1
minute (60 samples). The model ARFIMA (1, d, 1) is used
to model the frequency time series inside each window. In
Figs. 11(b)-(c), we have the differencing parameter (d) and the
lag-1 autoregressive parameter (φ1) of the ARFIMA models
inside the windows as the system is approaching the blackout.

By examining the plots of the differencing and lag-1 autore-
gressive parameters, we can notice a clear increase in their
values toward the blackout. The increase is starting around
10 minutes before the blackout. The mean of the differencing
parameter is shifting from 1.02 to 1.23, and the mean of the
lag-1 autoregressive parameter is shifting from 0.2 to 0.31.

This increase, while driving a change point detection [5] to
control False Alarm Rate, could provide an early warning to
the proximity to a major transition or blackout.

We believe that the increase in the differencing and lag-1
autoregressive parameters of the frequency time series could
be a sign of a critical slowing down phenomenon [26] [27] in
the power grid.

VII. CONCLUSION

The starting point of this paper has been evidence of non-
stationarity in PMU data using unit root tests, ADF and KPSS.
We then followed up with different methods (DFA, GPH,
and PSD) that capitalize on non-stationarity to compute the
fractality parameters, showing existence of long-range memory
in the PMU data. The estimated fractality parameters (scaling
exponent α?, differencing parameter d, and power exponent β)
are showing consistency among the different methods. Since
most of the PMU data have long-range memory, we have
used the ARFIMA models to model the PMU data and its
parameters were estimated using the Whittle estimator. The
goodness-of-fit was analyzed through testing the autocorrela-
tion and independence in the model residuals.



Figure 11. ARFIMA modeling before the Indian blackout: (a) Frequeny (b) Differencing parameter (c) Lag-1 AR parameter

Practical grid applications already emerge, and will be
subjects of further invetigations–most importantaly, change
point detection of ARFIMA parameters to detect abnormal
events. As already said, ARFIMA models of the voltage (V)
and the angle (θ) are dynamical substitutes for the power
flow equations in a symbiotic approach that remains to be
developed.
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