Discrete Ricci Flow for Detecting Gaps in Adiabatic Quantum Processes

64th IEEE Conference on Decision and Control

A. A. Rompokos, P. Bogdan, and E. Jonckheere

Department of Electrical and Computer Engineering
University of Southern California
Los Angeles, CA

Overview

- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

Adiabatic Quantum Processes (AQP)

▶ In an adiabatic quantum process, the system evolves from the ground state of an initial Hamiltonian H_0 to the ground state of a final Hamiltonian H_1

$$H(s) = (1-s) H_0 + s H_1, \quad s \in [0,1],$$

- ▶ $E_0(s) \le E_1(s) \le E_2(s) \le ...$: energy levels of H(s)
- $ightharpoonup E_0(s=1)$ of H_1 encodes the solution of a hard optimization task
- ▶ The **spectral gap** between the ground and first excited state is

$$\Delta_{\min} = \min_{0 \le s \le 1} \Delta_{1,0}(s), \quad \Delta_{1,0}(s) = E_1(s) - E_0(s)$$

▶ The runtime of the AQP is inversely proportional to the spectral gap

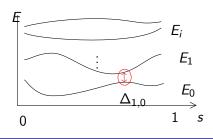
Spectral Gap

lacktriangle Location and size of the spectral gap Δ_{min} are usually unknown.

Challenge

Detecting where this gap occurs is critical to improve performance and runtime of the AQP.

- Gaps often occur at avoided crossings in the energy levels.
- ► Hard to locate without full diagonalization of *H*(*s*).
- We therefore look for an indirect, geometric way to detect gaps.



Solution

Use curvature transport and Ricci flow on the eigenvalue curves $E_i(s)$ to detect where the gap becomes small.

- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

Curvature & Ricci Flow

Curvature

- ▶ Curvature measures how a geometric space deviates from being flat
- ▶ In Riemannian geometry, quantifies how geodesic paths converge (positive curvature) or diverge (negative curvature)
- Measures local geometry of spaces

Ricci Flow:

- ▶ A geometric evolution equation for smoothing irregularities
- $\blacktriangleright \ \frac{\partial}{\partial t}g_{ij} = -2R_{ij}(g)$

Curvature Transport Method

Landscape of $E_i(s)$:

- ightharpoonup Curvature of $E_i(s)$
- ► Curvature ≡ "mass"
- Max. "mass" transport rate at max. curvature of $E_i(s)$

Earth moving metaphor:

► Sand transport from hills to valleys

Heat Diffusion metaphor:

► Max temperature ⇒ largest heat flux

Solution

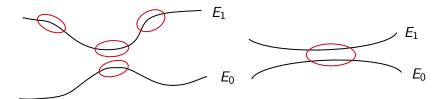
Take advantage of sharpness of "valleys" and "ridges" and detect high curvature by curvature transport

- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

Gap Detection

Spectral Gap:

- ▶ High curvature regions in $E_i(s)$ likely indicate a gap
- ▶ High curvature regions correspond to areas of high curvature transport
- ► Ricci flow serves as "magnifying lens"



Background

Modify scheduling:

- \vdash $H(s) = p_0(s)H_0 + p_1(s)H_1$
- ► Global properties of scheduling:

$$p_0(s) = \cos \frac{\pi s}{2}, p_1(s) = \sin \frac{\pi s}{2}, \quad s \in [0, 4]$$

- ► $H(\vartheta) = \cos(\vartheta)H_0 + \sin(\vartheta)H_1$, $\vartheta \triangleq \frac{\pi s}{2}$, $\vartheta \in [0, 2\pi]$
 - ▶ Extend path from linear to cyclic
 - ▶ Path is smooth
- ▶ Energy levels E_k are eigenvalues: $\lambda_k(H(\vartheta)) \triangleq \lambda_k(\vartheta)$

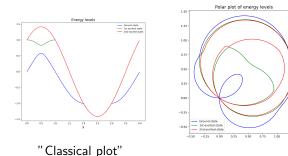
4-vertex Theorem (Tabachnikov)

Any smooth, simple, closed curve in the plane has at least 4 vertices.

Polar Plot

Polar Plot:

- ► Represents energy levels as closed curves.
- ▶ Curve defined by: $x(\vartheta) \mapsto \lambda(\vartheta) \cos(\vartheta)$ and $y(\vartheta) \mapsto \lambda(\vartheta) \sin(\vartheta)$



"Genuine plot"

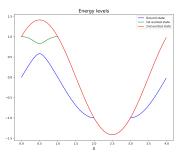
"Offset plot"

▶ "Offset" plot is "subjective" representation

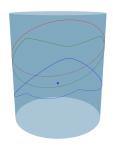
Cylinder plot

Cylinder Plot:

- ► Energy levels mapped onto a cylindrical surface
- ▶ $x(\vartheta) \mapsto \cos(\vartheta)$, $y(\vartheta) \mapsto \sin(\vartheta)$, and $z(\vartheta) \mapsto \lambda(\vartheta)$



"Genuine plot"



"Cylinder plot"

► Avoids "offseting" ⇒ "objective" representation

Discrete Ricci Flow on Energy Level Curves

- Discretize curve into vertices v_i
- ▶ At each vertex v_i:
 - ► Curvature K_i
 - \triangleright Conformal factors u_i which modify the metric
- ► Ricci/Yamabe flow:

$$\frac{du_i}{dt} = -K_i(t)u_i(t), \quad u_i(0) = 1$$

$$\frac{dK_{u(t)}}{dt} = \mathcal{L}\left(K_{u(t)}\right), \quad K_{u(0)}(v_i) = K(v_i)$$

 \blacktriangleright $\mathcal{L}(.)$ is the graph Laplacian

Gap detection

Vertices with high $\frac{dK}{dt} \Rightarrow$ high curvature transport \Rightarrow spectral gap regions

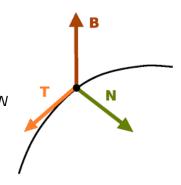
Continuous Ricci Flow

Polar Plot Curve

- ightharpoonup Curve in \mathcal{R}^2
- ▶ Curvature: $\kappa = \frac{dT(s)}{ds}$

Cylinder Plots:

- ▶ Curve in \mathbb{R}^3



Ricci Flow:

$$u(\vartheta,t)u_t(\vartheta,t) = \begin{cases} 1/r - \kappa(\vartheta,t), \\ \tau(\vartheta,t), \end{cases}$$

- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

Results: QUBO

QUBO

- Quadratic Unconstrained Binary Optimization
- lacktriangle Combinatorial optimization problem on the graph $G(V_f,\mathcal{E}_f)$

Hamiltonians:

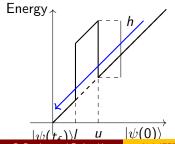
$$\blacktriangleright$$
 $H_0 = \sum_{i}^{n} S_x^{(i)}$

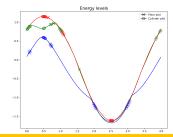
$$H_1 = \overline{H}_w + H_b + H_d$$

$$\vdash H_w = \sum_i^n S_z^{(i)}$$

$$H_b = \frac{H}{2} (\operatorname{sign} \{ H_w - (I - \frac{1}{2})I \} - \operatorname{sign} \{ H_w - (u + \frac{1}{2})I \})$$

$$H_d = \epsilon_d \sum_{i}^{n} r_i S_y^{(i)}$$





Results: QUBO - Continuous Flow

QUBO

lacktriangle Combinatorial optimization problem on the graph $G(V_f,\mathcal{E}_f)$

Hamiltonians:

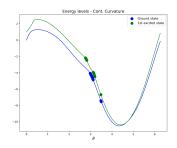
$$\blacktriangleright$$
 $H_0 = \sum_{i}^{n} S_x^{(i)}$

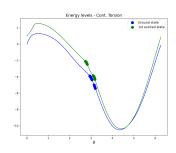
$$H_1 = \overline{H_w} + H_b + H_d$$

$$\rightarrow H_w = \sum_i^n S_z^{(i)}$$

$$H_b = \frac{h}{2} \left(sign\{H_w - (I - \frac{1}{2})I\} - sign\{H_w - (u + \frac{1}{2})I\} \right)$$

$$H_d = \epsilon_d \sum_{i}^{n} r_i S_y^{(i)}$$





- Motivation
- 2 Preliminaries
- 3 Gap Detection with Ricci Flow
- 4 Results
- Conclusion

Summary

- ▶ Introduced a novel geometric method to detect spectral gaps in AQPs
- ▶ Used Ricci flow to track high curvature events on energy-level curves
- Introduced the polar and cylinder plot to apply the Ricci flow
- Demonstrated results on a QUBO with barrier AQP:
 - ▶ Discrepancies between polar and cylinder discrete plots
 - ▶ Continuous flow more accurate than discrete
- Cylinder embedding provides most stable results.

Thank you!