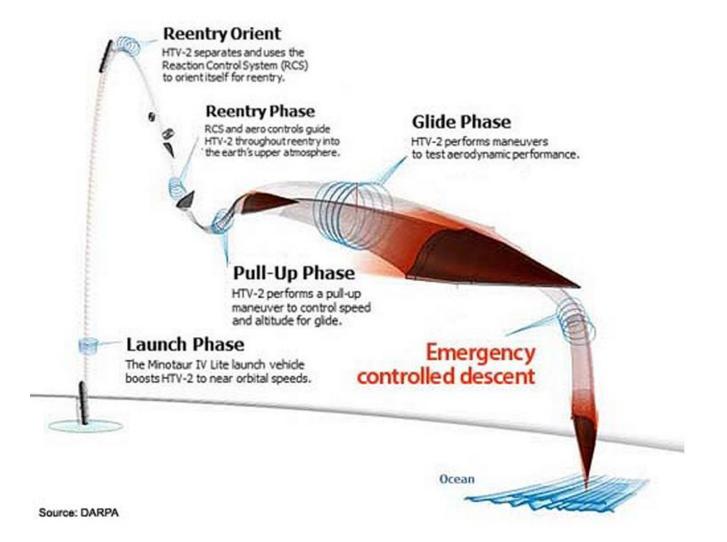
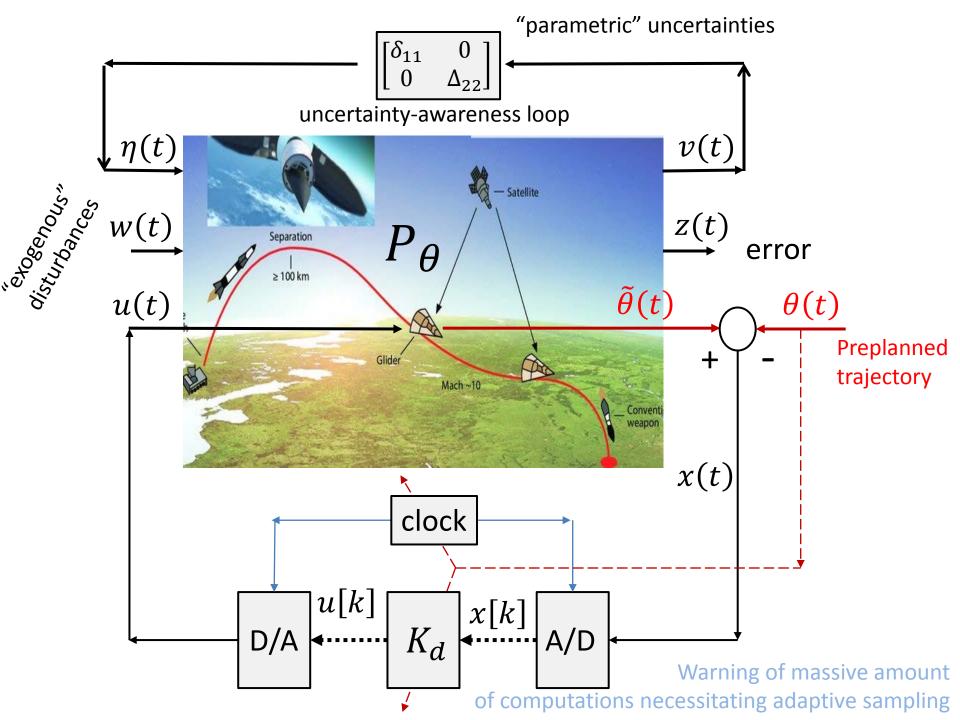


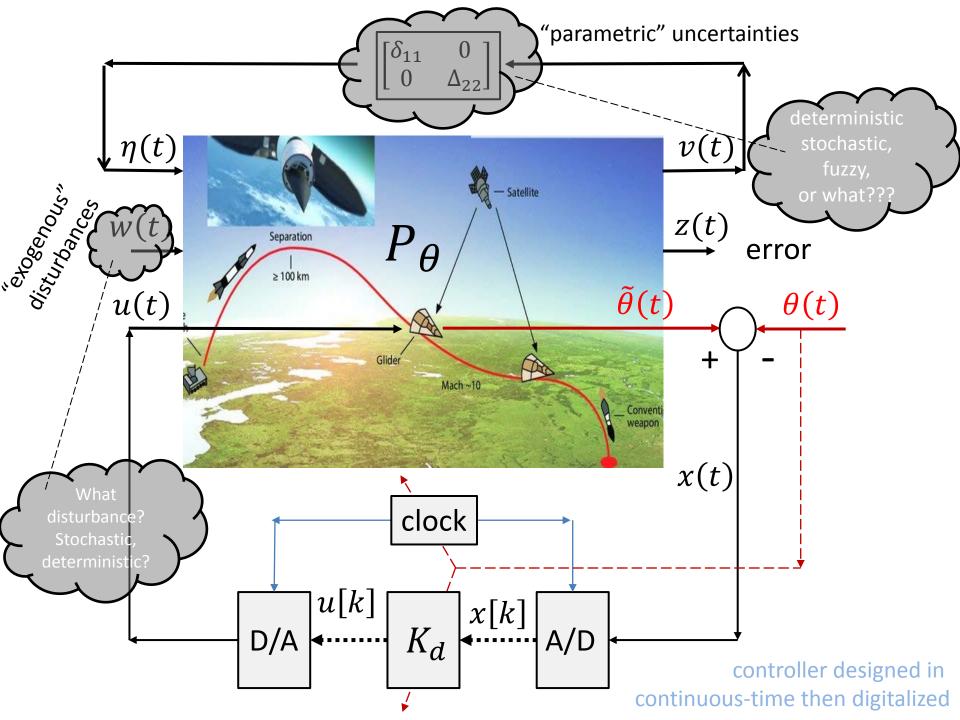
Trustworthiness in Robust Hypersonic Trajectory Planning

Edmond Jonckheere and Paul Bogdan Dept. of Electrical and Computer Engineering University of Southern California, Los Angeles, CA 90089, USA {jonckhee,pbogdan}@usc.edu

Joseph Winkin Unité de recherche en mathématiques appliquées et complexité Université de Namur, B-5000 Namur, Belgique joseph.winkin@unamur.be



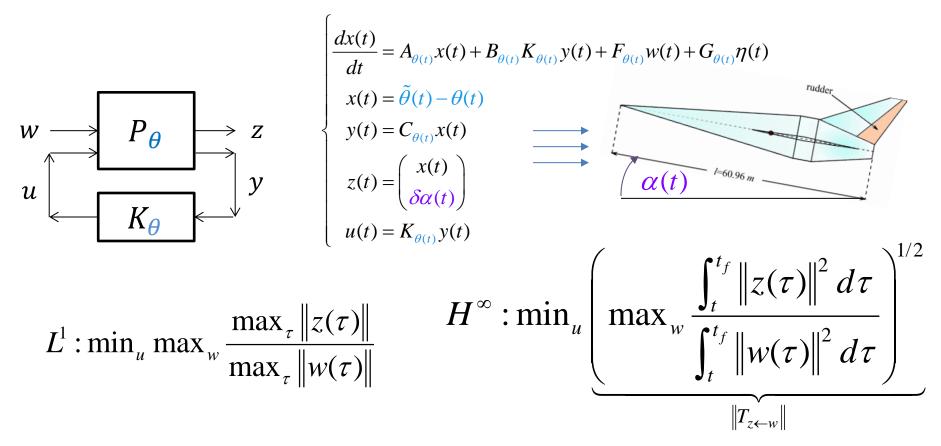

UNIVERSITĒ DE NAMUR "This solicitation is seeking advancement **to build trust**... and metrics and to quantify uncertainty versus performance... Proposed solutions should.. focus.. on **ways to build trust and confidence** in mission planning. New **methods to improve robustness** and confidence... will still be able to expand trust/explainability of automated mission planning."



Joint Hypersonics Transition office Announcement TEES/JTHO-RPP-2022-002: Technology Area 4: BUILDING TRUST IN AUTONOMOUS MISSION PLANNING.

Classical Robust Control

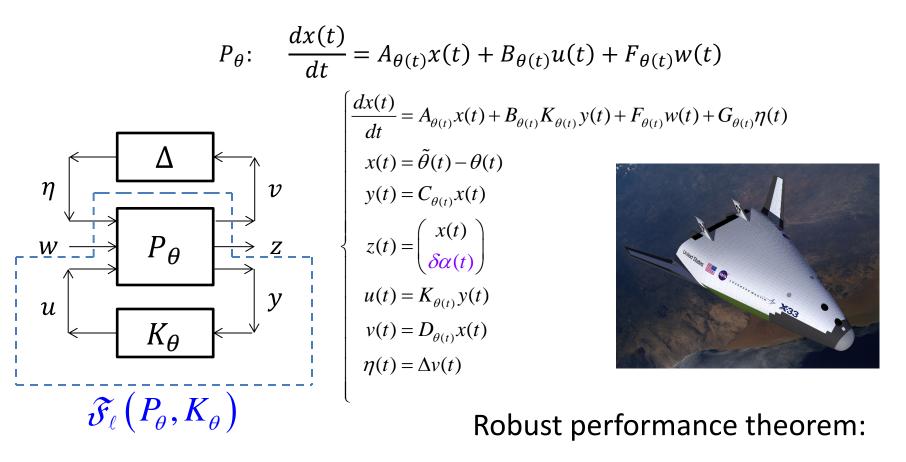
- Classical robust control (LQG, H^{∞}) has been extremely successful at designing *uncertaintyaware* control laws
 - when the uncertainties are modeled deterministically.
- The *robust performance theorem* guarantees "hard" error bounds
 - when the uncertainties are subject to "hard" bounds.



Critique

- The *"Achilles heel"* of classical robust control is the modeling of the uncertainty.
- If the modeling of the uncertainty cannot be trusted, the robust control edifice is crumbling.
- Need for trustworthiness assessment
- Quantum control gave us a "heads up."
- Khalid, C. A. Weidner, E. Jonckheere, S. G. Schirmer, and F. Langbein, <u>Statistically characterizing</u> robustness and fidelity of quantum controls and quantum control algorithms, *Physical Review A*, vol. 107, page 032606 (22 pages), March 2023.
- II. S. P. O'Neil, I. Khalid, A. A. Rompokos, C. A. Weidner, F. C. Langbein, S. Shermer, and E. A. Jonckheere, <u>"Analyzing and unifying robustness measures for excitation transfer control in spin networks,"</u> *IEEE Control Systems Society Letters*, vol. 7, pp. 1783-1788, 2023

Linear Dynamically Varying Uncertainty-Unaware Approach


$$P_{\theta}: \quad \frac{dx(t)}{dt} = A_{\theta(t)}x(t) + B_{\theta(t)}u(t) + F_{\theta(t)}w(t)$$

S. Bohacek and E. A. Jonckheere, ``<u>Nonlinear tracking over compact sets with Linear Dynamically Varying H^{∞} control,'' SIAM J. Control and Optimization, vol. 40, No. 4, pp. 1042-1071, 2001.</u>

E. A. Jonckheere, P. Lohsoonthorn, S. Dalzell, ``<u>Eigen-structure versus H^{∞} constrained design for hypersonic winged cone</u>,'' Journal of Guidance, Dynamics and Control, AIAA, Vol. 24, No., 4, pp. 648-658, July-August 2001.

Linear Dynamically Varying Uncertainty-Aware Approach

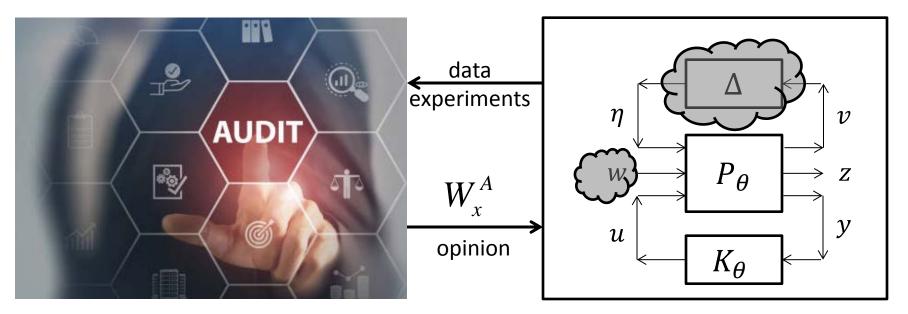
$$\min_{K_{\theta(t)}} \mu\left(\mathcal{F}_{\theta}(P_{\theta}, K_{\theta})\right) \Longrightarrow \left\|T_{z \leftarrow w}(\Delta)\right\| \le \mu, \quad \forall \left\|\Delta\right\| < 1/\mu$$

E. A. Jonckheere, P. Lohsoonthorn, and S. K. Bohacek, ``<u>From Sioux City to the X-33</u>,'' (invited paper), *Annual Reviews in Control*, vol. 23, Elsevier, Pergamon, pp. 91-108, 1999.

Linear Dynamically Varying *Trust-Aware* Approach

Robust performance theorem:

$$\min_{K_{\theta(t)}} \underbrace{\mu(\mathcal{F}_{\ell}(P_{\theta}, K_{\mathcal{F}}))}_{K_{\theta(t)}} \Rightarrow \underbrace{T_{z \leftarrow w}(\Delta) \| \leq \mu, \forall \|\Delta\| < 1/\mu}_{Z \leftarrow w}$$


How sure are we about this if we are not sure of the uncertainty model?

Subjective Logic uncertain probability = subjective opinion

• We need an analyst or auditor to assess trustworthiness of the design.

Auditor or Analyst, or trustor, A

Designer, or trustee, x

Mingxi Cheng, Shahin Nazarian, and Paul Bogdan, <u>"There is hope after all: Quantifying opinion and</u> trustworthiness in neural networks," Frontiers in Artificial Intelligence, 3:54, 2020.

Formal Trust Framework

- □ Positive evidence r_x^A : Trustor A find that trustee x's behavior meets some specifications.
- □ Negative evidence s_x^A : Trustor *A* find that trustee *x*'s behavior does not satisfy specifications.
- ❑ Non-informative prior weight W default value W=2

Belief
$$b_x^A = \frac{r_x^A}{r_x^A + s_x^A + W}$$

Disbelief $d_x^A = \frac{s_x^A}{r_x^A + s_x^A + W}$
Uncertainty $u_x^A = \frac{W}{r_x^A + s_x^A + W}$
Base rate a_x^A

Prior probability without evidence default value $a_x^A = 0.5$

Opinion:
$$W_x^A = (b_x^A, d_x^A, u_x^A, a_x)$$

Trustworthiness: $T_x^A = b_x^A + u_x^A a_x^A$

Risk:
$$R_x^A = d_x^A + u_x^A (1 - a_x^A)$$

Algebra of Opinions

• *Multiplication* of opinions by the same auditor on different sub-designs *x*, *y*:

$$W_{x,y} = W_x \cdot W_y : \begin{cases} b_{x \wedge y} = b_x b_y + \frac{a_y (1 - a_x) b_x u_y + a_x (1 - a_y) b_y u_x}{1 - a_x a_y} \\ d_{x \wedge y} = d_x + d_y - d_x d_y \\ u_{x \wedge y} = u_x u_y + \frac{(1 - a_x) b_y u_x + (1 - a_y) b_x u_y}{1 - a_x a_y} \\ a_{x \wedge y} = a_x a_y \end{cases}$$
Opinion on state feedback
Opinion on filter
 $W_K^A = W_{K|f}^A \cdot W_f^A$

Algebra of Opinions

• *Fusion* of opinions of two auditors on the same design *x*,

$$W_{x}^{A \circ B} = W_{x}^{A} \circ W_{x}^{B} : \begin{cases} b_{x}^{A \circ B} = \frac{b_{x}^{A} u_{x}^{B} + b_{x}^{B} u_{x}^{A}}{u_{x}^{A} + u_{x}^{B}} \\ u_{x}^{A \circ B} = \frac{2u_{x}^{A} u_{x}^{B}}{u_{x}^{A} + u_{x}^{B}} \\ a_{x}^{A \circ B} = \frac{a_{x}^{A} + a_{x}^{B}}{u_{x}^{A} + u_{x}^{B}} \end{cases}$$

Trustworthiness of Shapiro (Lockheed) eigenvector assignment

Parameter Eigenvector	$oldsymbol{V}_p$		V_s		V_a	V_e	V_{f}
	v_1	v_2	v ₃	v_4	<i>v</i> ₅	v ₆	v 7
Velocity	x^{a}	1 ^b	0^{c}	0	0	х	x
Angle of attack	0	0	X	1	X	х	x
Pitch rate	X	X	1	X	X	X	X
Pitch attitude	1	X	X	X	X	X	X
Altitude	X	X	X	х	1	X	X
Symmetric elevon	X	X	X	х	X	1	0
Fuel equivalent ratio	X	X	X	х	x	0	1

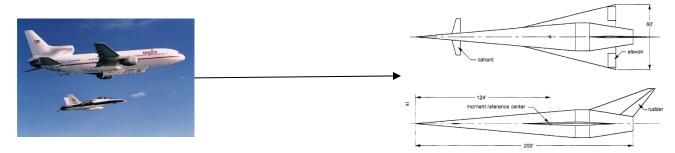
9

9

9

9

Here I means that some coupling should be present. ^cHere 0 means that there should be no coupling.


 r_v^A

 r^A_{α}

 r_q^A

 r_{g}^{A}

 r_h^A

E. Y. Shapiro and J. C. Chung, "Flight control system synthesis using eigenstructure assignment. J Optim. *Theory Appl.,* Vol. 43, pp. 415–429, 1984.

E. A. Jonckheere, P. Lohsoonthorn, S. Dalzell, $\tilde{Eigen-structure versus } H^{\infty}$ constrained design for hypersonic winged cone," Journal of Guidance, Dynamics and Control, AIAA, Vol. 24, No., 4, pp. 648-658, July-August 2001.

Trustworthiness and Risk consistent with simulation results

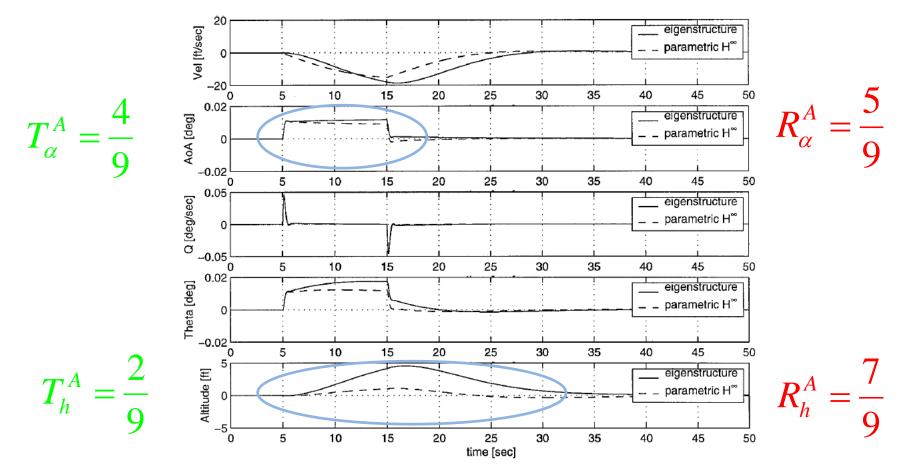
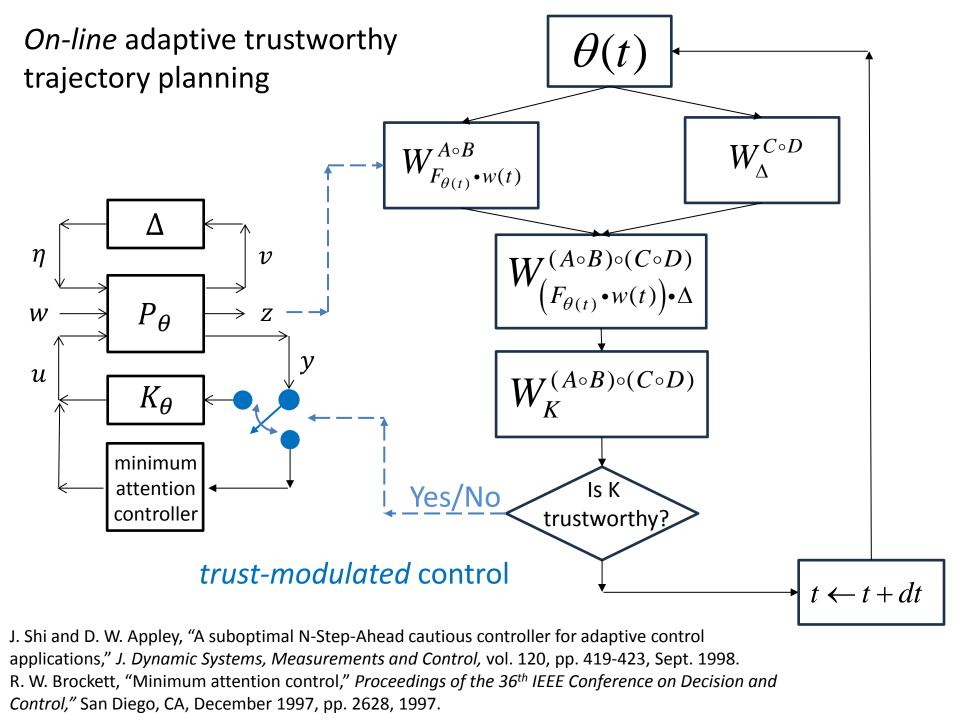


Fig. 8 Velocity, angle-of-attack, pitch-rate, pitch-angle, and altitude time-domain responses to elevon command.

Trustworthiness higher on angle of attack than altitude Risk higher on altitude than angle of attack

Off-line trustworthy trajectory planning


Uncertainty-aware planning

• Minimize the *error,* which includes the targeting error

Trust-aware planning

• Minimize the *risk* of missing the target

$$\min_{\Theta} \left(\min_{K_{\theta}} \mu \left(\mathfrak{F}_{\ell} \left(P_{\theta}, K_{\theta} \right) \right) \right) \qquad \min_{\Theta} R_{K_{\theta}}^{(A \circ B) \circ (C \circ D)}$$

Conclusions

- Hypersonic mission planning must take into consideration poorly known uncertainties.
- Classical robust control has failed to address trustworthiness of the modeling of the uncertainties.
- We proposed both *off-line* and *on-line* trustworthiness assessments of hypersonic glide vehicles trajectory planning based on subjective logic.
- Early results on a NASA demonstration vehicle showed the viability of the approach.

Thank you!

Questions?

jonckheere@usc.edu pbogdan@usc.edu