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TL;DR

1. The average fidelity is a statistical robustness-infidelity
measure (RIM1) as it is the first order optimal transport
distance from the perfectly robust distribution δ1.

2. Higher-order RIMs are equivalent up to scaling to
lower-order RIMs. RIM1 is a sufficient controller
robustness measure.

3. This extends to compare quantum control algorithms:
algorithmic RIM (ARIM).

4. Numerical results on the energy landscape control of
XX-Heisenberg chains indicate that not all high-fidelity
controllers are also robust (see Fig. 3).

5. There exists some benefit to incorporating certain noise in
finding low RIM controllers (see Fig. 4) due to smoothing.

Quantum Control Problem

The state transfer optimisation problem is given by
t∗,∆∗ = argmax

t,∆∈T
| ⟨ψ∗|Uc(t,∆)

∣∣ψi〉 |2︸ ︷︷ ︸
=:F

(1)

where Uc = exp (−iHc(∆)t) and the XX Heisenberg Hamilto-
nian Hc(∆) of the L-body chain with energy landscape controls
∆ in the single-excitation subspace is [1]:

Hc(∆)

ℏ
=

L∑
n

(∆n |n⟩⟨n| + J |n⟩⟨n± 1|) (2)

We structurally perturb the coherent dynamics by adding
Hamiltonian noise: (Hc)ij → (1 + (Sσsim)ij)(Hc)ij using

(Sσsim)l,m = J(p1δl,m±1) + p2∆l,mδl,m, p1, p2 ∼ N
(
0, σ2sim

)
(3)
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Figure 1: Fidelty F landscape (Eq. (1); ∆1 = ∆3) with one structured perturbation
(Eq. (3)) for L = 3 and an end-to-end transition.

Robustness-Infidelity Metric

The robustness-infidelity metric RIMp is the pth-order Wasser-
stein distance of a fidelity distribution Pσsim(F) from the per-
fectly robust fidelity distribution δ(F − 1) induced by the uncer-
tainty Sσsim

RIMp := Wp(Pσsim (F) , δ(F − 1)) = Ef∼P(F) [(1− f )p]
1
p (4)

1. Works for any bounded fidelity measure F .
2. Can be used for controller post selection.
3. The pth order Wasserstein distance is a metric on the

space of controllers that facilitates robust optimisation due
to its structure-preserving properties.

4. It permits nested definitions such as the ARIM.
5. Using reinforcement learning, we implicitly optimise a

discounted RIM1 as the cumulative return per episode.
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Figure 2: (a) Comparison of RIM with yield Y (fraction of fidelities greater than threshold
fidelity Fth) at values Fth = 0.95, 0.98 for 200 controllers. (b) Illustration of how RIM is
calculated for a single controller. Both figures are generated for a chain of length L = 5
and a bit transition from |1⟩ to |3⟩.
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Results

Individual controller comparison using the RIM for chain of
length L = 5 and transition from |1⟩ to |3⟩. Controllers are ob-
tained numerically using L-BFGS (σtrain = 0) [1, 3], PPO [4],
SNOBFit [5] and Nelder-Mead [6] (σtrain = 0, 0.01, . . . , 0.05).
Controller performance is evaluated at uncertainty strengths
σsim = 0, 0.01, . . . , 0.1.
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Figure 3: Top 100 controllers sorted (left to right) by 1−F for the uncertainty level σsim = 0.

Algorithmic RIM (ARIM) for RIM distribution comparison
ARIM := W1(Pσsim(RIM), δ(RIM − 0)) = E[RIM1] (5)

We use the ARIM to compare empirical quantum controller
acquisition schemes. Here, reinforcement learning (PPO) has a
lower sample complexity for ARIM optimisation that is especially
pronounced in a stochastic setting.
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Figure 4: Asymptotic control algorithm ARIM performance when the number of fidelity
function calls is unconstrained for derandomised (non-stochastic) and randomised
optimisation objective function settings.


