# Finding and Characterising Robust Quantum Controls

Irtaza Khalid<sup>1,†</sup>, Carrie Weidner<sup>2</sup>, S. G. Schirmer<sup>3</sup>, Edmond Jonckheere<sup>4</sup>, Frank C. Langbein<sup>1</sup> <sup>1</sup>Cardiff University, <sup>2</sup>QETLabs, University of Bristol, <sup>3</sup>Swansea University, <sup>4</sup>University of Southern California <sup>†</sup>khalidmi@cardiff.ac.uk

## TL;DR

- 1. The average fidelity is a statistical robustness-infidelity **measure (RIM**<sub>1</sub>) as it is the first order optimal transport distance from the perfectly robust distribution  $\delta_1$ .
- 2. Higher-order RIMs are equivalent up to scaling to lower-order RIMs. **RIM**<sub>1</sub> is a sufficient controller robustness measure.
- **3**. This extends to compare quantum control algorithms: algorithmic RIM (ARIM).
- 4. Numerical results on the energy landscape control of **XX-Heisenberg chains** indicate that not all high-fidelity controllers are also robust (see Fig. 3).
- 5. There exists some benefit to incorporating certain noise in finding low RIM controllers (see Fig. 4) due to smoothing.

### **Quantum Control Problem**

The state transfer optimisation problem is given by

 $t^*, \Delta^* = \arg \max |\langle \psi^* | U_c(t, \Delta) | \psi^i \rangle|^2$ 

where  $U_c = \exp\left(-iH_c(\mathbf{\Delta})t\right)$  and the **XX Heisenberg Hamiltonian**  $H_c(\Delta)$  of the L-body chain with energy landscape controls  $\Delta$  in the single-excitation subspace is [1]:

$$\frac{H_c(\boldsymbol{\Delta})}{\hbar} = \sum_{n}^{L} \left( \Delta_n \left| n \right\rangle \! \left\langle n \right| + J \left| n \right\rangle \! \left\langle n \pm 1 \right| \right)$$

We structurally perturb the coherent dynamics by adding Hamiltonian noise:  $(H_c)_{ij} \rightarrow (1 + (S_{\sigma_{sim}})_{ij})(H_c)_{ij}$  using

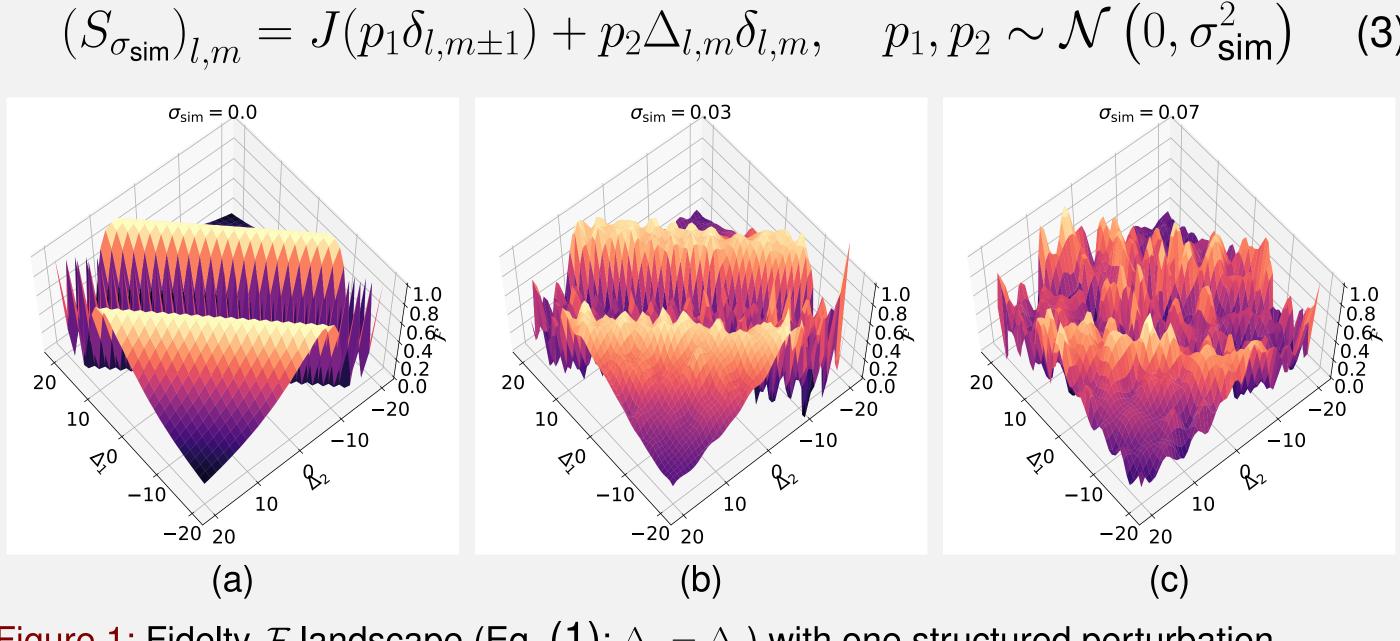
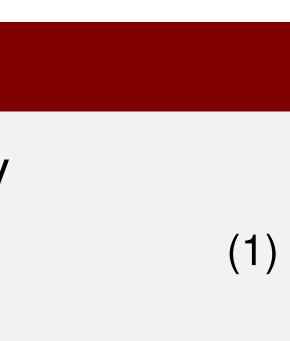


Figure 1: Fidelty  $\mathcal{F}$  landscape (Eq. (1);  $\Delta_1 = \Delta_3$ ) with one structured perturbation (Eq. (3)) for L = 3 and an end-to-end transition.

### **Robustness-Infidelity Metric**



(2)

(3)

The robustness-infidelity metric  $RIM_p$  is the *p*th-order Wasserstein distance of a fidelity distribution  $\mathcal{P}_{\sigma_{sim}}(\mathcal{F})$  from the perfectly robust fidelity distribution  $\delta(\mathcal{F}-1)$  induced by the uncertainty  $S_{\sigma_{\rm sim}}$ 

 $\mathsf{RIM}_p := \mathcal{W}_p(\mathcal{P}_{\sigma_{\text{sim}}}(\mathcal{F}), \delta(\mathcal{F}-1)) =$ 

- **1**. Works for any bounded fidelity measure  $\mathcal{F}$ .
- 2. Can be used for controller post selection.
- **3.** The *p*th order Wasserstein distance is a metric on the space of controllers that facilitates robust optimisation due to its structure-preserving properties.
- 4. It permits nested definitions such as the ARIM.
- 5. Using reinforcement learning, we implicitly optimise a discounted  $RIM_1$  as the cumulative return per episode.

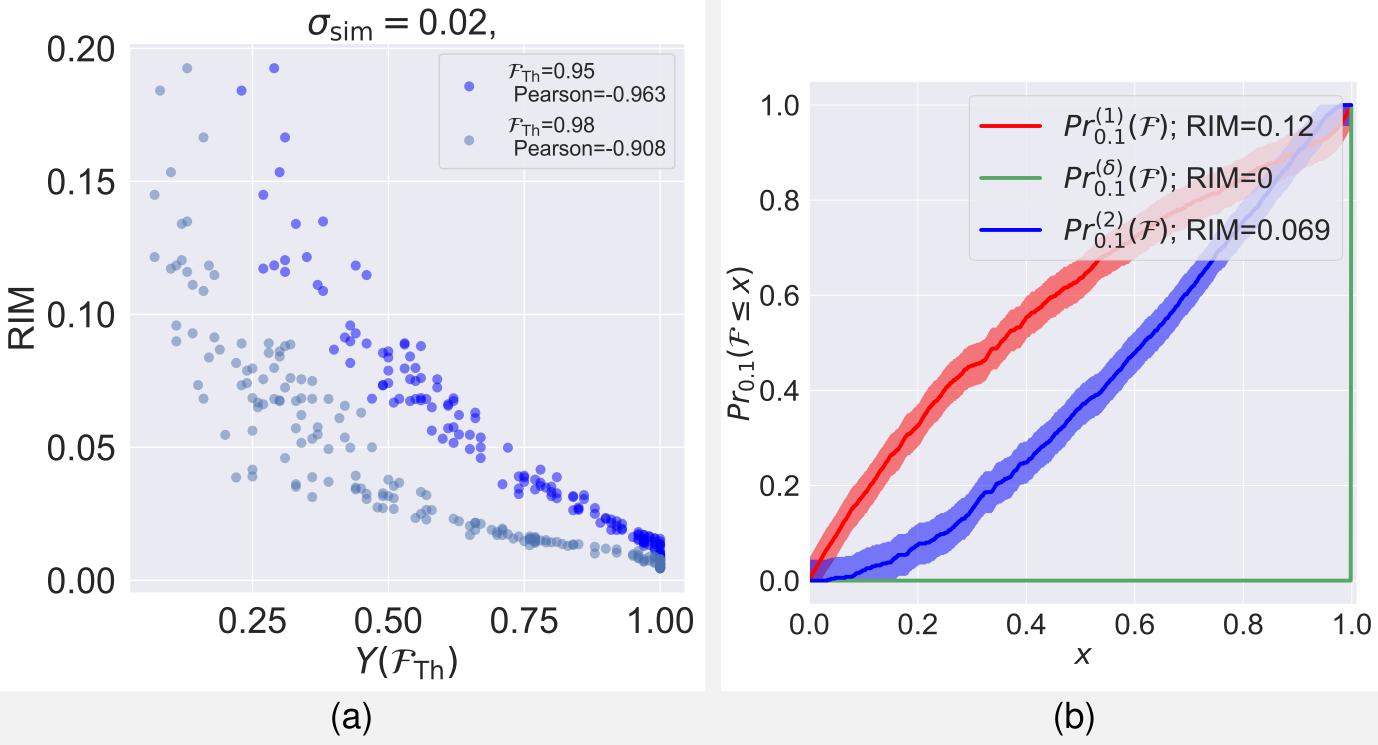


Figure 2: (a) Comparison of RIM with yield Y (fraction of fidelities greater than threshold fidelity  $\mathcal{F}_{th}$ ) at values  $\mathcal{F}_{th} = 0.95, 0.98$  for 200 controllers. (b) Illustration of how RIM is calculated for a single controller. Both figures are generated for a chain of length L = 5and a bit transition from  $|1\rangle$  to  $|3\rangle$ .

### References

- Frank C Langbein, Sophie Schirmer, and Edmond Jonckheere. Time optimal information transfer in spintronics networks. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 6454-6459. IEEE, 2015.
- Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.
- Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. *ACM Trans. Math. Softw.*, 23(4):550–560, December 1997.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. [5] Waltraud Huyer and Arnold Neumaier. Snobfit – stable noisy optimization by branch and fit. ACM Trans. Math. Softw., 35(2), July 2008.
- [6] John A Nelder and Roger Mead. A simplex method for function minimization. *The computer journal*, 7(4):308–313, 1965.



### Results

$$\mathbb{E}_{f\sim \mathbf{P}(\mathcal{F})}\left[(1-f)^p\right]^{\frac{1}{p}} \qquad \textbf{(4)}$$

Individual controller comparison using the RIM for chain of length L = 5 and transition from  $|1\rangle$  to  $|3\rangle$ . Controllers are obtained numerically using L-BFGS ( $\sigma_{\text{train}} = 0$ ) [1, 3], PPO [4], SNOBFit [5] and Nelder-Mead [6] ( $\sigma_{\text{train}} = 0, 0.01, \dots, 0.05$ ). Controller performance is evaluated at uncertainty strengths  $\sigma_{\rm sim} = 0, 0.01, \ldots, 0.1.$ 

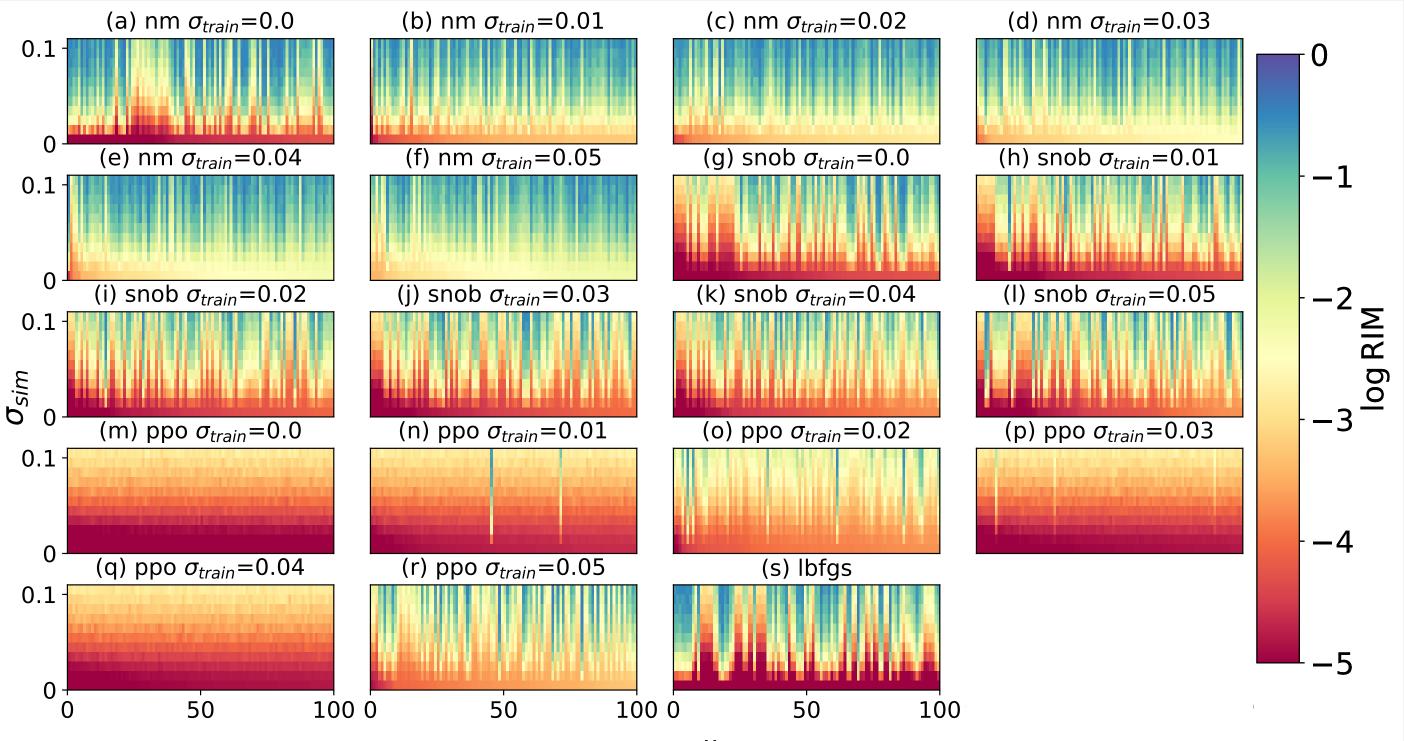


Figure 3: Top 100 controllers sorted (left to right) by  $1 - \mathcal{F}$  for the uncertainty level  $\sigma_{sim} = 0$ .

### Algorithmic RIM (ARIM) for RIM distribution comparison $\mathsf{ARIM} := \mathcal{W}_1(\mathcal{P}_{\sigma_{\mathsf{sim}}}(\mathsf{RIM}), \delta(\mathsf{RIM} - 0)) = \mathbb{E}[\mathsf{RIM}_1]$

(5) We use the ARIM to compare empirical quantum controller acquisition schemes. Here, reinforcement learning (PPO) has a lower sample complexity for ARIM optimisation that is especially pronounced in a stochastic setting.

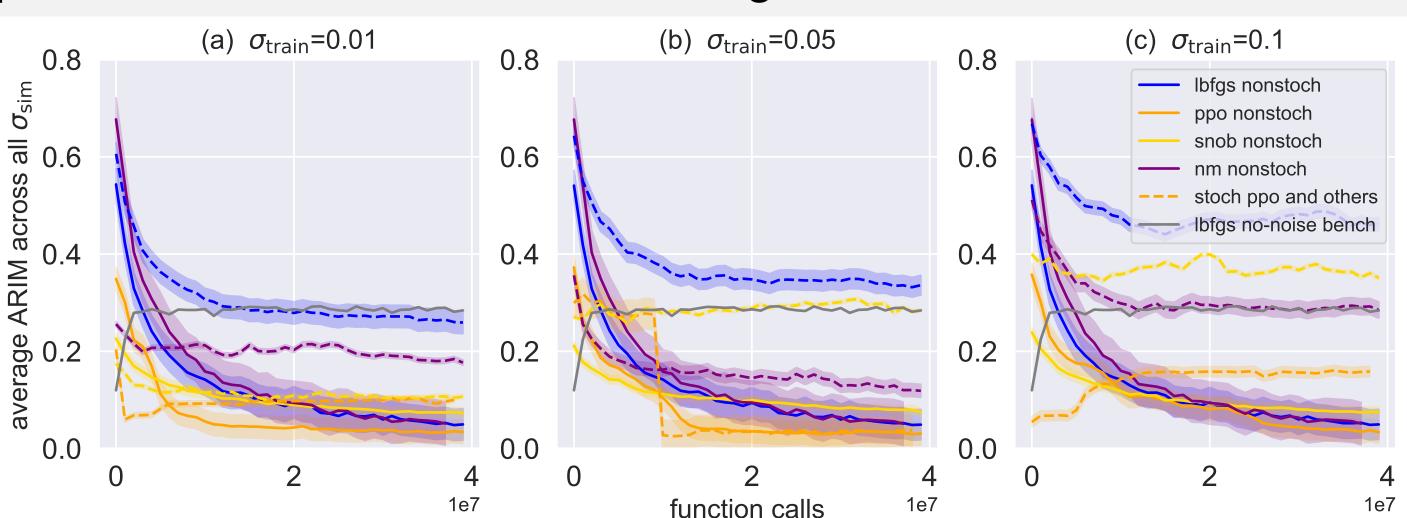


Figure 4: Asymptotic control algorithm ARIM performance when the number of fidelity function calls is unconstrained for derandomised (non-stochastic) and randomised optimisation objective function settings.

controller