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Abstract— This paper proceeds from the premise that the
topology of interference constrained wireless networks heavily
impacts their node-to-node delay, routing energy, and capacity
region. We quantitatively analyze how the discrete Ollivier-
Ricci curvature of a network affects the performance metrics
of several routing protocols. Since different protocols are
optimal relative to different metrics under different topologies,
an adaptive control system is proposed that identifies the
topology curvature and selects the best protocol under current
circumstances subject to user needs. Also, we analyze how
sensitive the four routing protocols (Heat Diffusion, Dirichlet,
Back Pressure and Shortest Path Routing) under examination
are to varying topological environment, as it would commonly
be encountered in wireless networks.

I. INTRODUCTION

A Wireless Sensor Network (WSN) typically consists
of a large number of low-power computation-capable au-
tonomous nodes. Unlike wired networks where node-to-
node delay is usually the only optimization objective, in
WSNs power conservation is also a major concern. Sensor
nodes usually carry generally irreplaceable power sources,
densely deployed within a frequently changing environ-
ment topology [1]. This is the reason why a power-aware
routing protocol is usually preferred in sensor networks
instead of network flooding. However, certain applications
still require lower delay, which generally entails a trade-off
with power consumption. SEAD (Scalable Energy-Efficient
Asynchronous Dissemination [2]) is an example of a protocol
that proposes to trade-off between node-to-node delay and
energy saving. In addition to protocol dependence, the vari-
ous conflicting metrics also depend on network topology—
more specifically curvature that has become the prime metric
in relation to congestion and load balancing [5], stability
and capacity region [19], transmission reliability [23], etc.

Our focus here is to develop a numerical, quantitative
understanding of the relationship between network topology
and delay/routing energy performance. Network topology
here is understood in the Ollivier-Ricci curvature sense [19]
for the main reason that it regulates the heat flow that our
Heat Diffusion and related protocol mimic. Since a WSN
is subject to frequent network topology change, we also
analyze the impact of topology change on routing perfor-
mance, and develop a measure of protocol robustness to
varying topology. Ultimately, we target a control scheme that
dynamically adapts protocols in different network topological
environment subject to different user preference.
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II. DIFFERENT CURVATURES FOR DIFFERENT PROTOCOLS

A. Shortest Path Routing in Wired Networks

It is shown in [3] that, under Shortest Path Routing
(SPR) protocol where each node is forwarding packets in
accordance with a global routing table, congestion of the
network arises as a combination of the LPR protocol and
the negative curvature of the network. It is proved that in a
Gromov negatively curved space, geodesics with uniformly
distributed (source, destination) end points concentrate in,
and create congestion at, the “centroid” of the network. The
“centroid” is quantitatively defined as a point of maximum
betweenness centrality. Asymptotic congestion estimates at
the centroid for very large size networks clearly demonstrate
the congestion-curvature dependency [4]. As we will show
in later sections, network “congestion” in wireless networks
is consistent with these wireline results—provided that we
use a more proper curvature metric.

B. Heat Diffusion Routing in Wireless Networks

In WSNs, the global topology information is not generally
available to every node, so that access to a global routing
table is no longer an option. Thus, a dynamic routing
protocol referred to as Back-Pressure (BP) [6] routing that
acts on local queue backlogs has been proposed. It achieves
maximum throughput in the presence of varying network
topology without knowing arrival rates nor global topology.
BP has been widely investigated, including optimal BP
routing in unreliable channels [24], comparing MaxWeight
routing with BP [25] and combing BP with LPR [26].

Heat Diffusion (HD) protocol, originally proposed in [7],
is also a dynamic routing protocol with the unique feature
that it mimics the discrete heat diffusion process with
only information from neighboring nodes. It is proved to
stabilize the network for any rate matrix in the interior of
the capacity region.

The Heat Diffusion protocol, as a variation of BP, is
briefly formulated as follows:
At timeslot n, let Q(d)

i (n) denote the number of d-packets
(those packets bound to destination d ∈ K) queued at the
network layer in node i, and f

(d)
ij (n) the actual number of

d-packets transmitted via link ij, constrained by the link
capacity µij(n). HD is designed along the same 3-stage
process as BP: weighting-scheduling-forwarding.

• HD Weighting: At each timeslot n and for each link
(i, j), the algorithm first finds the optimal d–packets to



transmit as

Q
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}
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d

Q
(d)
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To attribute a weight to each link, the HD algorithm
performs the following:

f̂ij(n) = min
{⌈

1/2 Q
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f̂ij(n)

)(
Q
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ij (n)

)
. (3)

• HD Scheduling: After assigning the optimal weight (3)
to each link, the scheduling matrix S(n) is chosen in a
scheduling set S.
It entails solving a centralized optimization problem:

S(n) ∈ argmax
s∈S

∑
i

S(ei)wei ,

subject to ei, ej ∈ S ⇒ ∂ei ∩ ∂ej = ∅,
(4)

where i, j ∈ V and ei, ej ∈ E . S(ei) is a boolean
variable taking value 0 or 1, with 1 denoting the edge
ei being activated in the scheduling set and 0 otherwise.
wij is the edge weight. ∂ei denotes the two nodes at
both ends of the edge ei.

• HD Forwarding: Subsequent to the scheduling stage,
each activated link transmits f̂ij (n) number of packets
in accordance with (2).

The Dirichlet protocol (a variant of HD) was originally
proposed in [8]. The Dirichlet routing energy is defined as the
sum of the squares of the link packet transmissions weighted
by the link cost factors. It is proposed that the routing cost
can be minimized if the routing protocol follows Dirichlet’s
Principle. The Dirichlet protocol is briefly reviewed as fol-
lows:
• Dirichlet Weighting: A set Kij(n) is defined such

that Q(d)
ij (n) > 0,∀d ∈ Kij(n). Individual link cost

is defined as ρij .
The Dirichlet weighting consists in solving the follow-

ing optimization problem to find f̂ (d)ij (n):

Minimize
∑

d∈Kij(n)

(ρ
(d)
ij (n)−1Q

(d)
ij (n)− f̂ (d)ij (n))2 (5)

subject to∑
d∈Kij(n)

f̂
(d)
ij (n) ≤ µij(n) and 0 ≤ f̂ (d)ij (n) ≤ Q(d)

ij (n).

(6)
Notations are similar to those in HD protocol. Then
assign a weight to each class d ∈ Kij(n). The weight
of each class d is given as

w
(d)
ij (n) := 2ρ

(d)
ij (n)−1Q

(d)
ij (n)f̂

(d)
ij (n)− (f̂

(d)
ij (n))2

(7)

and the final link weight is

wij(n) =
∑

d∈Kij(n)

w
(d)
ij (n). (8)

• Dirichlet Scheduling: It is the same as the HD schedul-
ing with 1-hop interference model.

• Dirichlet Forwarding: Subsequent to the scheduling

stage, each activated link transmits a number f̂ (d)ij (n)
of d packets.

Note that the main difference between Dirichlet routing
and HD is in the weighting stage. In HD routing, half of the
queue differential is considered for the most of the time while
in Dirichlet, the full queue differential is in the weighting
algorithm.

C. Ollivier-Ricci Curvature for Wireless Networks
The relatively new Ollivier-Ricci curvature [10], [11],

[12] is a graph version of the well known Ricci curvature
in differential geometry and, as already argued in [19], it
is a fundamental tool in discrete heat calculus. It can be
traced back to the Ricci curvature on manifolds providing
an upper bound on the heat kernel [13, Sec. 3], [31, Sec.
5.6]. The Ollivier-Ricci curvature has already been used
to anticipate congestion in a wireless network under the
purely thermodynamical Heat Diffusion protocol [19]. The
theoretical fact that underpins this observation is that the
Ricci curvature regulates the flow of heat on a Riemannian
manifold, in somewhat the same way that the sectional
curvature regulates geodesics. Ollivier-Ricci curvature re-
cent applications include formulating Hamiltonian Monte
Carlo [27], unraveling Internet topology [30], modeling
robustness of cancer networks [28], and analyzing market
fragility and systemic risk [29]. However, here, our interest
in the Ollivier-Ricci curvature rather stems from its definition
in terms of a “transportation cost,” which can be linked to
queue occupancy, routing energy, even time to reach steady-
state.

Consider a weighted graph ((V, E), ρ). On this graph, for
each vertex i, we define a probability measure mi on the
neighboring nodes N (i) as follows:

mi(j) =
ρij∑

j∈N (i) ρij
, if ij ∈ E ,

= 0, otherwise.

The Ollivier-Ricci curvature is defined in terms of the
transport properties of the graph:

Definition 1: The Ollivier-Ricci curvature of the graph
((V, E), ρ) endowed with the set of probability measures
{mi : i ∈ V} is defined, along the optimal path [i, j], as

κ([i, j]) = 1− W1(mi,mj)

d(i, j)
, (9)

where W1(mi,mj) is the first Wasserstein distance between
the probability measures mi and mj defined on N (i) and
N (j), resp.,

W1(mi,mj) = inf
ξij

∑
k,`∈N (i)×N (j)

d(k, `)ξij(k, `),



where the infimum is extended over all “coupling” measures
ξij defined on N (i) × N (j) and projecting on the first
(second) factor as mi (mj), that is,

∑
`∈N (j)

ξij(k, `) = mi(k),

 ∑
k∈N (i)

ξij(k, `) = mj(`)

 ,

and d(i, j) is the usual metric emanating from the edge
weight ρ.
More intuitively, ξij(k, l) is called transference plan. It tells
us how much of the mass of k ∈ N (i) is transferred to
l ∈ N (j), but it does not tell us about the actual path that
the mass has to follow.

The first Wasserstein distance is one class of shortest
transportation distance between two probability distributions.
For details of this concept, see [14], [15].

Bauer [12] developed a general sharp inequality for undi-
rected, weighted, connected, finite (multi)graph of N vertices
G = (V, E). Note that it is computationally viable to solve
the exact curvature instead of bounds. The optimal coupling
can be solved via linear programming. The calculation of the
1st Wasserstein distance is commonly referred to as Earth
Mover Distance in Computer Science applications, such as
pattern recognition.

III. PROTOCOL PERFORMANCE UNDER DIFFERENT
NETWORK TOPOLOGY

A. Simulation Setup

The Back-Pressure, Heat Diffusion, Dirichlet, and Short-
est Path Routing protocols were programmed and run in
MATLAB 2015a. Link capacities are set to infinity unless
otherwise specified. The centralized scheduling was imple-
mented using Edmonds’ blossom algorithm [9] and can be
solved in O(n2m), where n = |V| and m = |E|. However,
the actual wall-clock time of MATLAB implementation of
this algorithm is still extremely time-consuming in practice
compared to other processes, and typically consumes more
than 95% of processing time in every timeslot. For this
reason, we propose, in [21], an Ising formulation of the
scheduling problem under k-hop interference model for
arbitrary k, which is proved to be NP-hard. The problems are
solved efficiently on an adiabatic quantum computer (such
as D-Wave).

All simulations are multi-class. Each node is sending
packets to every other node. The packet arrival rate follows
a Poisson distribution with λ ∈ [2, 8]. For the sake of the
comparison analysis, Shortest Path Routing is assumed to be
implementable in wireless sensor networks. Although it is
not a fair comparison since Shortest Path Routing protocol
(with global routing table) has access to more information
than other protocols, the former is still being considered in
order to show that the results are consistent with congestion
results in wired networks in the sense developed in [3].

The Ollivier-Ricci curvature is calculated locally between
each pair ∂e of nodes. Even though the Ollivier-Ricci cur-
vature is a local concept, we nevertheless give it a global
significance by taking its numerical average over all edges.

This process is similar to the Gauss-Bonnet theorem where
the local curvature is integrated to give a global Euler charac-
teristic. Unfortunately, such a theorem for the Ollivier-Ricci
curvature (rather than the sectional curvature) on discrete
graphs has yet to be developed.

B. Node-to-Node Delay Performance

The average network delay is formulated as

Q = lim
τ→∞

sup
1

τ

τ−1∑
n=0

E

{∑
i∈V

∑
d∈K

q
(d)
i (n)

}
. (10)

Since Poisson arrival rate is used in the simulation, by
Little’s Theorem, the expected time-averaged total queue
congestion is proportional to the long-term averaged node-to-
node network delay. Thus, it is sufficient to deal with average
queue occupancy over all nodes in the network. As shown in
Fig. 1, as the curvature of the underlying network becomes
more positive, the node-to-node delay generally decreases in
all four protocols being used in the comparison. It is worth
noting the following:
• General Performance: Generally, the Heat Diffusion

protocol performs worst in the sense of node-to-node
delay; this is due to the unique packet forwarding
mechanism, where only half of the queue differential
is being transmitted. This feature is to prevent packet
looping [7].

• Dirichlet vs. Shortest Path Routing: Although Shortest
Path Routing has access to more information (global
routing table), in more negatively curved networks, it
still performs worse than Dirichlet routing in the sense
of average delay, which is again a dynamic protocol
where each node has information only on its neighbor-
ing nodes.

• Dirichlet routing energy: Note that the Dirichlet proto-
col proposed to minimize routing energy while ensuring
queue stability for all stabilizable traffic [8]; however, in
simulation it still entails relatively high routing energy.
This is not a contradiction to the original theory. As
shown in [19], protocols with higher steady state delay
generally fails to stabilize faster as network capacity
region slowly shrinks, and Dirichlet protocol has lowest
queue occupancy among 3 dynamic protocols in com-
parison.

C. Routing Energy Performance

The total routing energy is formulated as

R(n) =
∑
ij∈E

∑
d∈K

ρij(f
(d)
ij (n))2. (11)

The routing energies of the four protocols under compar-
ison are plotted in Fig. 2.

As shown the Dirichlet routing generally has higher total
routing energy than other protocols, but performs relatively
better than Back-Pressure in more negatively curved net-
works. It worth noting the following:
• General Performance: As the network is becoming more

positively curved, the total routing energy decreases.
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Fig. 1: Steady state node-to-node delay of various routing
protocols in different network topologies. SPR, BP, HD
stands for Shortest Path Routing, Back Pressure, Heat Dif-
fusion respectively

Note that the routing energy is a summation measure
instead of an average measure.

• Sensitivity to topology: As can be seen, the routing
energy of the Back-Pressure protocol is much more
sensitive to change of topology than other protocols.
This will be analyzed in further details later.

D. Varying Topology and Sensitivity

Due to the nature of wireless sensor networks, the perfor-
mance of protocols under changing topology is an important
issue and a low sensitivity of delay and routing cost can be of
value in some applications. Topology control in wireless net-
works also arises to cope with constantly changing network
topology, such as the one in [16]. We believe that topology
control can be achieved by curvature control in wireless
networks. Curvature control has already been developed in
wired networks [3], [5].

Here we would like to quantitatively analyze how varying
topology would affect network performance. Simulation of
varying topology is done by randomly deleting/adding nodes
and links. The test graph is initialized as 30-node Erdös-
Rényi graph with uniform edge weight. The simulation
process is done in a controlled manner so that the overall
curvature is decreasing for the first half of the process and
then increasing for the second half, with details as follows:
• Link addition and deletion: At each timeslot, every

pair of nodes in the global graph is retrieved. If no

Fig. 2: Steady state routing energy of various routing proto-
cols in different network topologies

link is present between them, create a link with uniform
probability and weighted as the initial weight. If a link
already exists, delete it with same uniform probability.
Deletion and addition will be performed exclusively for
each timeslot to demonstrate the curvature change.

• Node addition and deletion: at each timeslot, certain
nodes are to be deleted following uniform probability. If
deleting such node results in disconnected graph, such
deletion is forbidden. Thus, the rank of the Laplacian
matrix has to be checked every time before deletion.
Certain nodes are to be added and linked to be estab-
lished to other nodes following uniform probability as
well.

• Weight variation: Weight variation is done by putting
a new weight to every existing link at every timeslot,
following a Gaussian distribution.

By adding more links to the graph, deleting nodes with
lower degree, adding more nodes to the centroid of the
graph, the curvature generally becomes more positive, and
vice versa. As shown in Fig. 3, different routing protocols
performs significantly differently in varying topologies, but
interestingly, both the delay and the routing energy of the
Dirichlet protocol remain in a very steady state situation
throughout the process of varying of the curvature.
Sensitivity Analysis:
As can be seen from Figs. 1 and 3, the node-to-node delay
and the routing energy significantly increase as the topology
of the network becomes more negative in Shortest Path Rout-
ing, Back Pressure and Heat Diffusion, but remains relatively
stable for the Dirichlet protocol. We define measures of
protocol sensitivity to topology variation as

SQ =

∣∣∣∣dQaverage

dκaverage

∣∣∣∣ , SR =

∣∣∣∣dRaverage

dκaverage

∣∣∣∣ , (12)

that is, the sensitivity of a protocol node-to-node delay and
routing energy, respectively, to curvature variation. Qaverage

denotes the total queue occupancy averaged over 20 timeslots



Fig. 3: Performance and sensitivity of different routing
protocols in varying topology

TABLE I: Numerical values of sensitivity of four protocols.
SQ is in the scale of 103, SR is in the scale of 107.

(rather than over infinitely many timeslots as in Eq. (10)) to
smooth over the transients of the network dynamics; Raverage

denotes the total routing energy (11) averaged over 20 time
slots; and κaverage is the Ollivier-Ricci curvature averaged
over 20 timeslots. We propose to use them as metrics for
network routing protocol. Also 1

S could be used to denote
the protocol robustness to changing topology. The numerical
results of the sensitivity of different protocols is summarized
in Table I. The Dirichlet protocol has lowest sensitivity, thus
highest robustness to varying topology in the sense of node-
to-node delay, while Heat Diffusion has highest robustness in
the sense of routing energy. Subject to particular application
needs, different protocols can be chosen selected according
to their sensitivity metrics.

E. Summary of Topological Impacts

It has been shown via several numerical examples that
the performance of different routing protocols varies signif-
icantly across networks with different topological character-
istics. The Dirichlet and Back-Pressure protocols generally
consume more routing energy than the Shortest Path Routing
and Heat Diffusion protocols, but keep delay reasonably low.
The Heat Diffusion protocol, on the other hand, consumes as
less routing energy as possible, while creating much higher
delay. Its routing energy is both the lowest and the least
sensitive to changing topology, while its delay is both the
highest and the most sensitive. This is believed to be a
result of the laziness feature that is developed against packet
looping.

Note that compared to Dirichlet routing and Heat Diffu-
sion, Back-Pressure does not have an apparent strength in
terms of delay or routing energy, but it rather performs in
a mediocre manner on both metrics. This illustrates again
the delay-energy tradeoff discussed in [18]. Thus, different
protocols can be chosen according to different application
needs, or a control approach can be developed to switch
routing protocol in a graph curvature feedback scheme.

IV. CURVATURE-DRIVEN ADAPTIVE CONTROL

It is sometimes desirable for a network to be capable of
multi-protocol switching, such as the RFID reader system
in [17], especially under potentially significant curvature
change that could degrade network performance below spec-
ifications. We hereby propose an adaptive control scheme
taking switching decisions on the base of network curvature
identification data to keep network performance as desired.
Fig. 4 shows the overall architecture of the adaptive protocol.
Instead of an adaptation law depending on a numerical esti-
mate of the curvature, we propose a decision tree adaptation
law that utilizes the sign of the curvature only, as shown in
Fig. 5. The switching decision process can be done either
every timeslot or preferably only once over an arbitrary
number of timeslots since topology variation is mostly likely
much slower compared with timeslot.

Also, it is important to note that the implementation of
such a control scheme requires a global gateway that sends
the information of global curvature to every node. Since
Ollivier-Ricci curvature is by itself a local measure, it is
worth investigating in the future how control based on local
curvature would affect the global performance by assuming
that each node could operate under its own protocols in some
synchronous manner.

V. CONCLUSION AND FUTURE WORK

Following in the footsteps of our previous work [19], we
have further developed the quantitative analysis of different
protocols under varying topologies and proposed a possible
adaptive control method driven by a global curvature metric.
Relations between congestion and network topology are
consistent in both wired and wireless networks, except that
the former one uses the Gromov concept whereas the latter
uses the more recent Ollivier-Ricci curvature. It is also worth



Fig. 4: Adaptive system switching to best protocol given
current topology and desired performance metric

Fig. 5: Decision tree based switching logic of the adaptive
system of Fig. 4. Each arrow color represents different
categorization of curvature.

noting that, in negatively curved networks, if every node is
acting in its own interest, it would deteriorate the overall
performance in both wired and wireless networks. This could
have potential applications in social network studies and
game theory. In the near future, we would implement the
control in more practical setups and further develop potential
control and decision making methods based on local Ollivier-
Ricci curvature and thus further develop protocol based on
topology and curvature control.
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