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Abstract—We investigate optimal routing and scheduling
strategies for multi-hop wireless networks with rateless codes.
Rateless codes allow each node of the network to accumulate
mutual information with every packet transmission. This enables
a significant performance gain over conventional shortest path
routing. Further, it also outperforms cooperative communication
techniques that are based on energy accumulation. However,
it requires complex and combinatorial networking decisions
concerning which nodes participate in transmission, and which
decode ordering to use. We formulate three problems of interest
in this setting: (i) minimum delay routing, (ii) minimum energy
routing subject to delay constraint, and (iii) minimum delay
broadcast. All of these are hard combinatorial optimization prob-
lems and we make use of several structural properties of their
optimal solutions to simplify the problems and derive optimal
greedy algorithms. Although the reduced problems still have
exponential complexity, unlike prior works on such problems,
our greedy algorithms are simple to use and do not require
solving any linear programs. Further, using the insight obtained
from the optimal solution to a line topology, we propose two
simple heuristics that can be implemented in polynomial time
and in a distributed fashion and compare them with the optimal
solution. Simulations suggest that both heuristics perform very
close to the optimal solution over random network topologies.

Index Terms—Mutual Information Accumulation, Rateless
Codes, Minimum Delay Routing, Minimum Energy Routing

I. INTRODUCTION

Cooperative communication promises significant gains in
the performance of wireless networks over traditional tech-
niques that treat the network as comprised of point-to-point
links. Cooperative communication protocols exploit the broad-
cast nature of wireless transmissions and offer spatial diver-
sity gains by making use of multiple relays for cooperative
transmissions. This can increase the reliability and reduce the
energy cost of data transmissions in wireless networks. See
[2] for a recent comprehensive survey.

Most prior work in the area of cooperative communication
has investigated physical layer techniques such as orthogonal
repetition coding/signaling [3], distributed beamforming [4],
distributed space-time codes [5], etc. All these techniques
perform energy accumulation from multiple transmissions to
decode a packet. In energy accumulation, a receiver can
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decode a packet when the total received energy from mul-
tiple transmissions of that packet exceeds a certain threshold.
An alternate approach of recent interest is based on mutual
information accumulation [6] [7]. In this approach, a node
accumulates mutual information for a packet from multiple
transmissions until it can be decoded successfully. This is
shown to outperform energy accumulation based schemes,
particularly in the high SNR regime, in [6] [7].

Such a scheme can be implemented in practice using
rateless codes of which Fountain and Raptor codes [8]–[10]
are two examples. Rateless codes encode information bits into
potentially infinite-length codewords. Subsequently, additional
parity bits are sent by the transmitter until the receiver is able
to decode. The decoding procedure at the receiver is carried
out using belief propagation algorithms. For an overview of
the working of Fountain, LT, and Raptor codes, we refer to
the excellent survey in [11].

In addition to allowing mutual information accumulation,
rateless codes provide further advantages over traditional fixed
rate schemes in the context of fading relay networks as
discussed in [12] [13]. Unlike fixed rate code schemes in
which knowledge of the current channel state information
(CSI) is required at the transmitters, rateless codes adapt to
the channel conditions without requiring CSI. This advantage
becomes even more important in large networks where the cost
of CSI acquisition grows exponentially with the network size.
However, this introduces deep memory in the system because
mutual information accumulated from potentially multiple
transmissions in the past can be used to decode a packet.

In this paper, we study three problems on optimal routing
and scheduling over a multi-hop wireless network using mu-
tual information accumulation. Specifically, we first consider
a network with a single source-destination pair and n relay
nodes. When a node transmits, the other nodes accumulate
mutual information at a rate that depends on their incoming
link capacity. All nodes operate under bandwidth and energy
constraints as described in detail in Section II. We consider
three problems in this setting. In the first problem, the transmit
power levels of the nodes are fixed and the objective is
to transmit a packet from the source to the destination in
minimum delay (Section III). In the second problem, the
transmit power levels are variable and the objective is to
minimize the sum total energy to deliver a packet to the
destination subject to a delay constraint (Section IV). In the
third problem, we consider the network model with fixed
transmit power levels (similar to the first problem) and with a
single source where the objective is to broadcast a packet to
all the other nodes in minimum delay (Section V). All of these
objectives are important in a variety of networking scenarios.
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Related problems of optimal routing in wireless networks
with multi-receiver diversity have been studied in [14]–[17]
while problems of optimal cooperative diversity routing and
broadcasting are treated in [18]–[21] and references therein.
Although these formulations incorporate the broadcast nature
of wireless transmissions, they assume that the outcome of
each transmission is a binary success/failure. Further, any
packet that cannot be successfully decoded in one transmission
is discarded. This is significantly different from the scenario
considered in this paper where nodes can accumulate partial
information about a packet from different transmissions over
time. This can be thought of as networking with “soft”
information.

Prior work on accumulating partial information from multi-
ple transmissions includes the work in [7], [22]–[27]. Specifi-
cally, [22] considers the problem of minimum energy unicast
routing in wireless networks with energy accumulation and
shows that it is an NP-complete problem. Similar results are
obtained for the problem of minimum energy accumulative
broadcast in [23]–[25]. A related problem of accumulative
multicast is studied in [26]. Minimum energy unicast routing
with energy accumulation only at the destination is considered
in [27]. The work closest to ours is [7] which treats the
minimum delay routing problem with mutual information
accumulation. Both [24] [7] develop an LP based formulation
for their respective problems that involves solving a linear
program for every possible ordering of relay nodes over all
subsets of relay nodes to derive the optimal solution. Thus,
for a network with n relay nodes, this exhaustive approach
requires solving

∑n
m=1

(
n
m

)
m! > n! linear programs.

The primary challenge associated with solving the problems
addressed in this paper is their inherent combinatorial nature.
Unlike traditional shortest path routing problems, the cost
of routing with mutual information accumulation depends
not only on the set of nodes in the routing path, but also
their relative ordering in the transmission sequence, making
standard shortest path algorithms inapplicable. Therefore, we
approach the problem differently. To derive the optimal trans-
mission strategy for the first problem, we first formulate an
optimization problem in Section III-B that optimizes over all
possible transmission orderings over all subsets of relay nodes
(similar to [24] [7]). This approach clearly has a very high
complexity of O(n!). Then in Section III-C, we prove a key
structural property of the optimal solution that allows us to
simplify the problem and derive a simple greedy algorithm
that only needs to optimize over all subsets of nodes. Further,
it does not require solving any linear programs. Thus, it has
a complexity of O(2n). We derive a greedy algorithm of
the same complexity for the second problem in Section IV.
We note that this complexity, while still exponential, is a
significant improvement over solving O(n!) linear programs.
For example, with n = 10, this requires 210 = 1024 runs of a
simple greedy algorithm as compared to 10! = 3628800 runs
of an LP solver. Note that for small networks, (say, n ≤ 10),
it is reasonable to use our algorithm to exactly compute the
optimal solution. Further, for larger n it provides a feasible
way to compute the optimal solution as a benchmark when
comparing against simpler heuristics.
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Fig. 1. Example network with source, destination and 4 relay nodes. When
a node transmits, every other node that has not yet decoded the packet
accumulates mutual information at a rate given by the capacity of the link
between the transmitter and that node.

For the minimum delay broadcast problem, we identify a
similar structural property of the optimal solution in Section
V that allows us to simplify the problem and derive a simple
greedy algorithm. While this greedy algorithm still has a
complexity of O(n!), it does not require solving any linear
programs and thus improves over the result in [24] that
requires solving n! linear programs. In general, we expect
all these problems to be NP-complete based on the results in
[22]–[25]. For the special case of a line topology, we derive
the exact optimal solution in Section III-D. Finally, in Section
VI, we propose two simple heuristics that can be implemented
in polynomial time and in a distributed fashion and compare
them with the optimal solution. Simulations suggest that both
heuristics perform quite close to the optimal solution over
random network topologies.

Before proceeding, we note that the techniques we apply
to get these structural results can also be applied to similar
problems that use energy accumulation instead of mutual
information accumulation.

II. NETWORK MODEL

The network model consists of a source s, destination d
and n relays r1, r2, . . . , rn as shown in Fig. 1. There are no
time variations in the channel states. This models the scenario
where the coherence time of the channels is larger than any
considered transmission time of the encoded bits. In the first
two problems, the source has a packet to be delivered to the
destination. In the third problem, the source packet must to
delivered to all nodes in the network.

Each node i transmits at a fixed power spectral density
(PSD) Pi (in units of joules/sec/Hz) that is uniform across
its transmission band. However, the transmission duration for
a node is variable and is a design parameter. The total available
bandwidth is W Hz. A node can transmit the packet only if
it has fully decoded the packet. For this, it must accumulate
at least Imax bits of total mutual information.

All transmissions happen on orthogonal channels in time
or frequency and at most one node can transmit over a fre-
quency channel at any given time. The channel gain between
nodes i and j is given by hij which is independent of the
frequency channel. However, this is not necessarily known at
the transmitting nodes.

Under this assumption, the minimum transmission time
under the two orthogonal schemes (where nodes transmit in
orthogonal time vs. frequency channels) is the same. In the
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Fig. 2. Example timeslot and transmission structure. In each stage, nodes
that have decoded the full packet transmit on orthogonal channels in time.

following, we will focus on the case where transmissions are
orthogonal in time. When a node i transmits, every other
node j that does not have the full packet yet, receives mutual
information at a rate that depends on the transmission capacity
Cij (in units of bits/sec/Hz) of link i − j. This transmission
capacity itself depends on the transmit power Pi and channel
strength hij . For example, for an AWGN channel, using
Shannon’s formula, this is given by Cij = log2

[
1 + hijPi

N0

]
where N0/2 is the PSD of the noise process. Specifically, if
node i transmits for duration ∆ over bandwidth W , then node
j accumulates ∆WCij bits of information. In the following,
we assume W = 1 for simplicity. We assume that nodes use
independently generated ideal rateless codes so that the mutual
information collected by a node from different transmissions
add up. We can incorporate the non-idealities of practical
rateless codes by multiplying Cij with a factor 1/(1+ε) where
ε ≥ 0 is the overhead. A similar model has been considered
in [7].

III. MINIMUM DELAY ROUTING

Under the modeling assumptions discussed in Section II, the
problem of routing a packet from the source to the destination
with minimum delay consists of the following sub-problems:
• First, which subset of relay nodes should take part in

forwarding the packet?
• Second, in what order should these nodes transmit?
• And third, what should be the transmission durations for

these nodes?
We next discuss the transmission structure of a general policy
under this model.

A. Timeslot and Transmission Structure

Consider any transmission strategy G for routing the packet
to the destination in the model described above. This includes
the choice of the relay set, the transmission order for this set,
and the transmission durations for each node in this set. Let R
denote the subset of relay nodes that take part in the routing
process under strategy G. By this, we mean that each node
in R is able to decode the packet before the destination and
then transmits for a non-zero duration. There could be other
nodes that are able to decode the packet before the destination,
but these do not take part in the forwarding process and are
therefore not included in the set R.

Let k = |R| be the size of this set. Also, let O be the
ordering of nodes in R that describes the sequence in which
nodes in R successfully decode the packet under strategy G.
Without loss of generality, let the relay nodes in the orderingO

be indexed as 1, 2, 3, . . . , k. Also, let the source s be indexed
as 0 and the destination d be indexed as k + 1. Initially,
only the source has the packet. Let t0 be the time when it
starts its transmission and let t1, t2, . . . , tk denote the times
when relays 1, 2, . . . , k in the ordering O accumulate enough
mutual information to decode the packet. Also, let tk+1 be the
time when the destination decodes the packet. By definition,
t0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ tk+1. We say that the transmission
occurs over k + 1 stages, where stage j, j ∈ {0, 1, 2, . . . , k}
represents the interval [tj , tj+1]. The state of the network at
any time is given by the set of nodes that have the full packet
and the mutual information accumulated so far at all the other
nodes. Note that in any stage j, the first j nodes in the ordering
O and the source have the fully decoded packet. Thus, any
subset of these nodes (including potentially all of them) may
transmit during this stage. Then the time-slot structure for the
transmissions can be depicted as in Fig. 2. Note that in each
stage, the set of relays that have successfully decoded the
packet increases by one (we ignore those relays that are not
part of the set R).

We are now ready to formulate the problem of minimum
delay routing with mutual information accumulation.

B. Problem Formulation

For each j, define the duration of stage j as ∆j = tj+1−tj .
Also, let Aij denote the transmission duration for node i in
stage j under strategy G. Note that Aij = 0 if i > j, else Aij ≥
0. This is because node i does not have the full packet until
the end of stage i− 1. The total time to deliver the packet to
the destination Ttot is given by Ttot = tk+1− t0 =

∑k
j=0 ∆j .

For any transmission strategy G that uses the subset of relay
nodes R with an ordering O, the minimum delay is given by
the solution to the following optimization problem:

Minimize: Ttot =
k∑
j=0

∆j

Subject to:
m−1∑
i=0

m−1∑
j=0

AijCim ≥ Imax ∀m ∈ {1, 2, . . . , k + 1}

j∑
i=0

Aij ≤ ∆j ∀j ∈ {0, 1, 2, . . . , k}

Aij ≥ 0 ∀i ∈ {0, 1, 2, . . . , k}, j ∈ {0, 1, 2, . . . , k}
Aij = 0 ∀i > j

∆j ≥ 0 ∀j ∈ {0, 1, 2, . . . , k} (1)

Here, the first constraint captures the requirement that node
m in the ordering must accumulate at least Imax amount
of mutual information by the end of stage m − 1 using all
transmissions in all stages up to stage m − 1. The second
constraint means that in every stage j, the total transmission
time for all nodes that have the fully decoded packet in that
stage cannot exceed the length of that stage.

It can be seen that the above problem is a linear program
and thus can be solved efficiently for a given relay set R
and its ordering O. Indeed, this is the approach taken in [7]
that proposes solving such a linear program for every possible
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Fig. 3. Optimal timeslot and transmission structure. In each stage, only the
node that decodes the packet at the beginning of that stage transmits.

ordering of relays for each subset of the set of relay nodes.
While such an approach is guaranteed to find the optimal
solution, it has a huge computational complexity of O(n!)
linear programs. In the next section, we show that the above
computation can be simplified significantly by making use of
a structural property of the optimal solution.

C. Characterizing the Optimal Solution of (1)

Let Ropt denote the subset of relay nodes that take part in
the routing process in the optimal solution. Let k = |Ropt|
be the size of this set. Also, let Oopt be the optimal ordering.
Note that, by definition, each node in Ropt transmits for a
non-zero duration (else, we can remove it from the set without
affecting the minimum total transmission time). Then, we have
the following:

Theorem 1: Under the optimal solution to the minimum
delay routing problem (1), in each stage j, it is optimal for
only one node to transmit, and that node is node j.

Proof: (Theorem 1): The proof of Theorem 1 is based on
an induction argument where we show that, for all k, if the
property implied by Theorem 1 holds in all stages j > k, then
it also holds for stage k. The full proof is provided in [1].

Fig. 3 shows the timeslot structure under the optimal solu-
tion. The above theorem shows that only one node transmits
in each stage, and that the optimal transmission ordering is
the same as the ordering that nodes in the set Ropt decode
the packet. Comparing this with the general timeslot structure
in Fig. 2, it can be seen that Theorem 1 simplifies problem
(1) significantly. Specifically, Theorem 1 implies that, given
the optimal relay set Ropt, the optimal transmission structure
(i.e., the decoding order and the transmission durations) can
be computed in a greedy fashion as follows. First, the source
starts to transmit and continues to do so until any relay node in
this set gets the packet. Once this relay node gets the packet,
we know from Theorem 1 that the source does not transmit in
any of the remaining stages. This node then starts to transmit
until another node in the set gets the packet. This process
continues until the destination is able to decode the packet.
The optimal solution to (1) can then be obtained by applying
this greedy transmission strategy to all subsets of relay nodes
and picking one that yields the minimum delay.1 Note that
applying this greedy transmission strategy does not require
solving an LP. While searching over all subsets still has an
exponential complexity of O(2n), it can be used to compute
the optimal solution as a benchmark.

1We note that the transmission structure characterized by Theorem 1 is
similar to the wavepath property shown in [22] for the problem of minimum
energy unicast routing with energy accumulation in wireless networks. How-
ever, our proof technique is significantly different.
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Fig. 4. A line topology.

Theorem 1 also implies that multiple copies of the packet
need not be maintained across the network. For example, note
that the source need not transmit after the first relay has
decoded the packet and therefore can drop the packet from
its queue.

We emphasize that the optimal transmission structure sug-
gested by Theorem 1 is not obvious. For example, at the
beginning of any stage, the newest addition to the set of relay
nodes with the full packet may not have the best links (in terms
of transmission capacity) to all the remaining nodes, including
the destination. This would suggest that under the optimal
solution, in general in each stage, nodes with the full packet
should take turns transmitting the packet. However, Theorem
1 states that such time-sharing is not required.

D. Exact Solution for a Line Topology

In this section, we present the optimal solution for a special
case of line topologies. Specifically, all nodes are located on a
line as shown in Fig. 4 and no two nodes are co-located. We
assume that each node transmits at the same PSD P . Further,
the transmission capacity Cij between any two nodes i and j
depends only on the distance dij between the two nodes and is
a monotonically decreasing function of dij . For example, we
may have that Cij = log2(1 + hijP

N0
) where P is the PSD and

hij = 1
dαij

where α ≥ 2 is the path loss coefficient. Under these
assumptions, we can determine the optimal cooperating set for
the problem of routing with mutual information accumulation
as follows.

Lemma 1: The optimal cooperating set for the line topology
as described above is given by the set of all relay nodes located
between the source and the destination.

Proof: (Lemma 1): See [1].
To get an idea of the reduction in delay achieved by us-

ing mutual information accumulation over traditional routing,
consider the line topology above with n nodes placed between
s and d at equal distance such that di,i+1 = 1 for all i. Also,
suppose the transmission capacity on link i − j is given by
Cij = γP

d2ij
where γ > 0 is a constant. Then the capacity of link

s− 1 is γP , the capacity of link s− 2 is γP
4 , the capacity of

link s−3 is γP
9 , and so on. Define θM=γP . Then, the minimum

delay for routing with mutual information accumulation is
given by

∑n
i=0 ∆i where:

∆0 =
Imax
Cs1

=
Imax
θ

,∆1 =
Imax −∆0Cs2

C12
=
Imax −∆0

θ
4

θ
...

∆n =
Imax −

∑n−1
i=0 ∆iCi,n+1

Cn,n+1
=
Imax −

∑n−1
i=0 ∆i

θ
(n+1−i)2

θ
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For simplicity, let us ignore the contribution of nodes that are
more than 3 units away from a receiver. Then, we have:
n∑
i=0

∆i =
(n+ 1)Imax − θ

4

∑n−1
i=0 ∆i − θ

9

∑n−2
i=0 ∆i

θ

⇒
n∑
i=0

∆i =
(n+ 1)Imax + θ

4∆n + θ
9 (∆n + ∆n−1)

θ(1 + 1
4 + 1

9 )

<
(n+ 1)Imax + θ

4∆0 + θ
92∆0

θ(1 + 1
4 + 1

9 )
=
Imax
θ

(
n+ 1 + 1

4 + 2
9

1 + 1
4 + 1

9

)
where we used the fact that ∆n,∆n−1 < ∆0. The mini-
mum delay for traditional routing is simply (n + 1)∆0 =
(n + 1) Imaxθ . Thus, for this network, the delay under mutual
information accumulation is smaller than that under traditional
routing at least by a factor n+1+ 1

4+ 2
9

(n+1)(1+ 1
4+ 1

9 )
that approaches

36
49 = 73% for large n.

IV. MINIMUM ENERGY ROUTING WITH DELAY
CONSTRAINT

Next, we consider the problem of minimizing the sum total
energy to transmit a packet from the source to destination
using mutual information accumulation subject to a given
delay constraint Dmax. This problem is more challenging
than problem (1) since in addition to optimizing over the
cooperating relay set and the transmission order of nodes in
that set, it also involves determining the PSD values to be used
for each node. Further, a cooperating relay node may need to
transmit at different PSD levels during different stages of the
transmission schedule.

A. Problem Formulation
Consider a transmission strategy (similar to the one dis-

cussed in Section III-A) that is described by a cooperating
relay set R of size |R| = k and a decoding order O. Let
the terms ∆j and Aij be defined in a similar fashion. Also,
let Pij denote the PSD at which node i transmits in stage j.
Then for any transmission strategy G that uses the subset of
relay nodes R with an ordering O, the minimum sum total
energy to transmit a packet from source to destination subject
to the delay constraint Dmax is given by the solution to the
following optimization problem:

Minimize:
k∑
j=0

j∑
i=0

AijPij

Subject to:
k∑
j=0

∆j ≤ Dmax

m−1∑
i=0

m−1∑
j=0

AijCim(Pij) ≥ Imax ∀m ∈ {1, . . . , k + 1}

j∑
i=0

Aij ≤ ∆j ∀j ∈ {0, 1, 2, . . . , k}

Aij , Pij ≥ 0 ∀i ∈ {0, 1, 2, . . . , k}, j ∈ {0, 1, . . . , k}
Aij = 0, Pij = 0 ∀i > j

∆j ≥ 0 ∀j ∈ {0, 1, 2, . . . , k} (2)

where the first constraint represents requirement that the total
delay must not exceed Dmax. The second constraint captures
the requirement that node m in the ordering must accumulate
at least Imax amount of mutual information by the end of
stage m − 1 using all transmissions in all stages up to stage
m − 1. Note that in the second constraint, Cim(Pij) denotes
the transmission capacity of link i−m in stage j and it is a
function of Pij , the PSD of node i in stage j. Also note that
(2) is not a linear program in general, since the Cim(Pij) may
be non-linear in Pij .

B. Characterizing the Optimal Solution of (2)

Let Ropt denote the subset of relay nodes that take part in
the routing process in the optimal solution. Let k = |Ropt| be
the size of this set. Also, let Oopt be the optimal ordering. Note
that, by definition, each node in Ropt transmits for a non-zero
duration (else, we can remove it from the set without affecting
the sum total energy). Finally, let P optij denote the optimal PSD
used by node i in stage j. Then, similar to Theorem 1, we have
the following:

Theorem 2: Under the optimal solution to the minimum
energy routing with delay constraint problem (2), in each stage
j, it is optimal for only one node to transmit, and that node
is node j.

Proof: (Theorem 2): Note that given any fixed set of
power levels Pij , the problem (2) becomes linear in the other
variables and is similar to the problem (1). Thus, similar
arguments as in the proof of Theorem 1 can be applied to
establish this property and we omit the details for brevity.

Although Theorem 2 simplifies the optimization problem
(2), it does not yield a greedy transmission strategy applied
over all subsets (similar to the one in Section III-C) for
computing the optimal solution. This is because the transmis-
sion order generated by the greedy strategy depends on the
power levels used. For general non-linear rate-power functions,
different power levels can give rise to different decoding orders
for the same relay set under the greedy strategy (see [1] for
an example). Thus, solving (2) may involve searching over all
possible orderings of all possible subsets. However, for the
special, yet important case of linear rate-power functions, this
problem can be simplified considerably. A linear rate-power
function is a good approximation for the low SNR regime.
For example, in sensor networks where bandwidth is plentiful
and power levels are small, it is reasonable to assume that
the nodes operate in the low SNR regime. In the following,
we will assume that the transmission capacity Cij(Pi) on link
i − j is given by Cij(Pi) = γPihij (in units of bits/sec/Hz)
where γ is a constant and Pi is the PSD of node i. Then, we
have the following:

Theorem 3: For linear rate-power functions, the decoding
order of nodes in the optimal set Ropt under the greedy
transmission strategy is the same for all non-zero power
allocations. Further, the sum total power required to transmit
a packet from the source to the destination is the same for all
non-zero power allocations.

Proof: (Theorem 3): The full proof is provided in [1].



6

C. A Greedy Algorithm

Theorem 2 suggests a simple method for computing the
optimal solution to (2) when the rate-power function is linear.
Specifically, we start by setting all PSD levels to the same
value, say some P > 0. From Theorem 3, we know that
the sum total power required to transmit a packet from the
source to the destination is the same for all non-zero power
allocations. Then, solving (2) is equivalent to solving the
minimum delay problem (1) with given power levels, except
the delay constraint. This can be done using the greedy strategy
described in Section III-C. If the solution obtained satisfies the
delay constraint Dmax, then we are done. Else, suppose we
get a delay D > Dmax. Then, we can scale up the power level
P by a factor D

Dmax
and scale down the duration of each stage

∆j by the same factor. This ensures that the delay constraint
is met while the sum total power used remains the same.

V. MINIMUM DELAY BROADCAST

Next, we consider the problem of minimum delay broadcast
for the network model described in Section II. In this problem,
starting with the source node, the goal is to deliver the packet
to all nodes in the network in minimum time with mutual
information accumulation. We assume that there are n nodes in
the network other than the source. Similar problems have been
considered in [23]–[25] which focus on energy accumulation
and where the goal is to broadcast the packet to all nodes
using minimum sum total energy.

A. Timeslot and Transmission Structure

For the minimum delay broadcast problem, the transmission
strategy and resulting time timeslot structure under a general
policy is similar to the one discussed for the minimum delay
routing problem in Section III-A. Specifically, let O be the
ordering of the n nodes that represents the sequence in
which they successfully decode the packet under any strategy.
Without loss of generality, let the nodes in the ordering O be
indexed as 1, 2, 3, . . . , n. Also, let the source s be indexed
as 0. Initially, only the source has the packet. Let t0 be
the time when it starts its transmission and let t1, t2, . . . , tn
denote the times when nodes 1, 2, . . . , n in the ordering O
accumulate enough mutual information to decode the packet.
We say that the transmission occurs over n stages, where stage
j, j ∈ {0, 1, 2, . . . , n − 1} represents the interval [tj , tj+1].
Note that in any stage j, the first j nodes in the ordering O
and the source have the fully decoded packet. Thus, any subset
of these nodes (including potentially all of them) may transmit
during this stage. For each j, define the duration of stage j as
∆j = tj+1−tj . Also, let Aij denote the transmission duration
for node i in stage j. As before, we have that Aij = 0 if i > j,
else Aij ≥ 0. The total time to deliver the packet to all the n
nodes is given by Ttot = tn − t0 =

∑n−1
j=0 ∆j .

B. Problem Formulation

For any transmission strategy that results in the decoding
order O, the minimum delay for broadcast is given by the

solution to the following optimization problem:

Minimize: Ttot =
n−1∑
j=0

∆j

Subject to:
m−1∑
i=0

m−1∑
j=0

AijCim ≥ Imax ∀m ∈ {1, 2, . . . , n}

j∑
i=0

Aij ≤ ∆j ∀j ∈ {0, 1, 2, . . . , n− 1}

Aij ≥ 0 ∀i ∈ {0, 1, 2, . . . , n− 1}, j ∈ {0, 1, 2, . . . , n− 1}
Aij = 0 ∀i > j

∆j ≥ 0 ∀j ∈ {0, 1, 2, . . . , n− 1} (3)

This is similar to (1) except that the set R contains all n
nodes and that d is not necessarily the last node to decode the
packet. As in (1), the first constraint captures the requirement
that node m in the decoding order O must accumulate at
least Imax amount of mutual information by the end of stage
m − 1 using transmissions in all stages up to stage m − 1.
The second constraint means that in every stage j, the total
transmission time for all nodes that have the fully decoded
packet in that stage cannot exceed the length of that stage.
Similar to (1), the above problem is a linear program and thus
can be solved efficiently for a given ordering O. This is the
approach taken in [24] (with energy accumulation instead of
mutual information accumulation, and with the objective of
minimizing total energy for broadcast instead of delay) that
proposes solving such a linear program for every possible
ordering of the n nodes, resulting in n! linear programs. In
the next section, we show that the above computation can
be simplified by making use of a structural property of the
optimal solution that is similar to the results of Theorems 1
and 2. This results in a greedy algorithm that does not require
solving such linear programs to compute the optimal solution.

C. Characterizing the Optimal Solution of (3)

Let Oopt be the decoding order under the optimal solu-
tion. Suppose the the nodes in the ordering are labeled as
{0, 1, 2, . . . , n − 1, n} with 0 being the source node. Then,
similar to Theorems 1 and 2, we have the following:

Theorem 4: Under the optimal solution to the minimum
delay broadcast problem (3), in each stage j, it is optimal
for at most one node to transmit.

Proof: (Theorem 4): The full proof is provided in [1].
While Theorem 4 states that under the optimal solution, at

most one node transmits in each stage j, unlike Theorems 1
and 2, it does not say that this node must be node j. In fact,
this node could be any one of the nodes that have the full
packet. Specifically, let rj be the node that transmits in stage j.
Then, using Theorem 4, we have that rj ∈ {0, 1, 2, . . . , j}. The
optimal timeslot structure for the minimum delay broadcast
problem is shown in Fig. 5. Note that unlike the optimal
timeslot structure for the minimum delay routing problem (Fig.
3), here it is possible for a node to transmit more than once
over the course of the broadcast. This property does not reduce
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s transmits

1 gets the
packet,

r1 transmits,
r1! {s, 1}

2 gets the
packet,

r2 transmits,
r2 ! {s, 1, 2}

n-1 gets the
packet,

rn-1 transmits,
rn-1! {s, 1,..., n-1}

t0 t1 t2 t3 tn-1 tn

W .......

stage 0 stage 1 stage 2 stage n-1

!0 !1 !2 !n-1

Fig. 5. Optimal timeslot and transmission structure for minimum delay
broadcast. In each stage, at most one node from the set of nodes that have
the full packet transmits.

the complexity of finding the optimal solution from O(n!)
linear programs to O(2n) runs of a greedy strategy. However,
we show in [1] that it still leads to a greedy algorithm for
finding the optimal solution that does not require solving n!
linear programs like in [24].

VI. DISTRIBUTED HEURISTICS AND SIMULATIONS

The greedy algorithm presented in Section III-C to com-
pute the optimal solution to problem (1) has an exponential
computational complexity and is centralized. In this section,
we present two simple heuristics that can be implemented in
polynomial time and in a distributed fashion. We compare the
performance of these heuristics with the optimal solution on
general network topologies. We also show the performance of
the traditional minimum delay route that does not use mutual
information accumulation.

Heuristic 1: Here, first the traditional minimum delay route
is computed using, say, Dijkstra’s shortest path algorithm on
the weighted graph (where the weight wij of link i − j is
defined as the time required to deliver a packet from i to
j, i.e., wij = Imax

Cij
). Let M denote the set of relay nodes

that form this minimum delay shortest path. Then the greedy
algorithm as described in Section III-C is applied on the set of
nodes in M. Note that we are not searching over all subsets
of M.2 Thus, the complexity of this heuristic is same as that
of any shortest path algorithm, i.e., O(|M|2).

Heuristic 2: Here, we start withM as the initial cooperative
set. Then, while applying the greedy algorithm of Section
III-C, if other nodes that are not in M happen to decode the
packet before the next node (where the next node is defined
as that node inM that would decode the packet if the current
transmitter continued its transmission), then these nodes are
added to the cooperative set if they have a better channel
to the next node than the current transmitter. The intuition
behind this heuristic is that while M is expected to be a
good cooperative set, this allows the algorithm to explore more
nodes and potentially improve over Heuristic 1.

In our simulations, we consider a network of a source,
destination, and n relay nodes located in a 10× 10 area. The
location of source (1.0, 2.0) and destination (8.0, 8.0) is fixed
while the locations of the other nodes are chosen uniformly at
random. The link gain between any two nodes i and j is chosen
from a Rayleigh distribution with mean 1. For simplicity, all
nodes have the same PSD. The total bandwidth W and packet
size Imax are both normalized to one unit. The transmission

2It may be possible to get further gains by searching over all subsets of
M, but the worst case complexity of doing so would again be exponential.
Our goal here is to develop polynomial time algorithms.
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Fig. 6. A 25 node network where the routes for traditional minimum delay,
Heuristics 1 and 2, and optimal mutual information accumulation are shown.

capacity of link i− j is assumed to be Cij = log2

(
1 + hij

dαij

)
where dij is the distance between nodes i and j and α is the
path loss exponent. We choose α = 3 for all simulations.

In the first simulation, n = 25 and the network topol-
ogy is fixed as shown in Fig. 6. We then compute the
traditional minimum delay route and the optimal solution
for routing with mutual information accumulation using the
greedy algorithm of Section III-C. We also implement Heuris-
tics 1 and 2 on this network. Fig. 6 shows the results. It
is seen that the traditional minimum delay route is given
by [s, 1, 9, 22, 19, 23, 25, 18, 10, d] while the optimal mutual
information accumulation route (according to the decoding or-
der) is given by [s, 1, 9, 22, 19, 16, 24, 17, 12, 23, 25, 18, 10, d].
The decoding order of nodes under Heuristic 1 is same as that
under the traditional minimum delay route while that under
Heuristic 2 is given by [s, 1, 9, 22, 19, 16, 23, 25, 18, 10, d]. The
total delay under traditional minimum delay routing, Heuristic
1, Heuristic 2, and optimal mutual information accumulation
routing was found to be 29.84, 23.73, 22.99 and 22.19 seconds
respectively.

This example demonstrates that the optimal route under
mutual information accumulation can be quite different from
the traditional minimum delay path. It is also interesting to
note that the set of nodes in M is a subset of the cooperative
relay set in this example. However, this does not hold in
general. We also note that the delay under both Heuristics
1 and 2 is close to the optimal value. Finally, while Heuristic
1 only uses the nodes in M, Heuristic 2 explores more and
ends up using node 16 as well.

In the second simulation, we choose n = 20. The source and
destination locations are fixed as before but the locations of the
relay nodes are varied randomly over 100 instances. For each
topology instance, we compute the minimum delay obtained
by these 4 algorithms. In Fig. 7, we plot the cumulative
distribution function (CDF) of the ratio of the minimum delay
under the two heuristics and the traditional shortest path to
the minimum delay under the optimal mutual information
accumulation solution. From this, it can be seen that both
Heuristic 1 and 2 perform quite well over general network
topologies. In fact, they are able to achieve the optimal
performance 40% and 60% of the time respectively. Further,
they are within 10% of the optimal at least 90% of the time
and within 15% of the optimal at least 98% of the time.
Also, Heuristic 2 is seen to outperform Heuristic 1 in general.
Finally, the average delay in routing with mutual information
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Fig. 7. The CDF of the ratio of the minimum delay under the two heuristics
and the traditional shortest path to the minimum delay under the optimal
mutual information accumulation solution.

accumulation was found to be 77% of the average delay of
traditional shortest path routing (where the average is taken
over the 100 random topologies). It is interesting to note that
once the optimal relay set is computed, the only overhead
of a mutual information accumulation based scheme over
traditional shortest path is in the decoding and re-encoding
operations. In particular, such schemes only require a 1-bit
feedback from a receiver when it has successfully decoded
the packet and do not require sophisticated synchronization,
coordination, or extensive channel state information feedback.

VII. CONCLUSIONS

In this work, we considered three problems involving opti-
mal routing and scheduling over a multi-hop wireless network
using mutual information accumulation. We formulated the
general problems as combinatorial optimization problems and
then made use of several structural properties to simplify
their solutions and derive optimal greedy algorithms. A key
feature of these algorithms is that unlike prior works on these
problems, they do not require solving any linear programs to
compute the optimal solution. While these greedy algorithms
still have exponential complexity, they are significantly simpler
than prior schemes and allow us to compute the optimal
solution as a benchmark. We also proposed two simple and
practical heuristics that exhibit very good performance when
compared to the optimal solution.
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