
PROC. IEEE INFOCOM, 2011 1

Utility Optimization for Dynamic Peer-to-Peer
Networks with Tit-For-Tat Constraints

Michael J. Neely , Leana Golubchik

Abstract— We consider a peer-to-peer network where nodes
can send and receive files amongst their peers. File requests
are generated randomly, and each new file can correspond
to a different subset of peers that already have the file and
hence can assist in the download. Nodes that help others are
rewarded by being able to download more. The goal is to
design a control algorithm that allocates requests and schedules
transmissions to maximize overall throughput-utility, subject to
meeting “tit-for-tat” constraints that incentivize participation.
Our algorithm is shown to operate efficiently on networks with
arbitrary traffic and channel sample paths, including wireless
networks whose capacity can be significantly extended by the
peer-to-peer functionality.

Index Terms— Queueing analysis, optimization, Lyapunov drift

I. INTRODUCTION

This paper develops utility-efficient scheduling algorithms
for peer-to-peer communication networks. We particularly
consider networks with randomly arriving file requests and
time-varying connectivity. This includes wireless networks
with (possibly non-ergodic) traffic and channels. We assume
there are N nodes in the network that participate in peer-to-
peer communication, and denote this set of nodes by N =
{1, . . . , N}. There is an additional special node, called “node
0,” that is connected to all others at all times. The special
node 0 contains information about files that are located in
each of the other nodes, and can coordinate request allocation
and transmission scheduling.

The nodes connect to each other according to possibly
different peer-to-peer social groups. Specifically, each node
n ∈ N has a download social group Gn ⊆ N∪{0} from which
it can download files. We assume node 0 does not desire any
files, but it can possibly transmit files to others. Each new file
request from a node n ∈ N is assumed to be contained in at
least one (but possibly not all) of the nodes in the download
social group Gn. Each file consists of an integer number of
fixed size packets, and these packets can be transmitted to
node n by one or more of the nodes that have the file and are
in the set Gn.

The system operates in slotted time with unit timeslots
t ∈ {0, 1, 2, . . .}. Every slot the special node 0 coordinates
the packet transfers. For simplicity, we consider only 1-hop
communication. Let S(t) denote the current topology state on
slot t, which represents the collection of node locations and

M. J. Neely is with the Electrical Engineering department and L. Golubchik
is with the Computer Science department at the University of Southern
California, Los Angeles, CA.

This material is supported in part by one or more of the following: the
NSF Career grant CCF-0747525, NSF grant 0540420, the Network Science
Collaborative Technology Alliance sponsored by the U.S. Army Research
Laboratory W911NF-09-2-0053.

Internet 
Cloud

1

2

3

N

Fig. 1. An illustration of the Internet cloud with N access points that form
the peer-to-peer network.

= Basestation

= Wireless User

Fig. 2. The wireless basestation model with multiple sub-cells.

channel states between links, as in [1]. Every slot t, node
0 observes the current topology state S(t) and chooses a
matrix µ(t) = (µab(t)) of transmission rates within a set
of rate matrix options ΓS(t). The rate µab(t) represents the
(integer) number of packets that can be transmitted over the
(a, b) link on slot t. We consider two basic models that fit this
description: (i) The Internet cloud model, and (ii) The wireless
basestation model.

A. The Internet Cloud Model

In this model, node 0 represents an Internet cloud with
high speed inter-connections, and all other nodes {1, . . . , N}
are access points that form a peer-to-peer network (see Fig.
1). Because node 0 here represents an abstract network that
has many components, the peer-to-peer scheduling does not
need to be centralized and can often be distributed amongst
individual social groups. In this model, node 0 can actually
represent several different “seed nodes” that offer data without
requiring any in return.

A “1-hop” packet transfer from node a ∈ N to node b ∈ N
on a particular slot t is actually implemented via a possibly
multi-hop path through the Internet cloud. However, we ignore
the details of routing protocols and delays within the cloud,
and simply treat the cloud as an abstraction that can support
timely data transfer. Thus, the transmission rate between node
a and node b is limited only by the minimum of the uplink
and downlink capacities from node a to the cloud and from
the cloud to node b. This model is a reasonable first-order
approximation if the network that forms the interior of the
cloud operates with a much higher speed than the access



PROC. IEEE INFOCOM, 2011 2

point uplinks and downlinks. The model highlights the peer-
to-peer scheduling issues between the access points, and leads
to robust peering algorithms that we believe will work well
when implemented on top of any high-speed network.

In the Internet cloud model, we typically assume the topol-
ogy state S(t) is the same for all time. However, we can
also consider states S(t) that change with time. For example,
a particular node in the set N might leave the peer-to-peer
environment for some time and return later.

B. The Wireless Basestation Model

In this model, node 0 is a basestation and all other nodes
{1, . . . , N} are potentially mobile devices that move within
a cellular region. In addition to connecting to the basestation
and possibly receiving files from it, these other devices can
connect directly with each other in sub-cells or “femtocells”
of the network area (see Fig. 2). The topology state S(t) in this
case represents the collection of current channel states between
devices, and these states can change due to mobility. Current
cellular capacity is limited by the fact that all transmissions go
through the basestation. By using such additional low-power
“device-to-device” transmissions, possibly coordinated by the
basestation to ensure low interference [2][3], one can expand
capacity by a factor proportional to the number of sub-cells.
This is because popular files are likely to be in the cache
of neighboring nodes, and hence can be delivered in a 1-hop
sub-cell transmission. This greatly alleviates the load on the
basestation downlink. However, this gain can only be achieved
through wireless peer-to-peer communication.

C. Incentives for Peering

A node n ∈ N sees three main disadvantages in sending
data to others. First, this may take away from its uplink
capacity and thus reduce the rate at which it can send its own
traffic (such as traffic it wants to send to a destination that
is outside of the peer-to-peer network). Second, it may take
away from its downlink capacity and thus reduce the rate at
which it can receive data. This happens when the uplink and
downlink are not orthogonal, such as in wireless networks
where a node can either transmit or receive on one slot, but
not both. Third, such transmissions can be costly in terms of
energy expenditure. Therefore, a node will not send data to
another node unless it has some incentive for doing so.

The same issues of incentives arise in ad-hoc mo-
bile networks, where token-based and economics-based in-
centive mechanisms have been studied [4][5][6]. Incen-
tives are also well studied in the peer-to-peer literature
[7][8][9][10][11][12]. In this paper, we consider a simple “tit-
for-tat” type incentive mechanism that forces the long-term
rate of delivering data to peers to be greater than or equal
to some factor α (where 0 ≤ α ≤ 1) of the long-term rate
of receiving data. Here we use the term “tit-for-tat” broadly
to represent the notion of giving as much as we receive
(perhaps more appropriately called “treat-for-treat”), which is
qualitatively similar to specific notions of tit-for-tat used in
game theory.

D. Our Approach

We enforce the tit-for-tat constraint using the drift-plus-
penalty and virtual queue techniques from Lyapunov opti-
mization theory [1][13]. Lyapunov optimization was developed
for stochastic networks without peer-to-peer capabilities in
[1][14][15]. This paper is perhaps the first use of Lyapunov
optimization techniques in a peer-to-peer setting. The exten-
sion is not obvious. Indeed, the prior work on Lyapunov
optimization treats each data type as a separate commodity, and
develops algorithms with complexity and convergence time
that grow polynomially with the number of commodities. In
peer-to-peer networks, there can be an infinite number of files.
One can try grouping files into commodities defined by the
subset of nodes that have this file, so that different files are
treated as the same commodity if the subset of nodes that have
them is exactly the same. However, this approach leads to a
complexity explosion due to the number of commodities being
exponential in the number of nodes. Instead, in this paper
we overcome this difficulty by using the subset information
associated with each new file only on the slot when the file
enters, making scheduling plans on that slot and discarding this
subset information at the end of the slot. This results in only
one commodity per node, enabling a low complexity solution
that, we will show, can still approach optimality.

This paper also exploits a sample-path version of Lyapunov
optimization that we recently developed in [16] in the context
of non-peer-to-peer networks. We apply this framework here
because file requests are typically non-ergodic and may have
long periods of inactivity followed by bursts of many requests.
Channel states for wireless networks can also be non-ergodic.
We show that our algorithms are efficient for arbitrary sample
paths for traffic and channels, with no assumed probability
model. Traditional notions of equilibrium and steady state
throughput-utility are not appropriate for this context [17].
We thus evaluate performance in this setting using the T -slot
lookahead metric from [16].

For simplicity, we only explicitly consider the peer-to-peer
traffic in the network. We do not model the non-peer-to-
peer traffic that a node generates and wants to send to a
node outside of the set N . While we could explicitly put
this traffic into our framework, we have chosen not to do
so mainly to reduce notation. Instead, we indirectly account
for such external traffic by having each node incur an uplink
transmission cost whenever it sends a packet to another peer.
This cost can represent power expenditure, or it can model the
“cost” associated with not using the link for its own traffic.

E. Related Work

A number of works (e.g., [7][8][9][10][11][12]) studied
various incentive-related issues in the context of peer-to-peer
systems. For instance, [10] argues, using a game-theoretic
framework, that the incentive mechanisms in the original
BitTorrent protocol [18] are not sufficiently effective and
considers a mechanism that maintains a certain “deficit”
between uploaded and downloaded data. Other efforts consider
similar approaches, such as bounding the difference between
the amount of uploaded and downloaded data (as in [7],



PROC. IEEE INFOCOM, 2011 3

[12]) or favoring links with a greater download to upload
ratio (as in [9]). Token-based techniques that account for
upload contributions versus downloaded data have also been
investigated, e.g., as in [11]; such techniques allow a system
to tradeoff overall performance (or social good) versus better
performance for higher contributing peers. Market-based and
reputation-based techniques (e.g., as in [19]) have also been
considered in the context of peer-to-peer systems. For instance,
[20] uses a market based approach to incentivize sharing,
where efficient network resource allocation is achieved by
relating file values (in the market) to their relative demand.
Our proposed approach differs in that it is a general framework
(useful in both Internet and wireless environments) with prov-
able performance characteristics (optimizing throughput utility
while maintaining tit-for-tat type constraints) that accounts for
multi-swarm environments (e.g., as in [21]).

Utility optimization for static Internet and wireless network
models is considered in [22][23][24], and stochastic networks
are considered in [25][26][14][27][15][28][29][1], including
the Lyapunov optimization work that we discussed in the pre-
vious subsection. These prior works treat traditional network
scenarios without peer-to-peer communication, and assume
that any time-variation in the network is ergodic.

II. NETWORK MODEL

Each node n ∈ N can generate requests for files, and each
file f has a particular subsetNf ⊆ N∪{0} consisting of nodes
that contain the file. It is assumed that if node n requests a
file f , then n /∈ Nf (else, it would not need to request the
file). While each file may be very large, perhaps containing
1000 packets, it is important that these packet requests are
apportioned over slots so that at most Amaxn packet requests
are generated by node n on one slot. The Amaxn value can
be much smaller than the file size, and can be chosen as the
maximum number of packets that node n can receive from
other nodes on a slot. For example, in a wireless network
where a node can receive at most one packet per slot, we use
Amaxn = 1. Let An(t) represent the number of packet requests
generated by node n on slot t (where 0 ≤ An(t) ≤ Amaxn for
all t), which can be viewed as an “arrival process.”

We assume that packet requests An(t) generated by node n
on slot t are all for the same file, but that packets of different
files can be requested on different slots. Define Nn(t) as the
subset of nodes that contain the file associated with the packets
of An(t). We do not impose any probabilistic model for An(t)
and Nn(t). However, a “typical” An(t) process is zero for
some duration of time until a file request is generated by node
n. It then has a long string of slots for which An(t) = Amaxn ,
a final slot where the residual packets of the file are requested,
followed by another idle period until the next request (for a
different file) is generated.

On each slot t, each node n ∈ N informs the special node
0 of its current requests (including the An(t) packets and the
file these are from). The special node observes the file label
to find the set Nn(t) of nodes that have the file, and then
makes request allocation decisions Rmn(t), representing the
number of packets it asks node m ∈ N ∪ {0} to deliver to

node n. These decision variables are constrained as follows
for all n ∈ N and m ∈ N ∪ {0}:

Rmn(t) ∈ {0, 1, . . . , Amaxn } ,
∑N
m=0Rmn(t) ≤ An(t)(1)

Rmn(t) = 0 if m /∈ {Nn(t) ∩ Gn} (2)

The constraints in (1) ensure that requests for at most An(t)
packets are allocated (as integer units) to the different nodes.
If
∑N
m=0Rmn(t) is strictly less than An(t), then the un-

allocated packet requests are dropped (described in more detail
in the next subsection). The constraint (2) ensures that a node
can be allocated a request from node n on slot t only if it
is in the download social group Gn for node n and it has
the corresponding file. We assume the set {Nn(t) ∩ Gn} is
non-empty. In the case when node 0 represents a wireless
basestation that coordinates the transfers, it is often useful to
assume node 0 has all the files and is in the download social
group of every node n ∈ N . On the other hand, as in the
Internet cloud model, centralized control is not crucial to our
model, and node 0 can actually represent a collection of N
different “information nodes” {On}Nn=1, each containing file
information associated with download social group Gn.

The requests are put in a request queue Qmn(t), represent-
ing the total number of not-yet-delivered packets that node m
has been requested to deliver to node n. Note that Qmn(t)
may contain requests for packets of different files. While this
information is important at the time of transmission (so that
the correct packet can be transmitted), it is no longer needed
for our higher layer scheduling decisions. That is because all
data in this queue is now treated as a single commodity that
must be delivered to node n. The queue update is given as
follows for all n ∈ N and m ∈ N ∪ {0}:

Qmn(t+ 1) = max[Qmn(t) +Rmn(t)− µmn(t), 0] (3)

where µmn(t) is a control decision variable representing the
amount of packets node m can transmit to node n on slot t.

A. Recovering from Packet Drops

It is important to limit the amount of data requested so that
the network is not overloaded. Hence, as suggested by the
second constraint in (1), some of the packet requests An(t)
may not be allocated on slot t. When analyzing the queueing
equations and computing throughput, these un-allocated re-
quests are treated as if they are dropped—so those packets are
not delivered. However, such dropping may result in missing
pieces for the files. We thus consider two models for recovery:

Model 1: Dropped packets become the next arrivals. In this
model, we keep a transport layer queue that buffers dropped
packets and puts them into the next “generated requests”
An(t+d) for some d > 0. This ensures all files are persistently
served. The T -slot analysis we soon use does apply to this
model. However, comparison to ideal algorithms that know
the future is less meaningful here because “future arrivals”
now must be defined as those that arise from our implemented
control decisions.

Model 2: Dropped packets are exchanged for the next
arrivals whenever possible. In this model, our throughput
analysis is compared against algorithms that know the future,



PROC. IEEE INFOCOM, 2011 4

where the future arrivals are the raw arrival processes that do
not depend on our past decisions. However, the dropped data
is not forgotten. While dropped requests for destination n are
removed from the request queue, they are placed in a dropped-
packet-queue. Any time a new request for packet delivery to
node n is made and assigned to a particular node k (so that it
would be placed in the queue Qkn(t)), we also check the head-
of-line packet in the type n dropped-packet-request queue. If
this head-of-line packet is for a file that is also contained in
node k, then this old (dropped) packet request is switched and
placed in the node k (i.e., in the queue Qkn(t)), while the new
request is placed in the dropped packet queue.

B. Transmission Decisions

Define µ(t) = (µab(t)) as a matrix of transmission deci-
sions for a ∈ N∪{0} and b ∈ N . Every slot t, node 0 observes
the current topology state S(t) and chooses µ(t) ∈ ΓS(t).
The set ΓS(t) represents transmission options under a given
S(t). We assume it has the natural property that for any
µ ∈ ΓS(t), the matrix µ′ that sets one or more entries of
µ to zero is also in ΓS(t). We further assume that all matrices
µ(t) ∈ ΓS(t) have components µmn(t) that are integers within
the set {0, 1, . . . , µmaxmn } for some finite values µmaxmn . Finally,
we assume that µmn(t) = 0 whenever m /∈ Gn, i.e., whenever
m is not in the download social group of node n.

For example, in the Internet cloud model, we can assume
that S(t) is fixed and represents the uplink and downlink
capacities between all nodes n ∈ N and the cloud, and µ(t)
is constrained by:∑

a∈N µan(t) ≤ Cdownlinkn ∀n ∈ N (4)∑N
b=1 µnb(t) ≤ Cuplinkn ∀n ∈ N (5)

A simpler special case of this is when the downlink capacity
(for receiving data) is much larger than the uplink (for sending
data), so that the constraints (4) are inactive and transmissions
are limited only by (5). For the wireless basestation model,
S(t) can represent the current node pairs that are close enough
for communication, and the set ΓS(t) can be the set of all
0/1 matrices that restrict nodes from either transmitting one
packet per slot, or receiving one packet per slot, but not both.
Alternatively, it might contain the collection of independent
sets of links that can be simultaneously activated subject to a
general interference model.

Another important example (that holds for either the Internet
cloud model or the wireless basestation model) is the no trans-
mission scheduling model: In this model, the set ΓS(t) consists
only of a single “dominant” rate matrix (µan(t)), being the
current rates that can be supported under the given topology
state, together with all sub-matrices obtained by setting one
or more entries of (µan(t)) to zero. The rates (µan(t)) might
be determined by a transport and routing protocol that is
uncontrollable by the peer-to-peer application. Our sample
path analysis allows for arbitrary topology state variations
and hence is compatible with any such lower level protocols.
However, in our mathematical analysis that compares our peer-
to-peer decisions against those that could be implemented by
an “ideal” algorithm with perfect knowledge of the future

S(t) values, we use the S(t) sample path that actually arises
(under our peer-to-peer decisions). This comparison is the
most meaningful when future S(t) values are not influenced by
past peer-to-peer control decisions. This is an approximation
in some cases, such as when the Internet transport and routing
protocols that affect the current delivery rates (µan(t)) are
influenced by the amount of peer-to-peer data that has been
delivered in the past. However, the approximation is reason-
able when the traffic generated by our N -node peer-to-peer
community is small in comparison to all other Internet traffic.

Let pn(t) be a penalty incurred by node n for transmitting
data on its uplink channel. We assume pn(t) is a general
function of the transmission rate vector:

pn(t)M
=
∑N
b=1 ηnb(S(t))µnb(t)

where the function ηnb(S(t)) is a cost-per-unit transmission
rate incurred over link (n, b) when the topology state is S(t).

C. Utility Functions and Auxiliary Variables

To define our control objective, it is useful to (temporarily)
assume we have an ergodic system with well defined time
averages. For each m ∈ N ∪ {0}, n ∈ N , define rmn as the
time average of the request allocations Rmn(t):

rmn
M
= limt→∞

1
t

∑t−1
τ=0Rmn(τ)

Define yn
M
=
∑N
a=0 ran. Assuming we use an algorithm that

ensures all allocated requests are eventually fulfilled, then
yn represents the total throughput delivered to node n. Now
define gn(y) as a continuous, concave, and non-decreasing
utility function of the node n throughput. We assume the right-
derivatives of the gn(y) functions are finite at y = 0, and
define νn M

=g′n(0). Let pn be the time average penalty incurred
by node n, and let Qmn be the time average queue backlog
for queue (m,n). Our objective is thus to solve:

Maximize:
∑
n∈N [gn(

∑N
a=0 ran)− pn] (6)

Subject to: α
∑N
a=0 ran ≤ β +

∑N
b=1 rnb ∀n ∈ N (7)

Qmn <∞ ∀m ∈ N ∪ {0},∀n ∈ N (8)
µ(t) ∈ ΓS(t) ∀t (9)

Rmn(t) satisfies (1)-(2) ∀m,n,∀t (10)

where α, β are constants such that 0 ≤ α ≤ 1 and β ≥ 0. The
constraints (7) are the tit-for-tat constraints showing that what
each node n ∈ N delivers to others must be at least a factor
α of what it receives, minus a constant β. If α 6= 0, the value
β/α represents the “free” rate at which nodes can download
without requiring any uploads. Using α = β = 0 effectively
removes the tit-for-tat constraints (7) and still results in a
meaningful optimization. The constraints (7) consider only
nodes in n ∈ N (excluding node 0) because node 0 can only
deliver data and does not request any. Constraints (8) are mild
queue stability constraints that ensure the time average rate of
requests (into the queue) is the same as the time average rate of
delivered data (out of the queue). Our resulting algorithm will
actually ensure that, under some additional assumptions, all
queues are deterministically bounded by finite values Qmaxmn .
Enhancements to worst-case delay bounds are discussed in



PROC. IEEE INFOCOM, 2011 5

Section IV. Constraints (9)-(10) ensure the transmission rates
µab(t) and request allocations Rmn(t) are chosen subject to
the constraints specified in previous subsections.

To solve the problem of optimizing the time average of
a concave function, it is important to introduce auxiliary
variables γn(t) [1][13], chosen every slot subject to:

0 ≤ γn(t) ≤ Amaxn ∀n ∈ N ,∀t (11)

Define γn as the time average of γn(t). The problem (6)-
(10) can then be modified (without changing the solution) by
adding a new constraint:∑N

a=0 ran ≥ γn ∀n ∈ N (12)

and replacing the objective (6) with the following:

Maximize:
∑
n∈N [gn(γn)− pn]

D. The T -Slot Lookahead Utility Metric

Systems with general sample paths may not have an “er-
godic optimal utility.” Here we develop a modified utility
metric that is based on an “ideal” algorithm with limited
knowledge of the future. The utility defined here will be used
as a target to compare against the actual algorithm we develop
in the next section. Fix integers T > 0 and K > 0, and
consider the first KT slots decomposed into K frames of
size T . For each frame k ∈ {0, . . . ,K − 1}, we define the
following T -slot lookahead problem. The problem optimizes
over decision variables Rmn(τ), µ(τ) for τ ∈ {kT, . . . , kT +
T −1}, assuming that the random events An(τ), Nn(τ), S(τ)
are completely known for all τ in this frame. We further allow
the T -slot lookahead problem to relax the decision variable
constraints: the Rmn(τ) decisions can be real numbers in
the interval [0, Amaxn ] (not necessarily integers). The µ(τ)
variables are elements of the convex hull of ΓS(τ).

Max:
∑
n∈N

[gn(γn)− 1

T

kT+T−1∑
τ=kT

N∑
b=1

µnb(τ)ηnb(S(τ))] (13)

Subject to: γn =
1

T

kT+T−1∑
τ=kT

N∑
a=0

Ran(τ) ∀n ∈ N (14)

An(τ) ≥
N∑
m=0

Rmn(τ) ∀n ∈ N ,∀τ (15)

0 ≤ Rmn(τ) ≤ Amaxn ∀(m,n),∀τ (16)
µ(τ) ∈ Conv(ΓS(τ)) ∀τ (17)

Rmn(τ) = 0 if m /∈ {Nn(τ),Gn} ∀τ (18)

1

T

kT+T−1∑
τ=kT

[α

N∑
a=0

Ran(τ)−
N∑
b=1

Rnb(τ)] ≤ β ∀n ∈ N (19)

kT+T−1∑
τ=kT

[Rmn(τ)− µmn(τ)] ≤ 0 ∀m,n (20)

The above problem is analogous to the ergodic problem (6)-
(10), but has more stringent “tit-for-tat” constraints (19) that
must be enforced exactly over the T -slot frame, rather than
over an infinite horizon. Likewise, (20) requires the total

requests allocated to node m to be less than or equal to the
departures for these requests over the frame. The constraints
(14)-(20) are always feasible by the trivial strategy that uses
Rmn(τ) = µab(τ) = γn(τ) = 0 for all τ .

Define util∗k(T ) as the optimal utility value in (13) for the
T -slot lookahead problem for frame k. Let R∗mn(τ), µ∗(τ) be
the variables that achieve this optimum in the above problem.
Note that it is impossible to causally compute these quantities,
as they are based on full knowledge of the future events in
the frame. However, these solutions exist, and we will find it
is possible to design an algorithm that, over time, yields total
utility over the first KT frames (for any K > 0, T > 0) that
keeps all queues bounded by a constant that is O(V ) (where
V > 0 is a control parameter that affects a utility-congestion
tradeoff), with total utility that satisfies:

lim infK→∞
∑N
n=1[gn(yn(KT ))− pn(KT )] ≥

lim infK→∞
1
K

∑K−1
k=0 util∗k(T )−BT/V (21)

where yn(KT ) and pn(KT ) are the average throughput
delivered to node n and the average penalty incurred by node n
over the first KT slots, and B is a constant that is independent
of T and V . Thus, the V parameter can be chosen as large
as desired to make the deviation BT/V from the target utility
arbitrarily small, at the cost of an O(V ) increase in worst-
case-queue backlog.

The value of 1
K

∑K−1
k=0 util∗k(T ) does not represent the

maximum time average utility that can be achieved over the
first KT slots, because it forces the constraints (19)-(20) to
be satisfied on every frame. However, it still represents a
meaningful target, as the util∗k(T ) values are obtained from an
ideal algorithm that has knowledge of future events in frame k,
whereas an actual policy does not have any future knowledge.
Further, in ergodic systems it can be shown that:

limT→∞

[
lim infK→∞

1
K

∑K−1
k=0 util∗k(T )

]
= utilopt

where utilopt is the optimal infinite horizon utility over all
algorithms that stabilize the system and meet the tit-for-tat
constraints. The intuition for this is that when the frame
size T is large, the empirical fraction of time that certain
network events occur approaches the ergodic distribution, and
so util∗k(T ) is close to utilopt for every frame k.

III. THE DYNAMIC ALGORITHM

To develop an algorithm, we use the technique of Lyapunov
optimization [1][13]. To enforce the constraints (12) and (7),
for each n ∈ N we use virtual queues Hn(t) and Fn(t),
respectively, with update equations:

Hn(t+ 1) = max

[
Hn(t)−

N∑
a=0

Ran(t) + γn(t), 0

]
(22)

Fn(t+ 1) = max

[
Fn(t)− β −

N∑
b=1

Rnb(t)

+α

N∑
a=0

Ran(t), 0

]
(23)



PROC. IEEE INFOCOM, 2011 6

The intuition behind these virtual queues can be understood
in the special case of an ergodic system: If we stabilize
these virtual queues, then the time average of their “service
variables” must be greater than or equal to the time average of
their “arrival variables” so that the desired constraints (12) and
(7) are satisfied. For example, by (22) we see that stabilizing
Hn(t) ensures

∑N
a=0 ran ≥ γn. The virtual queues Fn(t)

in (23) enforce the tit-for-tat constraints (7). If α = 0 and
Fn(0) = 0, then Fn(t) = 0 for all t, which is consistent with
the fact that constraints (7) are removed in this case.

Define Θ(t)M
=[Q(t),F (t),H(t)] as the vector of all queues

in the system, and define the Lyapunov function L(Θ(t)) by:

L(Θ(t))M
=

1

2

N∑
n=1

N∑
m=0

Qmn(t)2 +
1

2

N∑
n=1

[Hn(t)2 + Fn(t)2] (24)

For each integer T > 0, define ∆T (Θ(t)) as the T -slot
sample-path drift:

∆T (Θ(t))M
=L(Θ(t+ T ))− L(Θ(t))

Using the drift-plus-penalty framework of [1][13], every slot
t we observe the current queue states, the current An(t)
and Nn(t) information, and the current topology state S(t),
and make decisions that “greedily” minimize a bound on the
following expression that involves only 1-slot drift:

∆1(Θ(t))− V
∑N
n=1[gn(γn(t))− pn(t)]

A. The Dynamic Drift-Plus-Penalty Peering Algorithm

By squaring the queue update equations (3), (22), (23) we
can compute the following bound on the drift-plus-penalty:

∆1(Θ(t))− V
∑N
n=1[gn(γn(t))− pn(t)] ≤

B − V [
∑N
n=1 gn(γn(t))−

∑N
b=1 µnb(t)ηnb(S(t))]

+
∑N
n=1

∑N
m=0Qmn(t)[Rmn(t)− µmn(t)]

+
∑N
n=1Hn(t)[γn(t)−

∑N
a=0Ran(t)]

+
∑N
n=1 Fn(t)[α

∑N
a=0Ran(t)− β −

∑N
b=1Rnb(t)] (25)

where B > 0 is a constant that depends on the values Amaxn

and µmaxmn (we omit the exact computation of B for brevity).
It is easy to see that the following dynamic algorithm

observes the queues and network events every slot t and makes
control actions that minimize the right-hand-side of the above
drift-plus-penalty bound:
• (Auxiliary Variable Update): For each n ∈ N , choose
γn(t) as follows:

Maximize: V gn(γn(t))−Hn(t)γn(t) (26)
Subject to: 0 ≤ γn(t) ≤ Amaxn (27)

• (Request Allocation) For each n ∈ N , observe the value
of the following for all m ∈ {Gn ∩Nn(t)}:

−Qmn(t) +Hn(t) + (Fm(t)− αFn(t)) (28)

If these values are negative for all m ∈ {Gn ∩ Nn(t)},
choose Rmn(t) = 0 for all m. Else, choose Rmn(t) =
An(t) for the queue m ∈ {Gn ∩ Nn(t)} with the

largest (non-negative) value (breaking ties arbitrarily),
and Ran(t) = 0 for all a 6= m.

• (Scheduling) Choose µ(t) ∈ ΓS(t) to maximize:∑
nb µnb(t)[Qnb(t)− V ηnb(S(t))]

Clearly we can choose µnb(t) = 0 for any (n, b) pair that
multiplies a non-positive weight in the above sum, and so
the above can be simplified to sum only over links with
positive weights.1

• (Queue Updates) Update queues Qmn(t), Hn(t), Fn(t)
via (3), (22), (23).

The above algorithm is simple to implement separately at
each node n, except possibly for the scheduling decision for
µ(t). This is a classic “max-weight” type decision [30][31][1].
It is easy in the Internet cloud model, or when we use the
“no transmission scheduling” model where rates µab(t) are
given to us every slot t. However, it can be difficult for
wireless networks with interference, although constant-factor
approximations can be used [1][13].

B. Incentives

Our tit-for-tat constraints were designed to incentivize par-
ticipation, and hence we expect these incentives to appear in
the algorithm itself. This is indeed the case if we view the
queue backlog Fn(t) as determining the peer reputation of
node n, in that Fn(t) is small when we consistently accept
requests from others (see dynamics in (23)). For example,
suppose β = 0, α > 0, and node n only receives downloads
from others and does not transmit anything (such as when it
does not report to node 0 that it has a file that can be of use
to others). Then Rnb(t) = 0 for all t and the Fn(t) queue will
grow large. The next time another node m considers accepting
a request to send data to node n, it sees the weight:

−Qmn(t) +Hn(t) + (Fm(t)− αFn(t))

We show in the next section that the queues Hn(t) are
bounded, and so the above weight will be negative if αFn(t) is
very large in comparison to Fm(t). Thus, the request allocation
will choose Rmn(t) = 0. If this happens for all other nodes m,
then no more requests for delivery to node n will be allocated
until node n decreases its Fn(t) value by accepting requests
from others. This is made precise in Section III-F.

C. Bounded Queues

Theorem 1: Assume V > 0. Under the above dynamic
decisions for γn(t), Rmn(t), and under any transmission
decisions µ(t) ∈ ΓS(t), we have for all n ∈ N :

Hn(t) ≤ V νn +Amaxn
M
=H

max
n ∀t

provided that these bounds hold at time 0. Further, if the tit-
for-tat constraints are removed (so that α = Fn(t) = 0 for all
t), then for all queues Qmn(t):

Qmn(t) ≤ V νn + 2Amaxn

1Queue backlog in systems with ηnb(S(t)) > 0 can often be improved
via place-holder packets [13], although we omit this extension for brevity.



PROC. IEEE INFOCOM, 2011 7

provided this bound holds at time 0.
Proof: We first prove the Hmax

n bound. Suppose it holds
for slot t. We show it also holds for slot t + 1. Suppose that
Hn(t) ≤ V νn. Then Hn(t + 1) ≤ V νn + Amaxn

M
=Hmax

n ,
because it can increase by at most Amaxn on any slot (see
dynamic update equation (22) and recall that γn(t) ≤ Amaxn

for all t by (27)). Alternatively, suppose that Hn(t) > V νn.
Because νn is the largest right-derivative of gn(y), we have
for all 0 ≤ y ≤ Amaxn :

gn(y) ≤ gn(0) + νny (29)

By (29), for any γn(t) satisfying 0 ≤ γn(t) ≤ Amaxn we have:

V gn(γn(t))−Hn(t)γn(t)

≤ V gn(0) + V νnγn(t)−Hn(t)γn(t)

= V gn(0)− γn(t)(Hn(t)− V νn)

≤ V gn(0)

with equality only if γn(t) = 0 (because Hn(t)−V νn > 0). It
follows that on any slot for which Hn(t) > V νn, the auxiliary
variable decisions (26)-(27) force γn(t) = 0. It follows by (22)
that Hn(t) cannot increase on the next slot, and so we have
Hn(t+ 1) ≤ Hn(t) ≤ Hmax

n . This proves the Hmax
n bound.

To prove that Qmn(t) ≤ Hmax
n + Amaxn when the tit-for-

tat constraints are removed, fix slot t and suppose it holds on
this slot. If Qmn(t) ≤ Hmax

n , then Qmn(t + 1) ≤ Hmax
n +

Amaxn because it can increase by at most Amaxn on any slot t.
Alternatively, if Qmn(t) > Hmax

n , then the weight (28) for the
request allocation algorithm is negative (recall that Fm(t) =
0), and so Rmn(t) = 0. Thus, Qmn(t) cannot increase on the
next slot, so Qmn(t+ 1) ≤ Qmn(t) ≤ Hmax

n +Amaxn .
Theorem 2: Suppose we use the algorithm of Section III-A

on a system with the general tit-for-tat constraints. Then all
queues Hn(t), Qmn(t), Fn(t) are rate stable, in that:

lim
t→∞

Hn(t)

t
= lim
t→∞

Qmn(t)

t
= lim
t→∞

Fn(t)

t
= 0 (30)

Further, if β > 0 and if there is an ε > 0 such that every
slot t there is a matrix (µ∗ab(t)) ∈ Conv(ΓS(t)) such that
µ∗ab(t) ≥ ε for all (a, b) for which there are queues Qab(t),
then all queues Hn(t), Qmn(t), Fn(t) are deterministically
bounded by a finite constant.

The proof of Theorem 2 is given in Section III-E.

D. Utility Performance

Here we prove the utility bound (21). We assume that,
in addition to choosing Rmn(τ), γn(τ) decisions exactly
according to the dynamic algorithm of Section III-A, we
also choose µ(τ) ∈ ΓS(τ) according to the full max-weight
solution. While we can also obtain results that scale gracefully
with the factor θ we are away from the max-weight decision
(as in [1][13]), we omit that analysis for brevity. To simplify
the proof, we also assume that all initial queue backlogs are
0, so that Θ(0) = 0.

First note that the algorithm chooses decision variables to
maximize the right-hand-side of the drift-plus-penalty bound
(25) over all alternative decisions, including convexified de-
cisions R∗mn(τ), µ∗(τ) that extend their option space to

the convexified regions [0, Amaxn ] and Conv(ΓS(τ)). This is
because these decision variables appear linearly in the right-
hand-side of (25). We thus have for any slot τ :

∆1(Θ(τ))− V
∑N
n=1[gn(γn(τ))− pn(τ)] ≤

B − V
∑N
n=1[gn(γ∗n)−

∑N
b=1 µ

∗
nb(τ)ηnb(S(τ))]

+
∑N
n=1

∑N
m=0Qmn(τ)[R∗mn(τ)− µ∗mn(τ)]

+
∑N
n=1Hn(τ)[γ∗n −

∑N
a=0R

∗
an(τ)]

+
∑N
n=1 Fn(τ)[α

∑N
a=0R

∗
an(τ)− β −

∑N
b=1R

∗
nb(τ)](31)

where γ∗n, µ∗(τ), R∗mn(τ) are any alternative decisions that
can be made on slot τ that take place within the convexified
decision space. Now fix integers K > 0 and T > 0, and fix
k ∈ {0, . . . ,K − 1}. Summing (31) over τ ∈ {kT, . . . , kT +
T − 1}, we can show that:

∆T (Θ(kT ))− V
kT+T−1∑
τ=kT

N∑
n=1

[gn(γn(τ))− pn(τ)] ≤

BT 2 − V
N∑
n=1

[Tgn(γ∗n)−
kT+T−1∑
τ=kT

N∑
b=1

µ∗nb(τ)ηnb(S(τ))]

+

N∑
n=1

N∑
m=0

Qmn(kT )

kT+T−1∑
τ=kT

[R∗mn(τ)− µ∗mn(τ)]

+

N∑
n=1

Hn(kT )

kT+T−1∑
τ=kT

[γ∗n −
N∑
a=0

R∗an(τ)]

+

N∑
n=1

Fn(kT )

kT+T−1∑
τ=kT

[α

N∑
a=0

R∗an(τ)− β −
N∑
b=1

R∗nb(τ)]

While we omit the full derivation of the above inequality, we
note that its left-hand-side follows from the fact that:
kT+T−1∑
τ=kT

∆1(Θ(τ)) =

kT+T−1∑
τ=kT

[L(Θ(τ + 1))− L(Θ(τ))]

= L(Θ(kT + T ))− L(Θ(kT ))
M
= ∆T (Θ(kT ))

and its right-hand-side follows from the fact that we sum
over T slots (which changes the B constant to BT ) and
the queue backlogs do not change by more than a bounded
amount on any slot τ (which adds a term BT (T − 1)), so
that BT + BT (T − 1) = BT 2. We now plug the alternative
decisions γ∗n, µ∗(τ), R∗mn(τ) that solve the T -slot lookahead
problem (13)-(20) to achieve utility util∗k(T ). This gives
significant cancellation and yields:

∆T (Θ(kT ))− V
kT+T−1∑
τ=kT

N∑
n=1

[gn(γn(τ))− pn(τ)] ≤

BT 2 − V Tutil∗k(T ) (32)

Summing the above over k ∈ {0, . . . ,K− 1} and dividing by
V KT yields:

L(Θ(KT ))− L(Θ(0))

V KT
− 1

KT

KT−1∑
τ=0

N∑
n=1

[g(γn(τ))− pn(τ)]

≤ BT

V
− 1

K

K−1∑
k=0

util∗k(T )



PROC. IEEE INFOCOM, 2011 8

Rearranging terms in the above, noting that L(Θ(KT )) ≥ 0
and that L(Θ(0)) = 0, we have:

N∑
n=1

[gn(γn(KT ))−pn(KT )] ≥ 1

K

K=1∑
k=0

util∗k(T )−BT
V

(33)

where we define γn(KT ) and pn(KT ) as time averages over
the first KT slots, and we have used Jensen’s inequality in
the concave function gn(·).

Now note by (22) that:

Hn(τ + 1) ≥ Hn(τ)−
∑N
a=0Ran(τ) + γn(τ)

Hence, summing the above over τ ∈ {0, . . . ,KT − 1} gives:

Hn(KT )−Hn(0) ≥
∑KT−1
τ=0 [−

∑N
a=0Ran(τ) + γn(τ)]

Dividing by KT , rearranging terms, and using Hn(0) = 0
yields:

yn(KT ) ≥ γn(KT )− Hn(KT )
KT ≥ γn(KT )− Hmax

n

KT

where we have defined yn(KT ) by:

yn(KT )M
=

1
KT

∑KT−1
τ=0

∑N
a=0Ran(τ)

Further, because the maximum derivative of gn(γn) is νn, we
have:

gn(yn(KT )) ≥ gn(γn(KT ))− νnH
max
n

KT

Plugging the above into (33) yields:∑N
n=1[gn(yn(KT ))− pn(KT )] ≥

1
K

∑K=1
k=0 util

∗
k(T )− BT

V −
∑N
n=1

νnH
max
n

KT (34)

Taking a limit of the above as K →∞ proves (21).
We note that the dynamic algorithm itself does not use a

T parameter, and hence the above bound (34) can be viewed
as a class of bounds that hold for all integers T > 0 (and all
integers K > 0). The value of util∗k(T ) typically improves
if we use a large value of T , as that allows a larger future
lookahead. However, using a large value of T requires a larger
value of V to make the BT/V term negligible.

E. Proof of Theorem 2

Note that the drift bound (32) can be rewritten for the case
T = 1 to show:

∆1(Θ(kT )) ≤ D

for some finite constant D that depends on V and that bounds
the utility values that can be achieved. This drift condition
for the quadratic Lyapunov function implies that all queues
are rate stable [13], which proves (30) from Theorem 2. If
the assumptions of the second part of Theorem 2 hold, then
plugging into the right-hand-side of (31) yields:

∆1(Θ(τ)) ≤ C −
∑N
n=1

∑N
m=0Qmn(τ)ε−

∑N
n=1 Fn(τ)β

for some finite constant C. This, together with boundedness
of the Hn(t) queues (known from Theorem 1), can be used
to show all queues are bounded (see [32] for a related proof).

F. Satisfaction of the Tit-For-Tat Constraints

From Theorem 2 we know that Fn(t)/t→ 0. On the other
hand, by (23) we have for each n ∈ N :

Fn(τ + 1) ≥ Fn(τ)− β −
∑N
b=1Rnb(τ) + α

∑N
a=0Ran(τ)

Summing the above over τ ∈ {0, . . . , t − 1} (for any integer
t > 0) and dividing by t yields:

Fn(t)−Fn(0)
t ≥ −β −

∑N
b=1 rnb(t) + α

∑N
a=1 ran(t)

where rab(t) is the time average of rab(τ) over the first t slots.
Rearranging terms, taking a lim sup, and using rate stability
of Fn(t) yields:

lim supt→∞

[
α
∑N
a=1 ran(t)−

∑N
b=1 rnb(t)

]
≤ β

The above holds for all n ∈ N , and hence the tit-for-tat
constraints are satisfied.

IV. MODIFICATIONS FOR WORST CASE DELAY

Suppose we remove the tit-for-tat constraints. Theorem 1
ensures that Qmn(t) ≤ Qmaxmn

M
=V νn + 2Amaxn for all m,n

and all t. However, the max-weight scheduling may not ensure
persistent service, and thus does not provide a worst-case delay
bound. This can be remedied using an ε-persistent service
queue as in [33], provided that we also introduce additional
packet drops at the request queues. This section briefly outlines
the necessary modifications.

The queue update is modified to (compare with (3)):

Qmn(t+ 1) = max[Qmn(t) +Rmn(t)− µmn(t)− dmn(t), 0]
(35)

where dmn(t) are decision variables representing the amount
of packets dropped from the Qmn(t) queue on slot t. We must
ensure these additional drops appropriately reduce throughput,
so we define:

yn(t)M
=
∑N
a=0Ran(t)−

∑N
a=0 dan(t) (36)

and note that yn, the time average of yn(t), is indeed the
throughput delivered to node n. The auxiliary variable con-
straints are then yn ≥ γn for all n ∈ N , so that virtual queues
Hn(t) are modified to (compare with (22)):

Hn(t+ 1) = max[Hn(t)− yn(t) + γn(t), 0] (37)

For given constants εmn > 0, we introduce ε-persistent
service queues Zmn(t), as in [33]:

Zmn(t+ 1) = max[Zmn(t) + 1{Qmn(t)>0}(εmn − µmn(t))

−dmn(t)− 1{Qmn(t)=0}µ
max
mn , 0] (38)

When Qmn(t) > 0, this virtual queue has the same service
process as Qmn(t), but has a constant arrival of size εmn.
It is shown in [33] that if our algorithm yields finite upper
bounds Qmaxmn , Zmaxmn on Qmn(t) and Zmn(t), then the worst-
case delay of all non-dropped packets in queue Qmn(t) is
d(Zmaxmn + Qmaxmn )/εmne, where dxe represents the smallest
integer that is greater than or equal to x.

The following modified algorithm can indeed be shown to
yield finite upper bounds for Qmn(t) and Zmn(t):



PROC. IEEE INFOCOM, 2011 9

• (Auxiliary Variable Update): For each n ∈ N , choose
γn(t) as follows:

Maximize: V gn(γn(t))−Hn(t)γn(t)

Subject to: 0 ≤ γn(t) ≤ Amaxn

• (Request Allocation) Same as before.
• (Scheduling) Choose µ(t) ∈ ΓS(t) to maximize:∑

nb µnb(t)[Qnb(t) + Znb(t)1{Qnb(t)>0} − V ηnb(S(t))]

• (Dropping) Choose dmn(t) to solve:

dmn(t) =

{
0 if Zmn(t) +Qmn(t) ≤ Hn(t)
Amaxn otherwise

• (Queue Updates) Update queues Qmn(t), Zmn(t), Hn(t),
via (35), (38), (37).

Using a similar drift-plus-penalty Lyapunov optimization anal-
ysis, it can be shown to yield utility that is close to that
of a T -slot lookahead utility that is the same as (13)-(20),
with the exception that the constraint (14) is replaced by
γn = 1

T

∑kT+T−1
τ=kT

∑N
a=0[Ran(τ) − dan] for drop variables

dan in the range 0 ≤ dan ≤ Amaxn , and an additional ε-
persistent constraint is included for all (a, b) for which there
are queues Zab(t):

1
T

∑kT+T−1
τ=kT [µab(τ) + dab] ≥ εab

V. CONCLUSIONS

This paper considers utility maximization for a peer-to-peer
network model, and extends Lyapunov optimization theory to
this context. We developed an algorithm that makes greedy
decisions every slot and, for any T > 0, yields time average
utility that can approach the utility of a “genie-aided” T -slot
lookahead policy that has knowledge of the future over suc-
cessive frames of T slots. The algorithm ensures that “tit-for-
tat” constraints are satisfied, which incentivizes participation in
the peer-to-peer network. Indeed, it was seen that the peering
scheme requires nodes to help others in order to improve the
“weights” they need to continue receiving downloads. This is
perhaps the first use of max-weight and Lyapunov optimization
principles in a peer-to-peer system.

REFERENCES

[1] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[2] K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl. Device-
to-device communication as an underlay to lte-advanced networks. IEEE
Comm Mag, pp. 42-49, Dec. 2009.

[3] A. F. Molisch, Z. Tao, P. V. Orlik, J. Zhang, and T. Kuze. Enhanced
mbs with harq. C802.16m-08/1000, Sept. 2008.

[4] L. Buttyan and J.-P. Hubaux. Stimulating cooperation in self-organizing
mobile ad hoc networks. ACM/Kluwer Mobile Networks and Applica-
tions (MONET), vol. 8, no. 5, pp. 579-592, Oct. 2003.

[5] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring. Modeling incentives
for collaboration in mobile ad-hoc networks. presented at the 1st Int.
Symp. Modeling and Optimization in Mobile, Ad-Hoc, and Wireless
Networks (WiOpt ’03), Sophia-Antipolis, France, March 2003.

[6] M. J. Neely. Optimal pricing in a free market wireless network. Wireless
Networks, vol. 15, no. 7, pp. 901-915, October 2009.

[7] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and
improving bittorrent performance. In The 25th Conference on Computer
Communications (INFOCOM), Barcelona, Catalunya, Spain, April 2006.

[8] B. Fan, D.-M. Chiu, and J. C.S. Lui. The delicate tradeoffs in bittorrent-
like file sharing protocol design. In The 14th IEEE International
Conference on Network Protocols (ICNP), Santa Barbara, California,
November 12-15 2006.

[9] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani. Do incentives build robustness in bittorrent? In The 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI ),
Cambridge, MA, April 2007.

[10] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding. In The
3rd ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems
(P2PECON), Philadelphia,PA, August 2005.

[11] W.-C. Liao, F. Papadopoulos, and K. Psounis. Performance analysis of
bittorrent-like systems with heterogeneous users. In Performance, 2007.

[12] Karthik Tamilmani, Vinay Pai, and Alexander E. Mohr. Swift: A system
with incentives for trading. In P2PECON, 2004.

[13] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[14] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[15] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proc. IEEE INFOCOM, March
2005.

[16] M. J. Neely. Universal scheduling for networks with arbitrary traffic,
channels, and mobility. Proc. IEEE Conf. on Decision and Control
(CDC), Atlanta, GA, Dec. 2010.

[17] J. Andrews, S. Shakkottai, R. Heath, N. Jindal, M. Haenggi, R. Berry,
D. Guo, M. Neely, S. Weber, S. Jafar, and A. Yener. Rethinking
information theory for mobile ad hoc networks. IEEE Communications
Magazine, vol. 46, no. 12, pp. 94-101, Dec. 2008.

[18] Bram Cohen. Incentives build robustness in bittorrent. In P2PECON,
Berkeley, CA, Jun 2003.

[19] Lian, Peng, Yang, Zhang, Dai, and Li. Robust incentives via multi-level
tit-for-tat. In IPTPS, 2006.

[20] Freedman, Aperjis, and Johari. Prices are right: Managing resources and
incentives in peer-assisted content distribution. In IPTPS, 2008.

[21] Y. Yang, A. L.-H. Chow, and L. Golubchik. Multi-torrent: A per-
formance study. In International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (IEEE
MASCOTS), Baltimore, MD, 2008.

[22] F.P. Kelly, A.Maulloo, and D. Tan. Rate control for communication
networks: Shadow prices, proportional fairness, and stability. Journ. of
the Operational Res. Society, vol. 49, no. 3, pp. 237-252, March 1998.

[23] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
vol. 7 no. 6, pp. 861-875, Dec. 1999.

[24] M. Chiang. Balancing transport and physical layer in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE
J. on Selected Areas in Comm., vol. 23, no. 1, pp. 104-116, Jan. 2005.

[25] R. Agrawal and V. Subramanian. Optimality of certain channel aware
scheduling policies. Proc. 40th Annual Allerton Conference on Com-
munication , Control, and Computing, Monticello, IL, Oct. 2002.

[26] H. Kushner and P. Whiting. Asymptotic properties of proportional-
fair sharing algorithms. Proc. of 40th Annual Allerton Conf. on
Communication, Control, and Computing, 2002.

[27] X. Lin and N. B. Shroff. Joint rate control and scheduling in multihop
wireless networks. Proc. of 43rd IEEE Conf. on Decision and Control,
Paradise Island, Bahamas, Dec. 2004.

[28] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. Proc. IEEE
INFOCOM, March 2005.

[29] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[30] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transacations on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, Dec. 1992.

[31] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, vol. 39, no. 2, pp. 466-478, March 1993.

[32] M. J. Neely. Distributed and secure computation of convex programs
over a network of connected processors. DCDIS Conf., Guelph, Ontario,
July 2005.

[33] M. J. Neely. Opportunistic scheduling with worst case delay guarantees
in single and multi-hop networks. Proc. IEEE INFOCOM, 2011.


