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I. N ×N PACKET SWITCH

Recall the N × N packet switch model has N inputs, N outputs, and operates over discrete time with time slots t ∈
{0, 1, 2, . . .}. The crossbar constraint requires us to send no more than 1 packet from each input i ∈ {1, . . . , N} per slot,
and no more than 1 packet to each output j ∈ {1, . . . , N} per slot. Every slot t we must choose a binary permutation matrix
(Sij(t)) that defines which packets we can switch from inputs to outputs.1 That is, if Sij(t) = 0 then we cannot send any
packet from input i to output j. If Sij(t) = 1 then we can send exactly one packet from input i to output j. Since (Sij(t)) is
a permutation matrix, on every slot t the switch can deliver at most N packets to their desired outputs.

A. Minimum clearance time
Let Q = (Qij) be a N × N matrix of nonnegative integers. This shall be called the backlog matrix and represents the

packets that need to be scheduled for transmission over the switch. Specifically, Qij is the number of packets waiting at input
i that need to be sent to output j. Assume we are given an initial backlog matrix Q = (Qij) and we want to minimize the
clearance time (assuming no new arrivals take place). Let Tmin(Q) be the minimum time required to clear backlog matrix Q.

As an example consider the following 4× 4 backlog matrix:

Q =


2 0 1 0
0 1 0 0
2 2 0 0
0 0 2 0


Here is one attempt to clear the backlog. The particular matchings that are used on every slot are shown by boxing the

nonzero elements that are selected, subject to the constraint that no row or column has more than one selected entry.


2 0 1 0

0 1 0 0
2 2 0 0

0 0 2 0

→


1 0 1 0
0 0 0 0

2 2 0 0

0 0 1 0

→


0 0 1 0
0 0 0 0

2 1 0 0
0 0 0 0

→


0 0 0 0
0 0 0 0

1 1 0 0
0 0 0 0

→


0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0

→ (0)

This seems to be a reasonable sequence of choices. It clears all backlog in 5 timeslots. Is 5 timeslots the best we can do? No.
It is possible to make a different sequence of choices to clear in only 4 timeslots. (Can you find a way to do this?) Notice that
row three has 4 packets at the start and so it is impossible to clear in less than 4 slots. Thus, Tmin(Q) = 4 for this example.
Also, any choices that clear in exactly 4 slots must choose exactly one packet from row three on each of those slots (this is
why the above choices fail to clear the backlog in 4 slots).2

1A permutation matrix is a square matrix with binary entries that has exactly one “1” entry on each row and column. There are N ! permutation matrices
of size N ×N .

2A matching is a selection of the nonzero entries of the matrix so that no row or column has more than one selected entry. The problem of finding a
matching on a particular slot can also be represented by a bipartite graph with N input nodes on the left, N output nodes on the right, and an edge (i, j)
between an input node i and an output node j if and only if Qij > 0. A maximal matching is a selection of entries that cannot be trivially improved by
keeping the selected entries but adding more. It is easy to find a maximal matching by a simple greedy algorithm that sequentially adds new selections until
it is impossible to add more. The size of a match is the number of entries selected. A max size match is a matching that has maximum size when compared
to all other possible matchings. The size of a match is always less than or equal to N , and so a match that has size N must be a max size match. A match
of size N is also called a perfect match. A max size match is always a maximal match, but a maximal match is not always a max size match. A simple
example of a matching that is maximal, but not max size, is below:  1 1 0

1 0 0
0 0 0


This matching has size 1 and is maximal since we cannot trivially improve it by adding new entries without violating a row or column constraint. On the
other hand we can produce a matching of size 2 by erasing the single selection shown above and selecting completely new entries (1, 2) and (2, 1). It is not
always easy to find a max size match, but there are polynomial time max size match algorithms. The above 4× 4 example that clears backlog in 5 slots is
interesting because it uses a sequence of max size matches on every slot, yet it does not achieve minimum clearance time. Theorem 1 shows how minimum
clearance time can be achieved by first augmenting the matrix and then performing a sequence of max size matches on the augmented matrix. Using the
augmented matrix ensures that the max size matches used on each step have size N and hence are perfect matches. It can be shown that greedy maximal
matching on every slot clears the backlog within a factor of 2 of the minimum clearance time and so such greedy matchings are often preferred in scheduling
algorithms [1][2].
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Theorem 1. Tmin(Q) = max[r1, r2, ..., rN , c1, c2, ..., cN ] where ri, cj are the row and column sums for indices i and j,
respectively, defined by

ri =

n∑
j=1

Qij ∀i ∈ {1, . . . , N}

cj =

n∑
i=1

Qij ∀j ∈ {1, . . . , N}

Proof. Define T = max[r1, r2, ..., rN , c1, c2, ..., cN ].
1) (Tmin(Q) ≥ T ) Consider any particular algorithm for emptying the backlog matrix Q. Fix i ∈ {1, . . . , N} and j ∈
{1, . . . , N}. Since this algorithm can deliver at most one packet from row i per slot, and there are a total of ri packets
on row i, it must take at least ri time slots to empty the system. Similarly, since it can deliver at most one packet from
column j per slot, it must take at least cj time slots to empty the system. This holds for all i, j ∈ {1, . . . , N} and so the
time to empty is at least T = max[r1, ..., rN , c1, ..., cN ]. This holds for all algorithms, so Tmin(Q) ≥ T .

2) (Tmin(Q) ≤ T ) This is not obvious and is sometimes called the Birkhoff-Von Neumann theorem [3]. It has two parts,
which are sketched below: To avoid triviality, assume T > 0.
• (Von Neumann) Greedily add packets to (Qij) to produce a new backlog matrix (Q̃ij) that has each row and column

sum equal to T .3 A simple theorem (attributed to Von Neumann) shows this can always be done.
• (Birkhoff) This part is attributed to Birkhoff, although it primarily uses a theorem called Hall’s theorem from graph

theory. Hall’s theorem can be used to show that for any square matrix Q composed of nonnegative integers with all
row and column sums equal to T > 0, there exists a perfect match, meaning a permutation matrix that schedules
exactly N packets (one for each input and one for each output).4 The matrix Q̃ is such a matrix (all rows and columns
sum to T > 0), so we find a perfect match, remove one packet from each row and column, so the matrix on the next
slot is composed of nonnegative integers with all row and column sums being exactly T − 1. If T − 1 = 0 then the
system is empty and we have finished in T = 1 steps. Else, T −1 > 0 and we can again find a perfect match, remove
exactly one packet on each row and column, and the the new matrix on the next slot has all row and column sums
exactly T − 2. Proceeding this way, we strip off perfect matches at each step t ∈ {1, ..., T} to empty the system with
exactly T steps.

B. IMET algorithm

Now suppose packets randomly arrive to the network over time. We can use the following Iterative Minimum Emptying
Time Algorithm based on pre-selecting a frame size T > 0 and implementing the following algorithm over successive frames
of size T :
• Frame 1: On the first frame of T slots, do nothing. Wait for new packets to arrive and let Q[1] denote the matrix of

accumulated packet arrivals over frame 1. If the max row and column sum of Q[1] is less than or equal to T , keep all
these arrivals. Else, drop packets to produce a new matrix Q̃[1] with all row and column sums less than or equal to T .

• Frame k ∈ {2, 3, 4, ...}: On frame k ∈ {2, 3, 4, ...}, ignore all new arrivals on that T -slot frame. Schedule to clear all
packets Q̃[k − 1] within this frame. This is always possible by Theorem 1. Let Q[k] be the matrix of all packets that
arrived on frame 2. As before, if the max row and column sum of Q[k] is less than or equal to T , keep all these arrivals.
Else, drop packets to produce a new matrix Q̃[k] with all row and column sums less than or equal to T . Repeat for frame
k + 1.

Every arriving packet that is not dropped must arrive on some frame k and is served on the next frame k + 1. Hence, it is
clear that the worst-case delay of all non-dropped packets is 2T (the size of two consecutive frames). We want to choose a
frame size T so that packet drops are rare.

C. Bounds for leaky bucket traffic

Suppose packets arrive over time and let Aij(t) be the number of packets that arrive to input i ∈ {1, ..., N} that are destined
for output j ∈ {1, ..., N}. So far we have used stochastic descriptions of traffic (such as Poisson traffic). Let us use a new

3What do we mean by “greedily add”? Let’s go row-by-row: For entry (1, 1), add packets to Q11 until either row 1 or column 1 has a sum of T . For
entry (1, 2), add packets to Q12 until either row 1 or column 2 has a sum of T . Keep going. Of course, once we know we have completed a particular row
i or column j, we can skip those rows/columns from then on. For example, if adding packets to Q11 makes row 1 sum to T , we can keep all other entries
on row 1 constant and skip directly to row 2.

4Such a permutation matrix always exists, but it is not always easy to find: In general we need to use a max-size match algorithm to find one.
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deterministic description: Assume that each arrival process {Aij(t)}∞t=0 is leaky bucket constrained with rate parameter λij ≥ 0
and burst parameter σij ≥ 0, meaning that for all slots t0 ∈ {0, 1, 2, . . .} and all integers T > 0 we have:

t0+T−1∑
τ=t0

Aij(τ) ≤ λijT + σij (1)

In particular, the total number of arrivals over any interval of T slots is at most λijT + σij .
The parameter λij is called the long-term rate parameter because (1) implies:

lim
T→∞

1

T

T−1∑
τ=0

Aij(τ) ≤ λij

and so the long-term rate of packet arrivals of type (i, j) is at most λij packets/slot. the parameter σij is called the burst
parameter because it specifies how much the long term rate constraint can be violated in the short term.

Theorem 2. (IMET under leaky bucket traffic) Suppose that for each i, j ∈ {1, . . . , N}, the arrival process {Aij(t)}∞t=0

satisfies the leaky bucket constraints (1) for some parameters λij ≥ 0 and σij ≥ 0. Suppose that the rate matrix (λij) is in
the switch capacity region so that:

N∑
j=1

λij ≤ ρ ∀i ∈ {1, . . . , N} (2)

N∑
i=1

λij ≤ ρ ∀j ∈ {1, . . . , N} (3)

for some value ρ that satisfies 0 ≤ ρ < 1. Define σmax as the largest row or column sum over the matrix (σij). Then the
IMET algorithm with frame size

T =
σmax
1− ρ

(4)

never drops any packets and hence all packets have delay at most 2T .

Proof. Let Q[k] be the total arrivals that take place on frame k. It suffices to show that Tmin(Q) ≤ T , which means that all
of these arrivals can be scheduled and cleared on frame k + 1. We have

Tmin(Q[k]) = max
i,j∈{1,...,N}

[
N∑
m=1

Qim[k],

N∑
n=1

Qnj [k]

]
(a)

≤ max
i,j∈{1,...,N}

[
N∑
m=1

(λimT + σim),

N∑
n=1

(λnjT + σnj)

]
(b)

≤ max
i,j∈{1,...,N}

[ρT + σmax, ρT + σmax]

= ρT + σmax
(c)
=
ρσmax
1− ρ

+ σmax = T

where (a) holds by (1); (b) holds by (2)-(3); (c) holds by (4).

For Poisson arrivals, which are not leaky bucket constrained, it can be shown that the rate of packet drops is very small,
and this style of frame-based algorithm with min clearance time scheduling can be used to give the best known asymptotic
delay for N ×N packet switches [4].

D. IMET with variable size frames

The fixed-frame IMET algorithm may waste time with several idle slots at the end of frame, even when packets are waiting
to be served in the next frame. Consider the following redesign. This algorithm never drops packets.
• Frame 1 (slot t = 0): Frame 1 consists of one slot, slot t = 0. Ignore the new packets that arrive on slot t = 0. Call these

packets Q[1].
• Frame k ∈ {2, 3, 4, ...}: If Q[k−1] = 0 then frame k has a size of one slot and is idle on that slot. If Q[k−1] 6= 0, clear

backlog matrix Q[k− 1] in minimum time, so frame k has size Tmin(Q[k− 1]). Ignore all new arrivals during frame k,
and call these packets Q[k]. Repeat for frame k + 1.
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Exercise 1. (Variable frame IMET) Use induction to prove that, under the leaky bucket traffic assumptions of Theorem 2, the
maximum size of any frame is σmax/(1− ρ) and so, as before, the worst-case delay is 2σmax/(1− ρ).

An advantage of this approach is that we do not drop any packets, we do not need to choose the frame size in advance, and
we do not need to know the values of ρ or σmax. A danger of this algorithm is that, since no packets are dropped, if the leaky
bucket assumptions of Theorem 2 are not satisfied, then the system can go unstable and the frame size can go to infinity. A
variation on both approaches is to use a variable size frame, but impose a maximum frame size Tmax. We drop packets to
ensure no frames are larger than Tmax. The value Tmax can be sized according to σmax and ρ parameters that are reasonable
targets. Notice that all of these algorithms require an immediate solution to the min clearance time problem. Indeed, once all
packets of frame k have arrived, we assume we can immediately implement the minimum clearance time method on the first
slot of frame k+1, so we have at most one time slot to solve a very complicated minimum clearance time problem! The next
exercise allows more time for computing the solution.

Exercise 2. (Low complexity IMET) Fix T as an integer frame size. Compute the size of T for which no packets are dropped
under the leaky bucket assumptions of Theorem 2, considering the following variation that uses 3 phases. Assume k > 2: (i)
Ignore new arrivals during frame k. Call these Q[k]. (ii) During frame k, use the T -slot time duration of this frame to perform
the following operations and computations: Drop packets in matrix Q[k− 1] to get a new matrix Q̃[k− 1] that can be cleared
within time T . Compute the min clearance time for backlog Q̃[k− 1]. (iii) During frame k, implement the min clearance time
solution for the backlog Q̃[k − 2].

Compute the size of T for which no packets are dropped under the leaky bucket assumptions of Theorem 2. Show that
worst-case delay is at most 3T .

The methods of the above exercises can be combined to allow variable sized frames, max frame sizes Tmax, and computation
time intervals that are different from the frame sizes. This IMET technique of having back-to-back intervals over which backlog
is cleared in minimum time can be used for other networks, as shown in [5].

II. MAX WEIGHT SCHEDULING

A different type of max-weight scheduling can be used [6]. The following model is from [2] where lower complexity maximal
scheduling is considered. Here we derive a special case of max-weight scheduling from the drift-plus-penalty framework.

A. Model
Suppose we have L links that are activated in a time slotted system t ∈ {0, 1, 2, ...}. Let b(t) = (b1(t), . . . , bL(t)) be the

(binary) activation vector on slot t, and assume this is chosen from some fixed set B of vector options:

B = {b(1), b(2), ..., b(M)}

where M is the (finite) number of options. For the special case of an N × N packet switch, we can write the N2 matrix
components as a vector so that there are L = N2 links, and there are M = N ! options (each option being a permutation
matrix). The set B can also represent the options available in a wireless network due to interference constraints.

B. Problem
Suppose we select each option b(m) ∈ B randomly with probability p(m). We want to select probabilities that ensure the

expected transmission rate over each link l ∈ {1, . . . , L} is at least λl, where λl are given target rates for each link. Let
λ = (λ1, . . . , λL). We want to solve the linear program of finding decision variables p(m) to satisfy:

M∑
m=1

p(m)b(m) ≥ λ

M∑
m=1

p(m) = 1

p(m) ≥ 0 ∀m ∈ {1, . . . ,M}

Notice that there is no objective function to minimize. We can view the objective function as the all-zero function. The above
reduces to

M∑
m=1

p(m)b
(m)
l ≥ λl ∀l ∈ {1, . . . , L} (5)

M∑
m=1

p(m) = 1 (6)

p(m) ≥ 0 ∀m ∈ {1, . . . ,M} (7)
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C. Drift-plus-penalty (DPP) implementation

Recall the drift-plus-penalty (DPP) rule for solving convex programs (as specified in the network optimization notes):

http://ee.usc.edu/stochastic-nets/docs/network-optimization-notes.pdf

For a DPP implementation we have L virtual queues, one for each link:

Ql(t+ 1) = max

[
Ql(t) + λl −

M∑
m=1

p(m)(t)b
(m)
l , 0

]
∀l ∈ {1, . . . , L}

Since the objective function is zero, the decision every slot t is to choose probabilities (p(m)(t)) that satisfy (6)-(7) to minimize:

V · 0 +
L∑
l=1

Ql(t)

[
λl −

M∑
m=1

p(m)(t)b
(m)
l

]
This is equivalent to the following max-weight rule of choosing (nonnegative) probabilities (p(m)(t)) that sum to 1 to maximize:

M∑
m=1

p(m)

[
L∑
l=1

Ql(t)b
(m)
l

]
︸ ︷︷ ︸

Q(t)T b(m)

The answer is to place the full probability 1 on the option m that maximizes Q(t)T b(m), which is the inner product of the
current queue backlog matrix Q(t) = (Q1(t), . . . , QL(t)) and the transmission vector b(m) = (b

(m)
1 , . . . , b

(m)
L ) for option m.

That is, we select the option m that maximizes this inner product. This is called the max-weight rule [6]. Since we place full
probability on one option, we can call b(t) = (b1(t), . . . , bL(t)) the transmission option in B that is chosen on slot t, so that
b(t) =

∑M
m=1 p

(m)(t)b
(m)
l and the virtual queue equation reduces to:

Ql(t+ 1) = max [Ql(t) + λl − bl(t), 0] ∀l ∈ {1, . . . , L}

It can be shown that this max-weight rule stabilizes the network whenever possible, even when the virtual queues are replaced
by actual queues with random arrivals Al(t), even if the arrival rates λl = limT→∞

1
T

∑T−1
t=0 Al(t) are unknown [6]:

Ql(t+ 1) = max [Ql(t) +Al(t)− bl(t), 0] ∀l ∈ {1, . . . , L}

where b(t) = (b1(t), . . . , bL(t)) is the vector b(m) ∈ B that maximizes the inner product Q(t)T b(m) (breaking ties arbitrarily).
Notice that for the special case of N × N packet switches, the max-weight rule uses max weight matches rather than the

max size matches of IMET. A much simpler maximal scheduling rule is used in [2] to support all traffic within a factor of 2
of the network capacity region, and to produce very low delay.

Exercise 3. Consider the same problem but now assume there is an energy cost θ(m) for using mode m ∈ {1, . . . ,M} on a
slot. Now the linear program has an objective function to minimize! Reformulate the problem (5)-(7) to support the rate vector
λ while minimizing average energy cost. What does the DPP algorithm (with parameter V > 0) do in this case? Show that
if θ(m) = 0 for all m then the algorithm reduces to the max-weight rule specified above.
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