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Online Fractional Programming for
Markov Decision Systems

Michael J. Neely

Abstract— We consider a system with K states which operates
over frames with different lengths. Every frame, the controller
observes a new random event and then chooses a control action
based on this observation. The current state, random event, and
control action together affect: (i) the frame size, (ii) a vector
of penalties incurred over the frame, and (iii) the transition
probabilities to the next state visited at the end of the frame. The
goal is to minimize the time average of one penalty subject to time
average constraints on the others. This problem has applications
to task scheduling in computer systems and wireless networks,
where each task can take a different amount of time and may
change the state of the network. An example is energy-optimal
scheduling in a system with several energy-saving transmission
modes, where transitions to a different mode incur energy and/or
delay penalties. We pose the problem as a stochastic linear
fractional program and present an online Lyapunov drift method
for solving it. For large classes of problems, the solution can
be implemented without any knowledge of the random event
probabilities.

Index Terms— Dynamic scheduling, stochastic control, energy
savings, computer networks, wireless networks

I. INTRODUCTION

We consider dynamic scheduling in a system with variable
length frames. The system is in one of K states at the begin-
ning of each frame, and operates according to a generalization
of a Markov decision process. Specifically, at the beginning
of each frame r ∈ {0, 1, 2, . . .}, the controller observes the
current system state k[r] and a random system event ω[r], and
makes a control action α[r] based on these observations. The
action α[r] is selected from an abstract set A(k[r], ω[r]) that
possibly depends on k[r] and ω[r]. The α[r] decision affects:

1) The size T [r] of frame r. We have T [r] =
T̂ (k[r], ω[r], α[r]), where T̂ (k, ω, α) is a function of state
k, action α, and event ω.

2) The transition probabilities Pij [r] for frame r, where i =
k[r] is the current state, held for the duration of frame
r, and j is a possible next state visited at the end of the
frame. We have Pij [r] = P̂ij(ω[r], α[r]), where P̂ij(ω, α)
is a function of states i, j, event ω, and action α.

3) A vector y[r] = (y0[r], y1[r], . . . , yL[r]) of penalties for
frame r. For each l ∈ {0, 1, . . . , L} we have yl[r] =
ŷl(k[r], ω[r], α[r]), where ŷl(k, ω, α) is a function of state
k, event ω, and action α.
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We assume throughout that T̂ (k, ω, α), P̂ij(ω, α), and
ŷl(k, ω, α) are known deterministic functions, although in
some cases our algorithm does not require full knowledge
of these functions, and can extend to random functions. We
assume throughout that ω[r] takes values in an abstract set
Ω of arbitrary cardinality, and is i.i.d. over frames with an
unknown probability distribution p(ω). For example, the ω[r]
process can represent a vector of random arrivals or channel
states for a wireless system, and can possibly be null if such a
process is not relevant to the system of interest. One could also
remove ω[r] by incorporating it into the current state k[r], but
this would create a much larger (possibly infinite) state space.
Our solution is considerably simplified when ω[r] is treated
separately. Indeed, the complexity of our solution does not
depend on the size of the set Ω.

The goal is to minimize the time average associated with
penalty y0[r] subject to time average constraints on yl[r] for
l ∈ {1, . . . , L}. Specifically, for each integer R > 0 define
yl[R] and T [R] by:

yl[R]M=
1

R

R−1∑
r=0

E [yl[r]] , T [R]M=
1

R

R−1∑
r=0

E [T [r]]

where the expectations are with respect to the random events
that occur and the (possibly randomized) control algorithm
that is used. For simplicity of exposition, assume the control
algorithm leads to time average expectations that converge to
well defined limits yl and T as R→∞. We seek to solve the
problem:1

Minimize: y0/T (1)
Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L} (2)

α[r] ∈ A(k[r], ω[r]) ∀r ∈ {0, 1, 2, . . .} (3)

where cl are given constants for l ∈ {1, . . . , L}. Similar to
basic renewal theory, the quantity yl/T represents the time
average associated with the yl[r] process [1]. The above can
also be used to solve modified problems of minimizing y0
subject to yl ≤ cl. This is done simply by defining a “virtual”
frame size T [r] that is equal to 1 for all frames r. This model
can be used for a variety of systems, with examples given in
the next two subsections.

A. Discrete Time Controlled Markov Chain Example

Suppose we have a controlled Markov chain with K states
that evolves in discrete time over slots r ∈ {0, 1, 2, . . .}. All

1The assumption that the limits exist is used to simplify discussion. Our
theorems use lim sups where appropriate.
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frames have size T [r] = 1, called a time slot. Every slot r,
given that we are in state k[r], we observe a random event ω[r]
and make a control decision α[r] ∈ A(k[r], ω[r]) that affects
the transition probabilities to the next state and also affects
a vector of penalties y[r], which are deterministic functions
of k[r], ω[r], α[r]. In the absence of observed events ω[r]
and when the action space A(k, ω) is a finite set for all
k, ω, the resulting Markov decision problem (MDP) can be
solved by the conventional linear programming method [2][3].
The technique we present in this paper provides a method
that allows infinite action spaces, and possibly an infinite
event space for ω[r], and does not require knowledge of the
probability distribution associated with ω[r].

B. Energy-Efficient Scheduling Example

Suppose we have a computer system that has K processing
modes, each with different energy and processing rate prop-
erties. For example, there can be an “idle” mode which uses
minimum power and does not allow any processing. There
are L job classes. Every frame r we choose which single
class l[r] ∈ {1, . . . , L} to serve, spending one unit of time in
processing mode k[r] (given that k[r] is the processing mode
at the beginning of the frame). We also decide whether to stay
in state k[r] on frame r+1, or to transition to some new state,
which incurs extra time. Let Tkj(l) denote the total frame size
given we are initially in state k, choose to serve class l, and
transition to state j. The total energy expended by this choice
is ekj(l). The constants Tkj(l) and ekj(l) are assumed known.
Further, new jobs with fixed workload arrive according to a
Poisson process of rates λ1, . . . , λL, so that Tkj(l)λm is the
average number of new jobs of type m that arrive over a frame
of size Tkj(l).

Thus, there is no random event ω[r] at the beginning of
a frame r. The control decision α[r] has the form α[r] =
(l[r], j[r]), where l[r] ∈ {1, . . . , L} and is the class of data
served on frame r, and j[r] is the choice of next-state at the
end of the frame. We then have:

T [r] = Tk[r]j[r](l[r])

Pk[r]n[r] =

{
1 if n = j[r]
0 otherwise

Define y0[r] as the energy expended in frame r. We can thus
formulate the problem of choosing a control action every frame
to minimize average power y0/T subject to serving all traffic
classes at a rate at least ε beyond the input rate λl, for some
pre-specified ε ≥ 0. These constraints are enforced by defining
for each l ∈ {1, . . . , L}:

yl[r] = λlTk[r]j[r](l[r])− 1{l[r]=l}

which is the average arrivals of class l over frame r, minus
1 if we serve class l on frame r. The desired constraints are
thus enforced by yl/T ≤ −ε. We consider this special case in
more detail later and show that, while the yl[r] penalties are
defined in terms of the λl rates, the algorithm does not require
knowledge of these rates.

C. Prior Work on Dynamic Markov Decision Policies

Markov decision problems (MDPs) are typically analyzed
in the context of 1-slot frames, and without the additional ω[r]
event process. The simplest approach is to write the problem as
an offline linear program, assuming all probabilities are known
and the action space is finite [2][3]. Neuro-dynamic program-
ming and q-learning methods for unconstrained problems are
given in [4]. Extensions to constrained problems are treated
in [5][6] via 2-timescale arguments, stochastic approximation,
and fluid limits. Related applications to wireless systems are
treated in [7][8][9][10][11]. These methods typically require
finite action spaces, do not have the random event process
ω[r], and do not have variable frame sizes.

Our approach is the most closely related to [5], which uses
an online 2-timescale method to solve the linear program cor-
responding to the discrete time MDP. However, in our variable
frame length context, linear programs must be replaced by
linear fractional programs. Further, we use a fundamentally
different technique that allows for infinite action spaces and
random event processes ω[r], where the solution does not re-
quire knowledge of the p(ω) probabilities and has complexity
that does not depend on the number of possible ω[r] outcomes.
While our approach does not involve two timescales, it does
break the problem into two separate stages of algorithms:
The first algorithm provides a provably fast online learning of
parameters associated with the optimal solution. The second
algorithm uses these parameters in an online implementation.
These algorithms can be run in parallel, although we analyze
them separately in this paper. We use Lyapunov optimization
techniques from [12][1] together with MDP concepts. Related
work in [11] uses Lyapunov optimization over multi-slot
intervals, using a forced renewal assumption and a stochastic
shortest path solver on each interval. The current paper is
distinct from [11] in that it does not require forced renewals,
and it makes greedy decisions on each frame, rather than using
a stochastic shortest path solver over multiple frames.

II. THE LINEAR FRACTIONAL PROGRAM

For simplicity of exposition, first assume there are no
events ω[r], so that action spaces A(k, ω) can be written as
A(k), and similarly we use notation ŷl(k, α), T̂ (k, α), P̂ij(α).
Further assume A(k) is a finite set for each k ∈ {1, . . . ,K}.
A stationary and randomized policy is characterized by a
conditional probability distribution β(α|k) for k ∈ {1, . . . ,K}
and α ∈ A(k). Such a policy observes k[r] at the beginning of
each frame r and then chooses an action α[r] ∈ A(k[r]) with
probability β(α[r]|k[r]). It can be shown that the problem (1)-
(3) can be solved over the class of stationary and randomized
algorithms, where the optimal probabilities β(α|k) are given
in terms of values φ(k, α) by:

β(α|k) =
φ(k, α)∑

x∈A(k) φ(k, x)

where φ(k, α) represents the steady state probability of being
in state k[r] = k and choosing action α[r] = α. These
values are optimally solved by the following linear fractional
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program:

Minimize:∑K
k=1

∑
α∈A(k) φ(k, α)ŷ0(k, α)∑K

k=1

∑
α∈A(k) φ(k, α)T̂ (k, α)

Subject to:

(i)

∑K
k=1

∑
α∈A(k) φ(k, α)ŷl(k, α)∑K

k=1

∑
α∈A(k) φ(k, α)T̂ (k, α)

≤ cl ∀l ∈ {1, . . . , L}

(ii)
∑

α∈A(k)

φ(k, α) =

K∑
i=1

∑
α∈A(k)

φ(i, α)P̂ik(α)

∀k ∈ {1, . . . ,K}
(iii) φ(k, α) ≥ 0 ∀k ∈ {1, . . . ,K}, α ∈ A(k)

(iv)

K∑
k=1

∑
α∈A(k)

φ(k, α) = 1

The ratios in the above program can be viewed as representing
the ratios of averages yl/T . Constraint (ii) in the above
program can be viewed as the classic global balance equation
[2], where the left-hand-side of the equality is the steady
state probability of being in state k at the beginning of a
frame, and the right-hand-side is the steady state probability
of transitioning to state k at the end of a frame.

Such linear fractional programs can be solved offline by
converting to linear programs via a non-linear change of
variables [13]. However, this may involve a very large number
of variables if the sets A(k) are large. Further, this does not
allow the possibility of an ω[r] process. Our approach develops
an online solution technique that allows for an ω[r] process,
does not require knowledge of probabilities p(ω), and allows
for possibly infinite sets Ω and A(k, ω).

Section III develops a solution to a generalized version of
the above problem. We note that such solutions are the most
meaningful when the resulting stationary policy has a single
recurrent class of states, resulting in time average expectations
that are the same, with probability 1, as the pure time averages.
Examples of “degenerate” systems can be constructed where
the above problem of optimizing time average expectations is
solvable, so that time average expectations meet the desired
constraints, but for which it is impossible for pure time
averages to meet the constraints.

A. Optimality over Stationary Policies

Now allow an ω[r] process, and allow the sets Ω and
A(k, ω) to be infinite (we still assume there are only K states).
The stationary and randomized policies associated with the
above (finite) linear fractional program have the following
generalization: Define a (k, ω)-only policy α∗[r] as one that
observes (k[r], ω[r]) every frame r, and independently chooses
α∗[r] ∈ A(k[r], ω[r]) according to a stationary probability
distribution that depends only on (k[r], ω[r]). Note that a given
(k, ω)-only policy α∗[r] makes the process k[r] a discrete time
homogeneous Markov chain on state space {1, . . . ,K} and
with transition probability matrix P ∗ = (P ∗ij), where:

P ∗ij = Eω[r]
[
E
[
P̂ij(ω[r], α∗[r])|ω[r], k[r] = i

]]

Let π∗ = (π∗1 , . . . , π
∗
K) be a row vector that satisfies:

π∗ = π∗P ∗ (4)

Such a probability vector π∗ always exists, but may not be
unique. If the underlying Markov chain has a single irreducible
class, then it is unique and represents the vector of time
average fractions of time being in each state. Define ratioopt

as the infimum value of (1) under all such (k, ω)-only policies
that satisfy the constraints. If the sets Ω, A(k, ω) are finite,
then ratioopt is also optimal over all policies (not just (k, ω)-
only policies). This can be extended to infinite sets with some
mild but notationally complex additional assumptions. Rather
than complicate notation, we simply measure our performance
with respect to ratioopt, and make the following assumption:

Assumption 1: There exists a (k, ω)-only policy α∗[r],
together with a probability distribution π∗ that satisfies (4),
such that:

E [y∗0 [r]]

E [T ∗[r]]
= ratioopt (5)

E [y∗l [r]]

E [T ∗[r]]
≤ cl ∀l ∈ {1, . . . , L} (6)

where the expectations are with respect to being in state k[r]
at the beginning of state r with probability distribution π∗,
and y∗l [r] = ŷl(k[r], ω[r], α∗[r]), T ∗[r] = T̂ (k[r], ω[r], α∗[r]).

Assumption 1 holds when problem (1)-(3) is feasible and
the sets Ω, A(k, ω) are finite, as well as in many other cases.

B. Boundedness Assumptions

For simplicity, we assume for each l ∈ {0, 1, . . . , L} there
are finite (possibly negative) constants yminl and ymaxl such
that for all possible k[r], ω[r], α[r]:

yminl ≤ ŷl(k[r], ω[r], α[r]) ≤ ymaxl

Also, we assume there are constants Tmin and Tmax such
that:

0 < Tmin ≤ T̂ (k[r], ω[r], α[r]) ≤ Tmax

III. ONLINE LEARNING

We now write the general problem (with possibly infinite
sets Ω and A(k, ω)) as a stochastic optimization of time
averages of certain attributes. To do so, we define a modified
system where the same ω[r] process is observed every frame,
but with the following key difference: There are no Marko-
vian dynamics, and the “state variable” k[r] is treated as a
decision variable that can be chosen every frame within the
set {1, . . . ,K}. We shall enforce a “global balance” constraint
on the average fraction of time that k[r] = k. After choosing
k[r], we also choose decision variable α[r] ∈ A(k[r], ω[r]),
and this affects T [r], yl[r], and Pij [r] by the functions
T̂ (k[r], ω[r], α[r]), ŷl(k[r], ω[r], α[r]), P̂ij(ω[r], α[r]). Define
attributes qij [r] for i, j ∈ {1, . . . ,K} as functions of the
decisions on frame r:

qij [r] = 1{k[r]=i}P̂ij(ω[r], α[r]) (7)

where 1{k[r]=i} is an indicator function that is 1 if k[r] =
i, and 0 else. We want to solve the following stochastic
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optimization problem, where yl and qij represent time average
expectations:

Minimize: y0
T

(8)

Subject to: yl
T
≤ cl ∀l ∈ {1, . . . , L} (9)∑K

j=1 qkj =
∑K
i=1 qik ∀k ∈ {1, . . . ,K} (10)

k[r] ∈ {1, . . . ,K} ∀r ∈ {0, 1, 2, . . .} (11)
α[r] ∈ A(k[r], ω[r]) ∀r ∈ {0, 1, 2, . . .} (12)

k[r] independent of ω[r] ∀r ∈ {0, 1, 2, . . .} (13)

The constraint (10) is a balance equation similar to the second
constraint in the linear fractional program from Section II. The
constraint (13) specifies that decision variable k[r] must be
chosen independently of ω[r], and is a non-standard constraint
that does not arise in the time average optimization problems
treated in [1][12]. It arises because our decision variable k[r]
for this modified problem should have similar properties to
a state variable on the actual Markov system. Specifically,
it ensures the conditional time averages achieved on this
modified problem, given k[r] = k, can also be achieved on
the actual Markov system. Otherwise, choosing k[r] based
on knowledge of ω[r] can incorrectly skew these conditional
averages.

A. Virtual queues

To enforce the constraints (9), we use a virtual queue Zl[r]
for each l ∈ {1, . . . , L} that is updated every frame as:

Zl[r + 1] = max [Zl[r] + ŷl(k[r], ω[r], α[r])

−clT̂ (k[r], ω[r], α[r]), 0
]

(14)

The intuition is that stabilizing Zl[r] implies that the average
of the “arrival process” yl[r] is less than or equal to the average
of the “service process” clT [r], so that yl ≤ clT .

To enforce the constraints (10), we define a virtual queue
Hk[r] for each k ∈ {1, . . . ,K}, with udpates:

Hk[r + 1] = Hk[r] + 1{k[r]=k} −
K∑
i=1

qik[r] (15)

where we have used the fact that
∑K
j=1 qkj [r] = 1{k[r]=k},

which follows from (7).

B. Drift-Plus-Penalty Ratio Method

Define L[r] by:

L[r] =
1

2

L∑
l=1

Zl[r]
2 +

1

2

K∑
k=1

Hk[r]2

This is called a Lyapunov function. Define the Lya-
punov drift ∆[r] = L[r + 1] − L[r]. Define Q[r] =
(Z1[r], . . . , ZL[r], H1[r], . . . ,HK [r]) as the vector of all
queue values for frame r. As in [1], our approach is to take
control actions every frame r that greedily minimize a bound
on the following drift-plus-penalty ratio:

E [∆[r] + V y0[r]|Q[r]]

E [T [r]|Q[r]]

where T [r] = T̂ (k[r], ω[r], α[r]), and V is a positive weight
that will affect a performance tradeoff. To satisfy (13), it is
essential for k[r] to be chosen first, and then ω[r] is observed
and α[r] is selected from the set A(k[r], ω[r]).

Lemma 1: For any control algorithm, we have:

E [∆[r] + V y0[r]|Q[r]]

E [T [r]|Q[r]]
≤ B

E [T [r]|Q[r]]

+

L∑
l=1

Zl[r]

 E [ŷl(k[r], ω[r], α[r])|Q[r]]

E
[
T̂ (k[r], ω[r], α[r])|Q[r]

] − cl


+

K∑
k=1

Hk[r]
E
[
1{k[r]=k} − P̂k[r],k(ω[r], α[r])|Q[r]

]
E
[
T̂ (k[r], ω[r], α[r])|Q[r]

]
+
E [V ŷ0(k[r], ω[r], α[r])|Q[r]]

E
[
T̂ (k[r], ω[r], α[r])|Q[r]

] (16)

where B is a finite constant that depends on the bounds yminl ,
ymaxl , Tmin, Tmax.

Proof: Omitted for brevity (see related results in [1]).
Our algorithm, defined in the next subsection, is based on

taking control actions that minimize the last three terms in the
right-hand-side of (16) every frame.

C. Algorithm 1

Every frame r, observe queues Q[r]. Then:

• For each k ∈ {1, . . . ,K}, compute ek[r], defined as the
infimum of the following quantity over all policies for
choosing α[r] ∈ A(k, ω[r]):

E
[
V ŷ0(k, ω[r], α[r]) +

∑L
l=1 Zl[r]ŷl(k, ω[r], α[r])|Q[r]

]
E
[
T̂ (k, ω[r], α[r])|Q[r]

]
+
E
[∑K

i=1Hi[r](1{i=k} − P̂k,i(ω[r], α[r]))|Q[r]
]

E
[
T̂ (k, ω[r], α[r])|Q[r]

] (17)

• Choose k[r] as the minimizer of ek[r] over all k ∈
{1, . . . ,K}. Then observe ω[r] and choose α[r] ∈
A(k[r], ω[r]) to minimize (17), using k = k[r].

• Update queues via (14) and (15).

The first two steps involve computing an infimum of a
ratio of expectations to find ek[r], and then choosing the
corresponding α[r] to minimize the ratio of expectations, given
our choice of k[r]. Doing this exactly would require the
probability distribution for ω[r]. Fortunately, implementation
of the above algorithm does not need to be exact. We allow
our control decisions to be inexact by an additive constant
C ≥ 0. Specifically, we say the algorithm is a C-additive
approximation to the drift-plus-penalty ratio if every frame r
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we have:
E [∆[r] + V y0[r]|Q[r]]

E [T [r]|Q[r]]
≤ B + C

E [T [r]|Q[r]]

+

L∑
l=1

Zl[r]

 E [ŷl(k
∗[r], ω[r], α∗[r])|Q[r]]

E
[
T̂ (k∗[r], ω[r], α∗[r])|Q[r]

] − cl


+

K∑
k=1

Hk[r]
E
[
1{k∗[r]=k} − P̂k∗[r],k(ω[r], α∗[r])|Q[r]

]
E
[
T̂ (k∗[r], ω[r], α∗[r])|Q[r]

]
+
E [V ŷ0(k∗[r], ω[r], α∗[r])|Q[r]]

E
[
T̂ (k∗[r], ω[r], α∗[r])|Q[r]

] (18)

where k∗[r] and α∗[r] are any other (possibly randomized)
decisions that satisfy k∗[r] ∈ {1, . . . ,K}, k∗[r] is independent
of ω[r], and α∗[r] ∈ A(k∗[r], ω[r]). An exact minimization
yields C = 0. Performance of this algorithm under a C-
additive approximation is analyzed in Section III-F.
C-additive approximations can be computed without knowl-

edge of the probability distribution of ω[r] by using the
bisection method in Chapter 7 of [1], which uses past samples.
To ensure that our estimate ẽk[r] to ek[r] does not depend
on ω[r], we use samples ω[r − 1], ω[r − 2], . . . , ω[r − W ],
where W is the number of samples used. The delayed queue
analysis and max weight learning theory in [14] shows that
choosing k[r] as the minimizer of the estimates ẽk[r] results
in an accurate approximation for large W . Simpler and exact
decisions can be made when the system has no ω[r] process,
as described below.

D. Special Case without ω[r]

In the special case when there is no ω[r] process (equiva-
lently, when ω[r] is always the same value for all frames, with
probability 1), it is shown in Chapter 7 of [1] that minimizing
the ratio of expectations is done by deterministically choosing
k[r] ∈ {1, . . . ,K}, α[r] ∈ A(k[r]) to minimize:

V ŷ0(k[r], α[r])

T̂ (k[r], α[r])
+

L∑
l=1

Zl[r]
ŷl(k[r], α[r])

T̂ (k[r], α[r])

+

K∑
k=1

Hk[r]

[
1{k[r]=k} − P̂k[r],k(α[r])

]
T̂ (k[r], α[r])

(19)

E. Energy-Efficient Scheduling Example
Consider the energy-efficient scheduling example of Section

I-B, which does not use ω[r]. This example has penalties
y0[r] = ek[r]j[r](l[r]) and yl[r] = λlTk[r]j[r](l[r]) − 1{l[r]=l}
for l ∈ {1, . . . , L}, where j[r] is the choice of next-state,
and l[r] is the choice of which traffic class to serve. Then
from (19), every frame r, we observe Q[r] and choose
k[r] ∈ {1, . . . ,K}, l[r] ∈ {1, . . . , L}, j[r] ∈ {1, . . . ,K} to
deterministically minimize:

V ek[r]j[r](l[r])

Tk[r]j[r](l[r])
−

L∑
l=1

Zl[r]
1{l[r]=l}

Tk[r]j[r](l[r])

+

K∑
k=1

Hk[r]

[
1{k[r]=k} − 1{j[r]=k}

]
Tk[r]j[r](l[r])

The above is a minimization over K2L possible values. Note
that this does not require knowledge of the job arrival rates
λ1, . . . , λL because these appear as coefficients multiplying
the frame size in the yl[r] penalties for l ∈ {1, . . . , L}.

From (15), the queue update for Hk[r] for each k ∈
{1, . . . ,K} becomes:

Hk[r + 1] = Hk[r] + 1{k[r]=k} − 1{j[r]=k}

A direct implementation of the Zl[r] updates in (14) for each
l ∈ {1, . . . , L} would be:

Zl[r + 1] = max[Zl[r] + λlTk[r]j[r](l[r])− 1{l[r]=l}

+εTk[r]j[r](l[r]), 0]

Unfortunately, this update would require knowledge of the λl
values. However, we can treat ŷl(·) as a random function equal
to:

ŷl(k[r], j[r], l[r]) = Âl(k[r], j[r], l[r])− 1{l[r]=l}

where Âl(k[r], j[r], l[r]) is the random number of type l jobs
that arrive in frame r, having frame size Tk[r]j[r](l[r]). Then
the average of ŷl(·) is equal to λ1Tk[r]j[r](l[r])−1{l[r]=l}, and
the queue dynamics above can be modified to:

Zl[r + 1] = max[Zl[r] + Âl(k[r], j[r], l[r])− 1{l[r]=l}

+εTk[r]j[r](l[r]), 0]

It can be shown that this modification does not affect any of
our performance results. In particular, Lemma 1 still holds,
with the exception that the B constant in (16) is larger due to
the variance of Âl(k[r], j[r], l[r]).

F. Performance Theorem for Algorithm 1

Theorem 1: Suppose Assumption 1 holds, that all virtual
queues are initially 0, and that V ≥ 0. If ω[r] is i.i.d.
over frames, and our control algorithm uses a C-additive
approximation so that (18) holds every frame r (for some
constant C ≥ 0), then:

(a) For all frames R > 0 we have:

y0[R]

T [R]
≤ ratioopt +

B + C

TminV

(b) All queues Zl[r], Hk[r] are rate stable, meaning that:

lim
R→∞

Zl[R]

R
= 0 (w.p.1) (20)

lim
R→∞

Hk[R]

R
= 0 (w.p.1) (21)

Further, for all frames R > 0:

E [||Q[R]||]
R

≤
√

2[B + C + V (ratiooptTmax − ymin0 )]√
R

(22)

where ||Q[R]|| is the Euclidean norm, so ||Q[R]||2 = 2L[R].
(c) We have:

lim sup
R→∞

yl[R]/T [R] ≤ cl ∀l ∈ {1, . . . , L} (23)

lim
R→∞

K∑
j=1

[qkj [R]− qjk[R]] = 0 ∀k ∈ {1, . . . ,K} (24)
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and (23), (24) hold with probability 1 when expected time
averages yl[R], T [R], qij [R] are replaced with pure time
averages.

The above theorem shows that we can choose the V
parameter to be arbitrarily large to make the desired ratio
arbitrarily close (within O(1/V )) to ratioopt. The tradeoff
with large V is the amount of convergence time needed, as
indicated by (22) above and (29) of the proof.

Proof: (Theorem 1 part (a)) Consider the (k, ω)-only policy
with corresponding probability vector π∗ = (π∗1 , . . . , π

∗
K)

from Assumption 1. Independently choose k∗[r] ∈ {1, . . . ,K}
according to distribution π∗ (note that k∗[r] then is indeed in-
dependent of ω[r]). Choose α∗[r] ∈ A(k∗[r], ω[r]) according
to the decision rule α∗[r] from Assumption 1. Note that these
decisions are made independently of queues Q[r]. From (5)-
(6) we thus have for all l ∈ {1, . . . , L}:
E [ŷ0(k∗[r], ω[r], α∗[r])|Q[r]]

E
[
T̂ (k∗[r], ω[r], α∗[r])|Q[r]

] =
E [y∗0 [r]]

E [T ∗[r]]
= ratioopt

E [ŷl(k
∗[r], ω[r], α∗[r])|Q[r]]

E
[
T̂ (k∗[r], ω[r], α∗[r])|Q[r]

] =
E [y∗l [r]]

E [T ∗[r]]
≤ cl

Recall that π∗ = π∗P ∗. Thus, for all k ∈ {1, . . . ,K} we
have:

E
[
1{k∗[r]=k} − P̂k∗[r],k(ω[r], α∗[r])|Q[r]

]
= π∗k −

K∑
i=1

π∗i P
∗
ik = 0

Using these identities in (18) gives:

E [∆[r] + V y0[r]|Q[r]]

E [T [r]|Q[r]]
≤ B + C

E [T [r]|Q[r]]
+ V ratioopt

Thus:

E [∆[r] + V y0[r]|Q[r]] ≤ B + C + V ratiooptE [T [r]|Q[r]]

Taking expectations of the above and using iterated expecta-
tions gives:

E [∆[r]] + V E [y0[r]] ≤ B + C + V ratiooptE [T [r]] (25)

The above holds for all frames r. Summing over r ∈
{0, 1, . . . , R − 1} for some integer R > 0 and using the
definition of ∆[r] gives:

E [L[R]]− E [L[0]] + V

R−1∑
r=0

E [y0[r]] ≤

(B + C)R+ V ratioopt
R−1∑
r=0

E [T [r]]

Using the fact that E [L[R]] ≥ 0, E [L[0]] = 0, and rearranging
terms yields the result of part (a).

Proof: (Theorem 1 part (b)) From (25) we have that:

E [∆[r]] ≤ B + C + V ratiooptTmax − V ymin0 (26)

Define constant F as the right-hand-side of the above in-
equality. Then E [∆[r]] ≤ F for all frames r ∈ {0, 1, 2, . . .}.
Further, it can be shown that second moments of queue

changes are bounded. Thus, from [15] we have that all queues
are rate stable, proving the first part of (b).

Next, summing (26) over r ∈ {0, 1, . . . , R − 1} (for some
integer R > 0) and using ∆[r] = L[r + 1]− L[r] gives:

E [L[R]]− E [L[0]] ≤ [B + C + V ratiooptTmax − V ymin0 ]R

Using the fact that E [L[0]] = 0 and noting that L[R] =
(1/2)||Q[R]||2 gives:

E
[
||Q[R]||2

]
≤ 2[B + C + V (ratiooptTmax − ymin0 )]R

By Jensen’s inequality we have E
[
||Q[R]||2

]
≥ ||E [Q[R]]||2,

and so:

E [||Q[R]||] ≤
√

2[B + C + V (ratiooptTmax − ymin0 )]R

The result follows by dividing the above by R.
Proof: (Theorem 1 part (c)) First note from (22) that

all queues are mean rate stable, meaning that for all l ∈
{1, . . . , L} and k ∈ {1, . . . ,K}:

lim
R→∞

E [Zl[R]]

R
= lim
R→∞

E [|Hk[R]|]
R

= 0 (27)

The queue update equation for Zl[r] in (14) implies that for
all frames r:

Zl[r + 1] ≥ Zl[r] + yl[r]− clT [r]

Summing the above over r ∈ {0, . . . , R−1} for some integer
R > 0 gives:

Zl[R]− Zl[0] ≥
R−1∑
r=0

yl[r]− cl
R−1∑
r=0

T [r]

Dividing by R and using Zl[0] = 0 gives:

Zl[R]

R
≥ 1

R

R−1∑
r=0

yl[r]− cl
1

R

R−1∑
r=0

T [r] (28)

Taking expectations gives:

E [Zl[R]]

R
≥ yl[R]− clT [R]

Rearranging terms gives:

yl[R]/T [R] ≤ cl +
E [Zl[R]]

TminR
(29)

Taking a limit of the above and using (27) proves (23). The
corresponding statement where time average expectations are
replaced with pure time averages follows from (28) and (20).

The inequality (24) and its pure time average variant can be
proven using the queue dynamics (15) (omitted for brevity).

IV. MARKOV IMPLEMENTATION

Assume we have a target transition probability matrix P ∗ =

(P ∗ij), and target values y∗(k)l , T ∗(k) (where T ∗(k) > 0 for all
k). We want to design a policy on the original Markov system
(described in the introduction) such that: (i) the fraction of time
we transition from i to j is P ∗ij , (ii) the conditional average
of penalty l, given we are in state k, is at most y∗(k)l , and (iii)
the conditional average frame size, given we are in state k, is
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T ∗(k). The target values can be those obtained by running
the algorithm of the previous section, so that they solve
the problem of interest. One might alternatively update these
target values in parallel with running the previous algorithm,
although we do not explore this approach. Throughout this
section, we assume the target values are given and are feasible
for the system of interest.

As in the introduction, we define k[r] as the state pro-
cess over frames r ∈ {0, 1, 2, . . .}. The process k[r] takes
values in {1, . . . ,K}. However, unlike the previous sec-
tion, k[r] cannot be directly chosen as a decision variable.
Rather, it evolves probabilistically according to the transition
probabilities P̂ij(ω[r], α[r]). Every frame r, the system con-
troller observes k[r] and ω[r], and makes a decision α[r] ∈
A(k[r], ω[r]). Recall that yl[r] = ŷl(k[r], ω[r], α[r]), T [r] =
T̂ (k[r], ω[r], α[r]), and again define qij [r] by (7) (with k[r] in
this case being the Markov state rather than a control variable).
Define 1k[r] as an indicator function that is 1 if k[r] = k, and
0 else. We seek to solve the following problem:

Minimize: y0 (30)

Subject to: yl ≤
∑K
k=1 1ky

∗(k)
l ∀l ∈ {1, . . . , L} (31)

T =
∑K
k=1 1kT

∗(k) (32)
qij = 1iP

∗
ij ∀i, j ∈ {1, . . . ,K} (33)

α[r] ∈ A(k[r], ω[r]) ∀r ∈ {0, 1, 2, . . .} (34)

where 1k is the fraction of time being in state k:

1k = lim
R→∞

1

R

R−1∑
r=0

E [1k[r]]

We note that this is not a standard stochastic network
optimization problem of the form [1] because of the Markov
dynamics for k[r]. In particular, the value of 1k[r] on frame
r, which affects the 1k value in (31)-(33), is not a decision
variable. Rather, it depends on the decisions made in previous
frames. The motivation for the problem (30)-(34) is as follows:
Suppose the given transition probability matrix P ∗ yields a
system with a unique probability vector π∗ such that π∗ =
π∗P ∗. Define y∗l and T ∗ by:

y∗l =

K∑
k=1

π∗ky
∗(k)
l ∀l ∈ {0, 1, . . . , L} , T ∗ =

K∑
k=1

π∗kT
∗(k)

Suppose these values satisfy y∗0/T
∗ = ratio∗, y∗l /T

∗ ≤
cl for all l ∈ {1, . . . , L}, for some desired constants cl.
Then, because the constraint (33) ensures the fraction of time
transitioning between states i and j is P ∗ij , the fraction of time
being in state k is π∗k (because π∗ is the unique solution to
π∗ = π∗P ∗). That is, 1k = π∗k for all k ∈ {1, . . . ,K}. Thus,
for all l ∈ {1, . . . , L} we have by (31) and (32):

yl
T
≤
∑K
k=1 π

∗
ky
∗(k)
l

T
=
y∗l
T ∗
≤ cl

Thus, all desired constraints are satisfied. Furthermore, if we
assume y∗0 is achievable, and our policy minimizes y0 over all
algorithms that meet the constraints, then:

y0/T = y0/T
∗ ≤ y∗0/T ∗ = ratio∗

and so the algorithm also achieves (or improves upon) the
desired ratio ratio∗.

Assumption 2: There exists a (k, ω)-only policy α∗[r],
together with a probability distribution π∗, such that π∗ =
π∗P ∗ and such that for all l ∈ {0, 1, . . . , L}:

E [ŷl(k, ω[r], α∗[r])|k[r] = k] ≤ y
∗(k)
l ∀k ∈ {1, . . . ,K}

E
[
T̂ (k, ω[r], α∗[r])|k[r] = k

]
= T ∗(k) ∀k ∈ {1, . . . ,K}

E
[
P̂kj(ω[r], α∗[r])|k[r] = k

]
= P ∗kj ∀k, j ∈ {1, . . . ,K}

A. The Dynamic Algorithm (Algorithm 2)

To enforce the constraints (31)-(33), we define virtual
queues Fl[r] for l ∈ {1, . . . , L}, G[r], and Hij [r] for i, j ∈
{1, . . . ,K}:

Fl[r + 1] = max[Fl[r] + yl[r]−
K∑
k=1

1k[r]y
∗(k)
l , 0](35)

G[r + 1] = G[r] + T [r]−
K∑
k=1

1k[r]T ∗(k)[r] (36)

Hij [r + 1] = Hij [r] + qij [r]− 1i[r]P
∗
ij (37)

Define L[r] by:

L[r] =
1

2

L∑
l=1

Fl[r]
2 +

1

2
G[r]2 +

1

2

K∑
i=1

K∑
j=1

Hij [r]
2

Let Q[r] be the vector of all virtual queue values.
Lemma 2: For any control algorithm, we have:

E [∆[r] + V y0[r]|Q[r]] ≤ D + V E [y0[r]|Q[r]]

+

L∑
l=1

Fl[r]E

[
yl[r]−

K∑
k=1

1k[r]y
∗(k)
l |Q[r]

]

+G[r]E

[
T [r]−

K∑
k=1

1k[r]T ∗(k)[r]|Q[r]

]

+

K∑
i=1

K∑
j=1

Hij [r]E
[
1i[r](Pij [r]− P ∗ij)|Q[r]

]
(38)

where D is a finite constant.
Proof: Omitted for brevity (see [1] for similar results).
Our dynamic algorithm observes k[r], ω[r], and queuesQ[r]

every frame r, and chooses α[r] ∈ A(k[r], ω[r]) to minimize
the right-hand-side of (38). This reduces to choosing α[r] ∈
A(k[r], ω[r]) to deterministically minimize:

V ŷ0(k[r], ω[r], α[r]) +

L∑
l=1

Fl[r]ŷl(k[r], ω[r], α[r])

+G[r]T̂ (k[r], ω[r], α[r])

+

K∑
j=1

Hk[r]j [r]P̂k[r]j(ω[r], α[r])

At the end of each frame, the queues are updated via (35)-(37).
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B. Performance of Algorithm 2

Theorem 2: Suppose Assumption 2 holds, that all virtual
queues are initially 0, and that V ≥ 0. If ω[r] is i.i.d. over
frames, then for all frames R:

1

R

R−1∑
r=1

K∑
k=1

E
[
1k[r](y0[r]− y∗(k)0 )

]
≤ D/V (39)

where D is the constant in Lemma 2. Furthermore, for all
l ∈ {1, . . . , L} and i, j ∈ {1, . . . ,K}:

lim
R→∞

1

R

R−1∑
r=1

K∑
k=1

E
[
1k[r](yl[r]− y∗(k)l )

]
≤ 0 (40)

lim
R→∞

1

R

R−1∑
r=1

K∑
k=1

E
[
1k[r](T [r]− T ∗(k))

]
= 0 (41)

lim
R→∞

1

R

R−1∑
r=1

E
[
1i[r](Pij [r]− P ∗ij)

]
= 0 ∀i, j (42)

Proof: Because our algorithm minimizes the right-hand-
side of (38) over all alternative (possibly randomized) control
actions on frame r, we have:

E [∆[r] + V y0[r]|Q[r]] ≤ D + V E [y∗0 [r]|Q[r]]

+

L∑
l=1

Fl[r]E

[
y∗l [r]−

K∑
k=1

1k[r]y
∗(k)
l |Q[r]

]

+G[r]E

[
T ∗[r]−

K∑
k=1

1k[r]T ∗(k)[r]|Q[r]

]

+

K∑
i=1

K∑
j=1

Hij [r]E
[
1i[r](P

∗
ij [r]− P ∗ij)|Q[r]

]
(43)

where y∗l [r], T ∗[r], P ∗ij [r] correspond to any alternative deci-
sions α∗[r] ∈ A(k[r], ω[r]), and are given by:

y∗l [r] =

K∑
k=1

1k[r]ŷl(k, ω[r], α∗[r]) (44)

T ∗[r] =

K∑
k=1

1k[r]T̂ (k, ω[r], α∗[r]) (45)

1i[r]P
∗
ij [r] = 1i[r]P̂ij(ω[r], α∗[r]) (46)

where we have used the fact that
∑K
k=1 1k[r] = 1 always.

Now assume α∗[r] is the (k, ω)-only policy from Assumption
2, which is independent of Q[r]. Taking expectations of (44)-
(46) and using Assumption 2 gives for all l ∈ {0, 1, . . . , L}
and all i, j ∈ {1, . . . ,K}:

E [y∗l [r]|Q[r]] ≤
K∑
k=1

E [1k[r]|Q[r]] y
∗(k)
l

E [T ∗[r]|Q[r]] =

K∑
k=1

E [1k[r]|Q[r]]T ∗(k)

E
[
1i[r]P

∗
ij [r]|Q[r]

]
= E [1i[r]|Q[r]]P ∗ij

Using the above in (43) gives:

E [∆[r] + V y0[r]|Q[r]] ≤ D + V

K∑
k=1

E [1k[r]|Q[r]] y
∗(k)
0

Rearranging terms and again using
∑K
k=1 1k[r] = 1 gives:

E

[
∆[r] + V

K∑
k=1

1k[r](y0[r]− y∗(k)0 )|Q[r]

]
≤ D

Taking expectations of the above (with respect to Q[r]) and
using iterated expectations gives:

E [∆[r]] + V

K∑
k=1

E
[
1k[r](y0[r]− y∗(k)0 )

]
≤ D (47)

Summing over r ∈ {0, . . . , R − 1} for some integer R > 0
gives:

E [L[R]]−E [L[0]] + V

R−1∑
r=0

K∑
k=1

E
[
1k[r](y0[r]− y∗(k)0 )

]
≤ D

Rearranging terms and using E [L[R]] ≥ 0 and E [L[0]] = 0
proves (39).

Now note that (47) implies that for all frames r ∈
{0, 1, 2, . . .}:

E [∆[r]] ≤ F

for some finite constant F . As in Theorem 1, this implies
all queues are rate stable and mean rate stable, so that all
constraints (40)-(42) hold.
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