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Abstract—In this work we focus on a stochastic optimization Our work falls under the second category, where our goal
based approach to make distributed routing and server man- s to provide a unifying framework that allows one to exploit
agement decisions in the context of large-scale, geographically ,q\yer cost reduction opportunities across all these levels

distributed data centers, which offers significant potential for M th K . t f f K
exploring power cost reductions. Our approach considers such oreover, thenon-work-conservingiature of our framewor

decisions at different time scales and offers provable power allows us to take advantage of the temporal volatility of pow
cost and delay characteristics. The utility of our approach prices while offering arexplicit tradeoff between power cost
and its robustness are also illustrated through simulation-based and delay.

experiments under delay tolerant workloads. Consider a system df/ geographically distributed data cen-
ters, each consisting of a front end proxy server and a batk en
server cluster as shown in Figure 1. At different time insta,
workload arrives at the front end proxy servers which have

Over the last few years, the demand for computing h#ze flexibility to distribute this workload to different baend
grown significantly. This demand is being satisfied by ver§lusters. The back end clusters receive the workload fromt fr
large scale, geographically distributed data centerd; ean- €nd servers and have the flexibility to choose when to serve
taining a huge number of servers. While the benefits of havitfgat workload by managing the number of activated servers
such infrastructure are significant, so are the correspgndiand the service rate of each server.
energy costs. As per the latest reports, several companiedhe problem then is to make the following three decisions,
own a number of data centers in different locations, eat¥ith the objective of reducing power cost: (i) how to distrié
containing thousands of servers — Googtel (million), Mi- the workload from the front end servers to the back end
crosoft &200K), Akamai (60-70K), INTEL £100K), and clusters, (i) how many servers to activate at each back end
their corresponding power costs are on the order of milliogéuster at any given time, and (i) how to set the servicesat
of dollars per year [1]. Given this, a reduction by even &r CPU power levels) of the back end servers.
few percent in power cost can result in savings of millions Our proposed solution exploits temporal and spatial varia-
of dollars. tions in the workload arrival process (at the front end ssive

Extensive research has been carried out to reduce powBH the power prices (at the back end clusters) to reducerpowe
cost in data centers, e.g., [2], [3], [4], [5], [6], [7]; suchCOSt. It also facilitates aost vs. delayrade-off which allows
efforts can (in general) be divided into the following twdglata center operators to reduce power cost at the expense
categories. Approaches in the first category attempt to sffeincreased service delay. Hence, our work is suited for
power cost through power efficient hardware design afiglay tolerant workloadsuch as massively parallel and data
engineering, which includes designing energy efficienpshi intensive MapReduce jobs. Today, MapReduce programming
DC power supplies, and cooling systems. Approaches in th@sed applications are used to build a wide array of web
second category exploit three different levels of powert coservices — e.g., search, data analytics, social netwarleitug
reduction at existing data centers as follows. Firstly, ket t Hence, even though our proposed solution is more effective
server level, power cost reduction can be achieved via powd" delay tolerant workloads it is still relevant to many rant
speed scaling [5], where the idea is to save power usa@dd future cloud computing scenarios.
by adjusting the CPU speed of a single server. Secondly, aPur contributions can be summarized as follows:
the data center level, power cost reduction can be achieved\We propose awo time scalecontrol algorithm aimed at
through data center right sizing [7], [4], where the ideads t reducing power cost and facilitating a power cost vs. delay
dynamically control the number of activated servers in adat trade-off in geographically distributed data centers {®ac
center to save power. Thirdly, at the inter-data centerljeve Il and Ill).
power cost reductions can be achieved by balancing workload By extending the traditional Lyapunov optimization ap-
across centers [2], [3], where the idea is to exploit thegpric Proach, which operates on a single time scale, to two
diversity of geographically distributed data centers amte different time scales, we derive analytical bounds on the

more workload to places where the power prices are lower. time average power cost and service delay achieved by our
algorithm (Section V).

This material is supported in part by the NSF Career grant GT#525. o Through simulations based on real-world data sets, we

I. INTRODUCTION



show that our approach can reduce the power cost bgn be either continuous or finite discrete. Also each/zet

as much asl8%, even for state-of-the-art server powecontains the constraint thgtjj 1ij(t) < fmae fOr some finite
consumption profiles and data center designs (Section Mtpnstanty,,,.... Note that this assumption is quite general.
We also show that our approach is environmentally friendlifor example,R; can contain the constraints thaf;(t) = 0

in the sense that it not only reduces power cost but also tlog all ¢ to represent the constraint that jobs arrivingZat
actual power usage. cannot be processed &t;, e.g., due to the fact thdd; does
« We demonstrate the robustness of our approach to errort have a data set needed for the corresponding computation
in estimating data center workload both analytically aslwel For each data cented;, the jobs routed to its back end

as through simulations (Sections VI-C and VI-D). cluster are queued in shared buffer. The data center then
controls its back end cluster as follows. In every time sfot o
Il. PROBLEM FORMULATION the formt = kT with £ = 0, 1, ... whereT' > 1, the data center

first decides on the number of servers to activate. We denote
8hie number of active servers at timet D, as N,(t), where
N;(t) € {N} ;s NL .+ 1, NI +2 ..., N;}, with N; being
the total number of servers at the back end clustér and
Ni . 0< N < N;being minimum number of servers that

min? min —

We first formulate our problem and then discuss the pr
tical aspects of our model. We considéf geographically
distributed data centers, denoted®y= { Dy, ..., Dy, }, where
the system operates in slotted time, i+ 0,1,2,.... Each

data centerD; consists of two components, a front end prox : . .
server,SF. and a back end server clust@?, that hasN; ¥hou|d be activated at all times for data centgr If at time

i . ) v lot t = kT, we haveN;(t) > N;(t — T), then we activate
homogeneous servers. Fig. 1 depicts our system model. Below : .

. ; more servers. Otherwise, we simply p¥ (¢t — 7)) — N;(t)
we first present our model’s components.

E—— servers to sleep. The reasons for havi¥ig¢) changed only
- . everyT' time slots are: (i) activating servers typically costs a
Q:" L1000 CW:Q’DDD non-negligible amount of time and power, and (ii) frequentl
\Y switching back and forth between active and sleep states can
Data Center 2 . . o ey T
result in reliability problems [8]. In addition to decidiram the
@@ E— number of active servers, the data center sets the sentiee ra
of each active server every time slot. This can be achieved
by using techniques such as power scaling [5]. For ease of
e presentation, below we assume that all active servers in a
/ & . data center operate at the same service rate, and denete acti
Qs |—(:) Qs s i '

:”:”:l E'_ servers’ service rate d; by b;(¢),0 < b;(t) < byasz, Where
bmae 1S SOMe finite number. We note that our model can be
extended to more general scenarios. A further discussion of
above assumptions is given in Section II-E.

@

&

Fig. 1. A model of M geographically distributed data centers.

A. The Workload Model

In every time slott, jobs arrive at each data center. Wgs The Cost Model
denote the amount of workload arriving 8t by A;(t), where
A(t) = (Aq(t),..., Ap(t)) denotes the arrival vector. In our
analysis, we first assume thzk(¢) are i.i.d. every time slot
with E{A()} = X £ (A1,..., Ax). We later discuss how
our results can be extended to the case whkn) evolve

We now specify the cost model. For time slgtwe use
tr = |[%]|T to denote the last time before when the
number of servers has been changed. Then at timetslot
by running N;(tr) servers at speed;(t), D; consumes a

according to more general random processes. We also ass%%l po_vvelz ofP "(J\tf ¢ (g)’ bi (g))the assy;ne thaté;the functrllon
that there exists somé,,,,, such thatA;(t) < A,,., foralli .\ ') is known to D;, an ere exists someyq, suc

andt. Note that the components iA(t) can be correlated _ that Py(Ni(tr), bi(t)) < Prmas for all ¢ andi. Such power

this is important in practice as arrivals to different detaters go?sumpttlon W:c”ﬂ']n tfurn u:cur some ”m_(l?netiary CO‘:’; Totrhthe
may be correlated. ata centers, of the form “poweprice”. To also model the

fact that each data center may face a different power price at
time slot¢, we denote the power price &; at time slott by
B. The Job Distribution and Server Operation Model pi(t). We assume thap(t) = (py(t), ..., pas(t)) varies every
A job first arrives at the front end proxy server bf, S, 11 > 1 time slots, wherel’ = ¢T} for some integer. We
and is queued there. The proxy sen#r then decides how to assumep(t) are i.i.d and every; time slot, eacm(t? takes
distribute the awaiting jobs to the back end clusters aeifit a value in some finite state spa# = {p;, ...,py’i }. We
data centers for processing. To model this decision, we w0 definep,,,, = max;;p! as the maximum power price
wi;(t) to denote the amount of workload routed fraly to that any data center can experience. We ugp) to denote
D; at timet, and useu,(t) = (w1 (t), ..., wine(t)) to denote the marginal probability thap; = p. An example of these
the vector of workload routing rates &t". We assume that different time scales is given in Figure 2.
in everyt, u,;(t) must be drawn from some genefaksible Finally we usef;(t) = P;(N;(tr), b;(t))pi(t) to denote the
workload distribution rate seR;, i.e., u;(t) € R; for all t. power cost atD; in time slott¢. It is easy to see that if we
We assume that each SRt is time invariant and compact. It define f,az £ M PrazPmaz, then Yo fi(t) < finae for all ¢



N
-— . N b,
Z CINPserver( 21&1 ) + CQ~

-~ T 2T This indicates that, to minimize the power consumption with
. . . . out reducing the amount of workload served, all serversishou
Fig. 2. An example of different time scalé8 and 73. In this example, . . .
T—8 Ty =4, andT = 2T}. have the same service rate. This justifies our assumption.

D. The data center Power Cost Minimization (PCM) problem e &lso assume that jobs can be served at more than
one data center. When serving certain types of jobs, such

Let Q(t) = (QF (1), QF(t),i = 1,..,M), t = 0,1,.., as /O intensive ones, practical considerations such as dat
be the vector denoting the workload queued at the front epgtality should also be considered. This scenario can yeasil
servers and the back end clusters at time sldtve use the pe accommodated in our model by imposing restrictions on
following queueing dynamics: R, at the front end servers. Moreover, service providers like

Qf (t+1) = max [Qf (t) — X2, pij(1),0] + Ai(t), (1) Google replicate data across (at least) two data centefs [10
QF(t+1) < max [Qf(t) — N;(t)bi(t), 0] + Zj wii(t). (2) This provides flexibility for serving 1/0O intensive jobs.

The inequality in (2) is due to the fact that the front end Ve _also assume that the data centers can _observe/measure
servers may allocate a total routing rate that is more than tR(t), i-e., the unfinished work of all incoming workload
actual workload queued. In the following, we assume tha daccurately. However, in many cases, the available infaonat
centers can estimate the unfinished workload in their queldy contains the number of jobs and the number of tasks per
accurately. The case when such estimation has errors WiII!BQ- W_'th t_hIS, we can estimate the amount of workload of the
discussed in Section IV. Throughout the paper, we use tfOming jobs. In addition, in Section IV we show that even

following definition of queue stability: if the estimation is not accurate we can still prove bounds on

B |l M the performance of our approach. Moreover, in Section VI-C

Q £ limsup — ZZE{Q?(T) + QF(T)} < oo0. (3) we show the robustness of our approach against workload
t—oo b I estimation errors through experiments.

Then we define deasiblepolicy to be the one that chooses rinajly, we assume that a server in sleep state consumes
Ni(t) every T time slots subject taV,;, < Ni(t) < Ni, much less power than an idle server. According to [7], a
and choosegu;;(t) andb;(t) every time slot subject to only server consumes0 Watts when in sleep state, as compared

pi(t) € Ri and0 < bi(t) < bnao. We then define the time {4 150 Watts in idle state. This indicates that our assumption

average cost of a policil tto1bz?4: is reasonable. We also assume that servers can be activated
. I and put to sleep immediately. We note that waking up from
I a - I1
av hfifjolp t ZZE{L (T)}' “) sleep takes around0 seconds. During this0 seconds, the

7=0 i=1
Here, f1(7) denotes the power cost incurred by polidyat
time slot 7. We call every feasible policy that ensures (3)
stablepolicy, and usef}, to denote the infimum average powe

cost over all stable policies. The objective of our problem

server cannot perform any work. This should not be ignored,
gthe control actions on activating servers are made fratipe
However, when we choosg, the period of such actions, to

pe large, potentially no less than an hour, we can assume that

to find a stable policy that chooses the number of activatdtf Wake up time is amortized over the relatively long period
serversN;(t) every T time slots, and chooses the workloacfj,urlng Wh'(,:h the server is actve. The effect I_Sf's further
distribution ratesu;, () and the service ratds(t) every single discussed in Section VI, where we give experimental results
time slot, so as to minimize the time average power cost. We

refer to this as the data center Power Cost Minimization (PCM I1l. THE SAVE ALGORITHM

problem in the remainder of the paper. . )
We solve PCM through our StochAstic power redUction

schEme (SAVE). We first describe SAVE’s control algo-
E. Model Discussion and Practical Consideration rithms and discuss corresponding insight and implemenmtati
related issues. SAVE's derivation and analytical perfaroea

We now discuss the assumptions made in our model. bounds are discussed in the following section.

Above, we assume that in time slotall activated servers
at D; have the same service rdigt). This is not restrictive.
Indeed, let us focus on one data center in a single time stbt ah. SAVE's control algorithms
c_onS|der the foIIovx{mg formuIann. Let the power consump- SAVE’s three control actions are:
tion of a server with service rate be P;.,,.-(b), @ convex ) .
function of b (see [6], [9]). If the N activated servers run at ¢ Front end Routingin every timet = kT, k = 0,1, ...,

service rate$,, b, ... , by, then the total power consumed by eachD; solves fory;; to maximize
them can be written a®;o;0; = 37, Pecrver(b;). SUppose M
pion in thi data centep > il () - QP(0) ®
the actual power consumption in this data cenk&t,,;.,, has — Hijl&e J
j:

the form P.cpter = C1 X Piotar + Ca, WhereC; and Cy are

constants or functions oV only. Then we have: subject to the constraint that; = (pi1, ..., pinr) € Ri.

Then in every time slot € [t,t +T — 1], D; distributes

N
Poontor = C1 Protal + C = Oy ZPser’uer(bi) + Oy up to uij(f)‘ amount of workload to the back end cluster
p atDj, 1 <j <M.



o Back end Server Managemenit time slot ¢t = k7, L to compute the expectation. Specifically,tif> L, then
data centerD; chooses the number of servel§(t) € let n/ (¢, L) be the number of times the evefi; ( ) = p}

[Nfr?%]\ff} to minimize: appears in time intervalt — L + 1,¢). Then use’"2 as
E{ Z Z [ij(T) B f(t)Nj(t)bj(r)} \Q(t)} ©) the probabilityr; (p) for estimating the expectations. Since all

pi(t) only take finitely many values, we have:

Then data centeD; usesN;(t) servers over timét, t + lim np(t L) = m;(p) (8)
L B

T—1]. In every time slot- € [¢,2+T'—1], each data CenterTherefore as vfeﬁ%ocrease the number of samples, the estima-
D, chooses the service rate of the servg(s) (note that ’ ples,

. . : AN tion becomes better and better. Note that in this procedure,
N;(t) is determined at time sldf to minimize: . )
VFi(r) — QB (£)N; (£)b; (7) ) we use the fact that (6) can be decomposed into a summation
J _T J ENES of M expectations, and that each expectation only requires
« Queue UpdateUpdate the queues using (1) and (2). {he marginal distribution of the prices. Now we can solve
Note thatV > 0 is a parameter of SAVE that ContI’O|Sfor N ( ) andb ( ) through a ]O|nt 0pt|m|zat|on of (6) Note

the tradeoff between power cost and delay performance, (gt this is a two variable optimimization, since in an ogtim
detailed below in Theorem 2. SAVE works at two differen§g|ytion . ;(7) remains constant whene [t,t + T — 1].

time scales. The front end routing decisions and number of
active servers selectioty;(t), are made ever{’ slots, while
back end servers’ service rates are updated at each slat. Thi
two time scale mechanism is important from an implementa- SAVE’s focus on reducing power cost along with queue
tion perspective because waking up servers from sleep stedgbility suggests a design approach based on the Lyapunov
usually takes much longer than servers’ speedscaling. Thgtimization framework [11]. This framework allows us to
Back end Server Managemestep involves maximizing (6), include power costs into theyapunov drift analysisa well-
an expectation over future (power cost) events. We show liown technique for designing stable control algorithms.
Section [1I-C that this can be carried out through learning. However, thevanilla Lyapunov optimization based algorithms
operate on a single time scale. We extend this approach to two
B. Properties of SAVE different time scales, and derive analytical performarmeniols
analogous to the single time scale case. We now highlight the
key steps in deriving SAVE, and then characterize its power
cost and delay performance.

IV. SAVE: DESIGN AND PERFORMANCEANALYSIS

We highlight SAVE’s two interesting properties. First, st i
not work-conserving. A back end clustﬁf may choose not
to serve jobs in a particular time slot, evengB > 0, due to
a high power price ab;. This may introduce additional delay
but can reduce the power cost as shown in Section VI-A. A Algorithm Design

Second, SAVE can provide opportunities for bandwidth” .
cost savings because (a) it provides an explicit upper bound’Ve first define the Lyapunov functior(t), that measures
on the workload sent fron$!" to S¥, and (b) these routing the aggregate queue backlog in the system.
decisions remain unchanged f@r time slots. If T" is large, F B

L(t)2 9
this can provide opportunities for data centers to optimize (1= Z ([Q M + 1@ ()] ) ©)

network routmg ahead of t|me to reduce bandW|dth cost. Agext, we defme theT slot Lyapunov dnft Ar(t) as the

can incur 3|gn|f|cant bandwidth costs. Incorporating baidtiw Ar(t E{L (t+T)— (t)|Q(t)}. (10)

costs into our model is part of future work. Following the Lyapunov optimization approach, we add the

expected power cost ovelr slots (i.e., a penalty function),

C. Implementing the algorithm E{ X152, f5(m)}, to (10) to obtain thelrift-plus-penalty

Note that the routing decisions made at the front end servéesm. A key derivation step is to obtain an upper bound on
do not require any statistical knowledge of the random alsiv this term. The following lemma defines such an upper bound
and prices. All that is needed is that’s back end cluster for our case (see [12] for proof).
broadcast€)Z(¢) to all front end proxy servers evefy time
lgnlts._ This typ|cally only requires a few bits and takes Ve%gerk: Then under any possible action(t) € [Ni . . N7,
ittle time to transmit. Then each data cenfey compute;; 1,(1) € R; and bi(2) € [0, bmas], We have: min
for each;j. The complexity of maximizing wii [QF (t) — Hi 1 e '

Q% (t)] depends on the structure of the get. For example, A..(t) + VE £:(7)|Q(t
if R only allows oneu;; to take nonzero values, then we can =) { Z Z H(M1Q)

Lemma 1. LetV > 0 andt = kT for some nonnegative in-

easily find an optimal solution by comparing the weight—rate T —1
product of each link, and finding the best one. BT + VE{ Z fo
In the second step, we need to minimize (6). This in general ;
requires statistical knowledge of the power prices. Andsit i tHT—1
obtained as follows: At every = kT, k > 0, we use the —IE Z ZQF Z’“J A )]|Q(t)}

empirical distribution of prices over a time window of size



t+T—1

B . - Theorem 1. (Optimality over Stationary Randomized Policies)
—E{ z:t Z Q7 (T)[IN; (£)b; (7) — Z p(MIR®Y g any rate vectoi\ € A , there exists a stationary random-
T= j i

11) ized control policylI,,; that choosesV;(t),i =1, ..., M every
T slots, and chooseg,;(t) € R; and b;(t) € [0, biaz] €Very
time slot purely as functions gf (¢) and A;(¢), and achieves

The main design principle in Lyapunov optimization ighe following for allk = 0,1,2, ...

to choose control actions that minimize the R.H.S. of (11f’.T+T_1 M - .

However, for any slot, this requiresprior knowledge of the Z ZE{f o (T)} =Tfa(N),

future queue backlog€)(¢)) over the time framét, t+7—1]. "+ =1

Q(t) depends on the job arrival procességt), and SAVE’s kTJrTAE ot B kTJrTAE NHont (g pllor

decisionsgu;; (t), b;(t)i, andN;(¢) (that depend on time varying T;T {;sz (M} = T;T NG (RT)b; ™ (1) ),

formation about the random ob amval and power price <L M

[ i u j iV W i _ _ opt

processes. This information may not always be available. Z E{AZ(T)} Z E{;Mw (T)}'

In SAVE we address this bypproximating future queue , , )

backlog values as the current value, i@F: (r) = QF (t) and Proqf: It can be proven using Caratheodory’s theorem in

QP (r) = QPF(t) forall t < 7 < t+ T — 1. However, the [11]. Omitted for brevity. .

simplification forces a “loosening” of the upper bound on the The following theorem presents bounds on the time average

drift-plus-penalty term as shown in the following lemmag(sePower cost and queue backlogs achieved by SAVE.

[12] for proof). Theorem 2. (Performance ofSAVE) Suppose there exists an
Lemma 2. Lett = kT for some nonnegaive integér Then ¢ > 0 such that\+2¢1 < A, then under theSAVE algorithm,
under any possible actiondV;(t), uu;;(t), bi(t) that can be We have:

Here Bl £ MAT%LCL.’)C + Zz Ni2b72naac + (M2 + M):u‘?n,ax'

=kT T=kT

K-1 M
taken, we haveéJrT_1 Q2 limsup% > E{QF(RT) + QP (kT)}
K—oo .
Ar+VEL 3 > LR} < v
=t < e (13)
i ‘ t—1 M
BoT +E{ Qi()Ai(n)|Q(1)} SAVE 4 1; Iy « B
; zJ: f(w :hirisongZO;E{f(T)}Sfav-l-v. (14)
t+T—1 ; R g P - :
Here f, is the optimal cost defined in Section Il ahdienotes
—E{ Y D m(n[Qf®) - i m]le®)} the vector of alll’s.
T=t 7
t+T—1 Proof: See [12]. |

+E{ Z Z [V fi(m) = QF(H)N;(1)b;(1)|Q(1)}. (12)  We can extend the results in Theorem 2 to Markovian arrival
T=t ] processes using techniques developed in [13]. We omit the
Here By = By + (T — 1) 3, [N7b2, 0, + (M? 4+ 1)pi7,,,]/2.  details here due to space limitations.

J “mazx
. . What happens when SAVE makes its decisions based on
Comparing (12) with (5), (6), and (7), we can see that SAVE . - ;
chooseZN»(t?(u%t) b»((t))tcg r)ninimiie)the R.H.S. of (12) queue backlog estimateQ(¢) that differ from the actual
P PRI R " queue backlogs? The following theorem shows that the SAVE

algorithm is robust against queue backlog estimation error

B. Performance bounds Theorem 3. (Robustness 0BAVE) Suppose there exists an

Theorem 2 (below) provides analytical bounds on the powgr> 0 such thatA + 2e1 € A. Also suppose there exists
cost and delay performance of SAVE. To derive these boundsconstantc., such that at all ime/, the estimated backlog

we first need to characterize the optimal time average powd#ese! (), Q7 (t) and the actual backlog size3 (), Q7 ()
cost f*, that can be achieved by any algorithm that stabiliz&&tisfy|Q; (1) —Qf (t)| < cc and|QF (t) —QF (t)| < c.. Then
the queue. Theorem 1 (below) shows that usingtagionary under theSAVE a|90”t2m1' we have:

randomized algorithmwe can achieve the minimum time —~ A r B
average power costr, possible for a given job arrival rate @r = linjllop K Z ZE{Ql D) +Q (kT)}
vectorA = (Ay, ..., Aar) Where); = E{A,(t) }. We define sta- Byt Vf k=0 i=1

tionary randomized algorithms as the class of algorithnas th < w,

chooseN;(t), 1,5 (t), andb;(t) according to a fixed probability ¢ 1M

distribution that depends a#; (¢) and f;(t) bu.t is mdependent astVE 2 Jim sup 1 Z ZE{f(T)} < fro % (16)
of Q(t). In Theorem 1,A denotes theapacity regionof the t—oo b L v

system — i.e., the closure of set of ratasfor which there Here f7 is the optimal cost defined in Section II, af} =
exists a joint workload assignment and computational ddpacBy + 2T, (tmax + Amaz + Nmazbmaz + M fimaz)-
adaptation algorithm that ensures (3).

(15)

Proof: See [12]. [ ]



TABLE |

By comparing the inequalities (16) and (14), we can see that DISTRIBUTION OF JOB SIZES
with inaccurate information, we need to $éto a larger value [ #Tasks[ 1 [ 2 [ 10 [ 50 [ 100 [ 200 [ 400 [ 800 | 4800 |
% | 38| 16| 14| 8] 6 | 6 | 4 | 4 | 4 |

to obtain the same time average power cost as with accurat

information. However, this vyi_ll result in higher averageege e generateds groups of delay tolerant workloads. Each
backlogs (compare inequalities (15) and (13)). Hence, SAVﬁoup consists of 7 differerRoissonjob arrival traces — one

works even with inaccurate queue backlog information it if5, a5ch cluster. Group has “homogeneous” arrival rates —

robustness is achieved at the expense of a power cost v§. d@la arrival process for each cluster is Poisson with a rate of
trafe-off. We further demonstrate SAVE’s robustness USiNghs per time slot. The length of one time slotlis seconds.

simulations in Section VI. Groups2 to 5 have “heterogeneous” arrival rates. The average
arrival rate across all data centers is kept @jobs per time
slot. But as the index grows larger, the variance of arriatds
The goal of this experimental study is to evaluate SAVErows larger. For example, Grodphas arrival rates ranging
under real world settings using real world data sets. Ouuevafom 14 to 16 jobs every time slot, whereas GroGhas arrival
ation scenario consists of 7 data centers at different @@bir  rates ranging from2 to 18 jobs per time slot. We note that the
locations. Next, we describe the three main componentsof Ggsumption of Poisson distributed arrivals is not growsslle

simulations — the eleCtriCity prices and JOb arrivals afegié#nt In fact, itis Suggested by the measurements in [15]
data centers, the system parameters, and alternate taekniq

against which we compare SAVE.

V. EXPERIMENTAL SETUP

B. Experimental Settings

Power Cost Function SAVE can handle a wide range of

o i o ~ power cost functions including non-convex functions. I ou
Electricity prices We downloaded the hourly electricity pricesaxperiments, we model power consumptiBaN;, b;) as:
for 7 hubs at different geographic locations from [14]. Tdes bi(t)®
<Nz(t) ( + Pidle)> -PUE (17)

A. Data sets

hubs supply electricity to large cities such as Boston ang Ne P(Ni(t), bi(t)) = 1

York, and sites like Palo Alto, CA and Ashburn, VA that hosty (17), A, P,y., and o are constants determined by the

Google’s data centers. To fully exploit the cost savings @ue gata center. SpecificallyP,y. is the average idle power
temporal power price variations, we would have preferred fynsumption of a server, antk(t)*/A + Pig. gives the
have prices at a time granularity that exhibits high valtibi power consumption of a server running at ratgt). In
e..g.5 minute intervals [2]. However, since we had access ir experiments we choose = 3, Pyg. = 150 Watts,
only the hourly prices, we use interpolation to generateesti and A such that the peak power consumption of a server
at5 minute intervals. For more details on this, please see [12F 950 Watts. The model (17) and all its parameters are
Workload We chose MapReduce jobs as representative |94sed on the measurements reported in [9]. FHEE term
delay tolerant workloads, and generate workload accortiingaccounts for additional power usage (such as cooling) for
the published statistics on MapReduce usage at Facebopk [Raving ; (t) servers active. According to [17] PUE values
Each job consists of a set of independent tasks that canfge many of today’s data centers lie betweks and2. We
executed in parallel. A job is completed when all its taskshose PUE = 1.3 in all of our experiments. This choice is
are completed. We make the following assumptions in Ogessimistic, in a sense that SAVE will achieve larger power
experiments: (i) all tasks belonging to a job have the sangst reductions when PUE is higher.
processing time; tasks from different jobs can have differesystem Parametersve setNV;, the number of servers in data
processing times; (ii) jobs can be served in any of e center, to be 1000 for all 7 data centers. Each server can
data centers; and (iii) all the tasks from the same job Mugirve up tol0 tasks at the same time. With a 15 jobs per slot
be served at the same back end cluster. Regarding (i), dffival rate, this gives an average server utility of abift.
practice, tasks from the same MapReduce job (and othge set the bandwidth between the front end servers and the
parallel computations), exhibit variability in procesgitimes. pack end clusters to a large value, based on the real world
However, techniques exist for reducing both the prevalenggactice [10]. Hence, a large amount of workload can be sent
and the magnitude of task duration variability for MapRe&lugrom one data center to another within one time slot. We vary
jobs [16]. Hence, (i) is not a significant oversimplificati®Xé the N7 = across a range of values to explore its impact on
explained in Section II-E, we believe (i) is also reasorablsavE’s performance (see Section VI-B).
Assumption (iii) is not required by our approach. Ratheis it
motivated by the fact that, in practice, partitioning tafksn -~ gimulated Schemes for Comparison
the same MapReduce job across geographically distanectust
can degrade overall performance due to network delays.
We choose the execution time of a task belonging to
particular job to be uniformly distributed betweénand 60
seconds with the “job size” distribution (i.e., number of tasks
per job) given in Table V-A; these distributions (job exdont
time and “job size”) correspond to data reported in [15].

We compare SAVE the following work-conserving schemes
tgat either represent the current practices in data cera®r m
agement or are simple heuristic based approaches propgsed b
others.

Local Computation. All the requests arriving a&/" are routed
to SP (the local back end); i.eu;; = A; andu,;; = 0if j # i.
Load Balancing. The amount of workload routed from;
IRecall that all tasks within a job have the same execution time. to Dj, p;j, is proportional to the service capacity @;,



regardless oD ;’s power prices. Intuitively, this scheme should We first fix 7' to be 240 time slots (one hour) and run
have good delay characteristics. experiments with differenV’ values. The results are shown
Low Price. This scheme is similar to the heuristic proposeith Figure 3(a) and (b). From Figure 3(a) we can see that as
in [2] that routes more jobs to data centers with lower powéf goes from0.01 to 100, the power cost reduction grows
prices. However, no data center receives workload &% from an average of aroun@ 1% to about18%. The On/Off
percentile of its service capacity. Due to the discreterdss scheme achieves power cost reduction of atsbut. If we
job sizes and the constraint that all tasks of one job shoeld thooseV to be greater tham then SAVE results in larger
served at the same back end cluster, it is difficult to enswae t power cost reductions than scheme On/Off. Because (i) our
the cluster with the lowest power price always runs close tapproach considers differences in power prices acros=r elift
but not over, its capacity. Thus, in this scheme, the workloalata centers, and (ii) our approach is not work conservimg an
is routed such that the long term arrival rate at the back endn adjust service rates at different data centers acaptdin
cluster with the lowest average power price is close tdfiite  power prices. We also note that the scheme Low Price gives
percentile of its capacity. We then route the workload to thee small power cost reduction (6£5%) — i.e., sending more
second lowest price cluster, and so on. workload to data centers with low power prices in a greedy
In all these schemes, we assume that all servers are adtivdéshion does not lead to significant savings in power cost. In
at all times?> However, we assume that the service rates &igure 3(b), we observe that whén is small < 0.1) the
the servers can be tuned in every slot. We also simulate theerage delay of SAVE is quite small and close to the delay
following scheme that power downs idle servers: of scheme Load Balancing. Increasivigesults in larger delay
Instant On/Off. Here, the routing decisions between fronas well as larger power cost reductions. In genérah SAVE
end servers and back end clusters are exactly the samec@srols the trade-off between delay and power cost; e.g.,
in the Load Balancing scheme. However, now not all servendienV is large, SAVE outperforms scheme On/Off (which is
are active in all time slots. In every slot, each data cergerimpractical scheme, as noted above), in power cost reductio
able to activate/put to sleep any number of servers wih We fix V' to be 10 and varyT from 30 time slots {.5
delay or power cost, and also adjust servers’ service ratesnutes) to1080 time slots ¢.5 hours), which is a sufficient
This idealized scheme represents the upper bound of powrange for exploring the characteristics of SAVE. (Note that
cost reductions achievable for the single data center casedervers are activated and put to sleep evElyminutes in
any work-conserving scheme in our experimental settirigs. | [4] and every hour in [19].) Corresponding results of the
highly impractical because it assumes that servers cartswitlifferent schemes are shown in Figures 3(c) and (d). From
between active state and sleep state at the same frequenclfigsre 3(c) we can see that changifighas relatively small
power scaling (once everys seconds in our simulations). effect on power cost reductions of our SAVE approach. The
average power cost reduction fluctuates betwgeat¥% and
VI. EXPERIMENTAL RESULTS 13.6% when T varies from30 to 1080 time slots. In most

) ) cases, it results in higher cost reductions than scheme fOn/O
We now evaluate SAVE through simulation based expefijoever, we note thaf has a larger impact on average delay,

ments, using the experimental setup described above. as shown in Figure 3(d). In the extreme case, when 1030
time slots, the average delay is close6tb time slots. This
A. Performance Evaluation is not surprising — recall that in the bound on queue size

The performance of SAVE depends on parameieesd?. given in Theorem 2, FheBQ term is proportional taf’, i.e.,
Q}S delay increases with. However, reasonable delay values

We show experimental results of all schemes on all data s : . . : .
are possible with appropriate choicesTofe.g., if we choose

under differentV and T values (with the other parameter . .
fixed). For power cost reduction results, we use the Loég‘\to b62.40 time sots hour), SAVE gives an average delay
14.8 time slots 8.7 minutes). From this set of results we

m ion schem ine.
Computaten scherme 2 & baselne. Tor a1 aler sche1E% et for ey lerant workoads, SAVE would ke
compared to the Local Computation scheme. Specifically, 18 requent actlc_)ns on server z_i(_:t|vat|on/sleep (once N @ur h
PCy denote the average power cost of schefeWe use or less) and still achieve significant power cost reduction.
W x 100 to quantify the power cost reduction due
to schemeX. (HereL.C. is short for Local Computation.) For B. The impact ofV,,,,,
delay results, we show the schemes’ average delay (in numbe, : .
of time slots). We omit the delay results of t%e On/éé scheme in this set of experiments we keep and 7' values

as they are nearly identical to those of the Load Balanciﬁjn%n?sgrggs:S;%ter\éagvg”gaé atj(ger?tefrro;'nhg :Zsi(l)t? acr)fe t:: icted
scheme — the maximum differenceas0.03 time slots (.45 ' P

second).For all comparison schemes, we show average vall}%eg'guirrﬁsrg\sz)s adn:Ia(y).png%i:r?aﬁ(ctg 'Zdécatv?/ié:aitt I?rfé'?éaz:sles
(power cost reduction and delay) over all arrival data des. | ™" Toman

SAVE, we use curves to represent average values and barfarg(g; e(;sfnggi%nﬁifcg]nil nt#g%e;g&;%r\;er;é ;hgmaverla?e gtelay
show the corresponding ranges. 9 Y: » 10 20. € siots.

the same time, as shown in Figure 4(a), the effecvgf;,, on
2According to [18], a large fraction (abo80%) of data center operators power cost reduction is relatively small. This makes 'm_m't
do not identify idle servers on a daily basis. sense. WhenV,,,;,, grows larger, more servers are activated
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regardless of job arrivals, providing more slots to senlesjo percentage of average power consumption reduction by SAVE
thus reducing average delay. On the other hand, adding muwiith different V' values, relative to the Local Computation
active servers reduces the service rate of each serverhwhicheme. Figure 5 illustrates that with values ramping from
compensates for the extra power consumed by added servers.

[N
o

C. Robustness Characteristics

As mentioned in Section II-E, our SAVE algorithm needs
to know the amount of workload of each job. In practice,
when this is not available, we use estimated values. In #tis s
of experiments we explore the influence of estimation errors |
on the performance of SAVE. To do this, for each arrivingig. 5. Differences in average power usage reduction fderitV values

jqb, e add a random estimation er.rQEE(O%., uniforlmly. 0.01 to 100, the actual power consumption reduction goes from
distributed) to the amount of workload it contains. Thisegv about0.1% to 10.3%. WhenV — 10. the reduction is around

us one error data set for each arrival data SEt-.V‘.’e run SAVE@. %. This indicates that SAVE is environmentally friendly,
the_se data sets, but let SAVE make all demspns 0”_C°”FTR a sense that, while it reduces power cost, it also reduces
variables based on t_he amount of workload with eSt'mat'(%Etual power consumption significantly. As a comparisoa, th
errors. Only when a job get served does the server know 6w Price scheme is not environmentally friendly — althoitgh

exact amount O.f workload it actl_.lally contains. . reduces power cost (see Figure 3(a)), it consumes more power
We run experiments for all pairs of data sets for d'ﬁerenf[thgn the Local Computation scheme.
V values, and compare the results to the results we obtaine
using the original arrival data sets. In Figures 4(c) and (d)
we use the results on data seighout estimation errors as VII. RELATED WORK
the baseline, and show the differences in power cost remhucti A5 mentioned in Section I, work on power cost reduction
percentage and delay (in time slots) due to injected estmat .y pe classified into three broad categories — single server
errors. From Figure 4(c) we can see that forlalvalues we gingle data center, and multiple data centers. For a single
experimented with, the difference(due to errors) in powestC geryver, researchers have proposed scheduling algoritams t
reduction is betweenr-1.0% and0.7%. As shown in Figure minimize power consumption subject to job deadlines [26], o
4(d), estimation errors result in changes in average delaly, minimize average response time subject to a power constrain
only in the range of-1.2 to 0.9 time slots. o [21]. Wierman et al. use dynamic CPU speed scaling to
To conclude, SAVE is robust to workload estimation errorgninimize weighted sum of mean response time and power
consumption [5]. A survey of work on single server power
D. Actual Power Consumption d6AVE cost reduction is given in [22]. For a data center, Gandhi et
SAVE is designed to reduce tlvestof power in geograph- al. provide management policies that minimize mean respons
ically distributed data centers, as this is one major cané@r time under a total power cap [9] or minimize the product to
large computational facility providers. At the same timéthw response time and power cost [7]. Chen et al. propose sofutio
more attention paid to the social and ecological impactmfda based on queueing models and control theory to minimize
computational infrastructures, it is also desirable tosider the server energy as well as data center operational cdsts [8
environmental friendly approaches, i.e., while reducihg t Lin et al. design an online algorithm to minimize a convex
cost of power, it is also desirable to reduce @lotual consump- function of power usage and delay that is 3-competitive [4].
tion of power. To this end, we record the actual power cor8AVE differs from these work in three ways: (i) it leverages
sumption of all simulated schemes. In Figure 5 we show tlspatio-temporal differences in job arrivals and powergsiat
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different geographic locations to achieve power cost redoc  [2]
(ii) all work mentioned above except [21] and [20] assume
closed form convex expressions for service delay or convey
delay-cost functions, whereas SAVE does not make these
assumptions as they may not always hold, especially forydeld?]
tolerant jobs; (iii) SAVE does not rely on predictions of [5]
workload arrival processes, as [8] and [4] do.

Power cost reduction across multiple data centers is dfl
area of active research. Qureshi et al. proposed the idea gf
exploiting spatial diversity in power prices to reduce cogt
dynamically routing jobs to data centers with lower pric2k [ 8]
They also provide a centralized heuristic for doing so tkat i
similar to the Low Price scheme we evaluated in Section VI.
Rao et al. provide an approximation algorithm for minimgin [©!
the total power cost subject to an average delay constra;
[19], while Liu et al. designed load balancing algorithms to
minimize a metric that combines power and delay costs [4}]
Both papers make routing and server on/off decisions based o
predictions on arrival rates and closed form convex expass [12]
for average delay. [6] makes control decisions at threddeve
server, data center and across multiple data centers — in
one time slot by solving a deterministic convex optimizatio[13]
problem. All these work have a work conserving scheduler and
only exploit the spatial differences in job arrivals and pow |14
prices. Also, they work on a single time scale. In contragt,s]
SAVE exploits both the spatial and temporal differences in
job arrivals and power prices by using a non work conservings
scheduler. This leads to greater power cost reductions when
serving delay-tolerant workloads. Moreover, it works omtw[l7]
time scales to reduce the server on/off frequency. [18]

The Lyapunov optimization technique that we use to d&9]
sign SAVE was first proposed in [23] for network stabil-
ity problems. It was generalized in [11] for network utilityg)
optimization problems. Recently, Urgaonkar et al. used thi
technique to design an algorithm for joint job admissiof!
control, routing, and resource allocation in a virtualiztata [
center [24]. However, they consider power reduction in a
single data center only. To the best of our knowledge, olf?!
work is the first to apply a novel two time scale network
control methodology to distributed workload management fo
geographically distributed data centers. 24

VIII. CONCLUSIONS

In this paper, we propose a general framework for power
cost reduction in geographically distributed data centrs
approach incorporates routing and server managemennactio
on individual servers, within a data center, and acrossipteilt
data centers, and works at multiple time scales. We show
that our approach has provable performance bounds and is
especially effective in reducing power cost when handling
delay tolerant workloads. We also show that our approach
is robust to workload estimation errors and can result in
significant power consumption reductions.
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