PROC. IEEE/IFIP NOMS, APRIL 2010 1

Dynamic Resource Allocation and Power
Management in Virtualized Data Centers

Rahul Urgaonkar, Ulas C. Kozat, Ken Igarashi, Michael J.INee
urgaonka@usc.edygkozat, igarasfi@docomolabs-usa.com, mjneely@usc.edu

Abstract—We investigate optimal resource allocation and  Dynamic resource allocation in virtualized data centers ha
power management in virtualized data centers with time-vaying  peen studied extensively in recent years. The work in [6]-
workloads and heterogeneous applications. Prior work in tls [8] formulates this as a feedback control problem and uses
area uses prediction based approaches for resource provisiing. . . .

In this work, we take an alterate approach that makes use tools.from adaptive coptrol theory to design online control
of the queueing information available in the system to make algorithms. Such techniques use a closed-loop control mode
online control decisions. Specifically, we use the recentlgevel- where the objective is to converge to a target performance
oped technique of Lyapunov Optimization to design an online |evel by taking control actions that try to minimize the erro
admission control, routing, and resource allocation algoithm for between the measured output and the reference input. While

a virtualized data center. This algorithm maximizes a joint utility this techni - ful tracki bl it
of the average application throughput and energy costs of th is technique is useful as a tracking problem, it cannotdselu

data center. Our approach is adaptive to unpredictable chages for utility maximization problems where the target optimal
in the workload and does not require estimation and predicton  value is unknown. Work in [9] considers the problem of maxi-

of its statistics. mizing a joint utility of the profit generated by satisfyiniygn
Index Terms—Data Center Automation, Cloud Computing, SLA and the power consumption costs. This is formulated as
Virtualization, Resource Allocation, Lyapunov Optimization a sequential optimization problem and solved using limited

lookahead control. This approach requires building estma
of the future workloads. Much prior work on resource allo-
cation is based on prediction-based provisioning and gtead
There is growing interest in improving the energy efficiencytate queueing models [10]-[12]. Here, statistical modteis
of large-scale enterprise data centers and cloud computtig workloads are first developed using historical trac#imef
environments. Recent studies [1] [2] indicate that the £0s§r via online learning. Resource allocation decisions hemt
associated with the power consumption, cooling requirés)enmade to satisfy such predicted demand. This approach is
etc., of servers over their lifetime are significant. As autes |imited by its ability to accurately predict future arrigal
there have been numerous works in the area of power mann this work, we do not take this approach. Instead, we
agement for such data centers (see [3] and referencesrtherghake use of the recently developed technique of Lyapunov
At the data center level, application consolidation hasnbe@)ptimization [15] to design an online admission control,
studied for reducing the total power consumption. Virtzadi routing, and resource allocation algorithm for a virtuediz
tion is a promising technique that enables consolidation gfta center. This algorithm makes use of the queueing infor-
heterogeneous applications onto a fewer number of servgfgtion available in the system to implicitly learn and adapt
while ensuring secure co-location between competing e@pli ynpredictable changes in the workload and does not require
tions. This results in higher resource utilization and kn  estimation and prediction of its statistics. The technigiie
in energy costs (by turning off extra servers). Howevercsin| yapunov Optimization has been used to develop throughput
multiple applications now contend for the same resource, pognd energy optimal cross-layer control algorithms in time-
it is important to develop scheduling algorithms that aec yarying wireless networks (see [15] and references). This
resources in a fair and efficient manner. At the individugbchnique has certain similarities with the feedback aintr
server level, techniques such as Dynamic Voltage and Figised approach as it also uses a Lyapunov function based
quency Scaling, low power P-states, etc. are available thaalysis to design online control algorithms. In addititis
allow a tradeoff between performance and power consumptiggchnique also allows stability and utility optimization be
Several recent works (e.g., [4] [5]) have studied the probdé  treated in the same framework. Unlike works that use steady
dynamically scaling the CPU speed for energy savings. Bl thitate queueing models, this approach takes into account the
work, we consider the problem of maximizing a joint utilityf|| effects of the queueing dynamics by making use of the

of the long-term throughput of the hosted applications ded tgueue backlog information to make online control decisions
average total power expenditure in a virtualized data cente

Our formulation unifies these two techniques for power aaintr
under a common analytical framework.

I. INTRODUCTION AND RELATED WORK

II. BASIC VIRTUALIZED DATA CENTER MODEL

) We consider a virtualized data center witlh servers that
This work was performed when Rahul Urgaonkar worked as a smmrr}1 N i R h i is d
intern at DOCOMO USA Labs. ost a set ofV app |.cat|.ons.-T e set of servers is denotedby
This material is supported in part by the NSF Career grant-Qz47525. and the set of applications is denoted dyEach servej € S
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R/C 1

allocated to the VMs hosted on it by i&esource Controller. In

U@ practice, this Resource Controller resides on the hostadipgr
R —T1—] System (DomO0) of each virtualized server. The control aptio

available to the Resource Controller are discussed in Idetai

u (t),—|! = ) ; o - ;
™ in Sec. II-C. For simplicity, in the basic model, we assume

Server 1

M o ) RiC 2 that the sets/V; contain only one resource. Specifically, we
T focus on case where the CPU is the bottl_enef:k resource. This
| OS0! —— can happen, for example, when all applications running on
An() W) : ! i i i
, . the servers are computationally intensive. Examples oh suc
Uno() [ e ] | V11 applications include Hadoop, MapReduce and video transcod
3 Server 2 ing. Our formulation can be extended to treat the multiple-
' R/IC M .
i: Admissi cation i resource case by representing them as a vector of resources
A/C i: Admission Controller for Application i
R FOUET oo Gontrollr or Semver | i — and appropriately redefining the control options and exgkct
O ication i U I ; i
Wi(t: Router buffer for Application i , ‘ service rates. All servers in the data center are assumee to b
Uij(t): Buffer for Application i on Server j 1 ! . d S f ” . th b - d | g
A): Request arrvals for Application O[] resource constrained. Specifically, in the basic modelore

on CPU frequency and power constraints. This is discussed in
detail in Sec. II-B.

Server M

Fig. 1. lllustration of the Virtualized Data Center Arclutere.

B. CPU Power-Frequency Relationship

hosts a subset of the applications. It does so by providingModern CPUs can be operated at different speeds at runtime
a virtual machine (VM) for every application hosted on itby using techniques such as Dynamic Frequency Scaling
An application may have multiple instances running acro$®FS), Dynamic Voltage Scaling (DVS), or a combination
different VMs in the data center. We define the followingPynamic Voltage and Frequency Scaling (DVFS). These tech-
indicator variables foi € {1,2,...,N},j € {1,2,.... M }: niques result in anon-linear power-frequency relationship.
For example, Fig. 2 shows the power consumed by a Dell
PowerEdge R610 server for different operating frequencies
and utilization levels. This curve was obtained by running a
For simplicity, in the basic model, we assume thgt= 1Vi, j, CPU intensive application at different CPU frequencies and
i.e., each server can host all applications. In generaljapp utilization levels and measuring the power consumption. We
tions may be multi-tiered and the different tiers corresping Observe that at each utilization level, the power-freqyenc
to an instance of an application may be located on differefi@lationship is well-approximated by a quadratic model,, i.
servers and VMs. For simplicity, in the basic model wé(f) = Pmin + a(f — fmin)?. Similar results have been
assume that each application consists of a single tier.eTh@pserved in recent works [4] . In our model, we assume that
assumptions are relaxed in Sec. V where we discuss extensigifUs follow a similar non-linear power-frequency relation
to the multi-tier as well as inhomogeneous hosting scenarighip that is known to the Resource Controllers. The CPUs
We assume a time-slotted system. Every slot, new reque& run at a finite number of operating frequencies in an
arrive for each applicatiori according to a random arrivalinterval [fiin, fmas] With an associated power consumption
process4;(t) that has a time average rate requests/slot. [Pmin; Pmaz]- This allows a tradeoff between performance and
This process is assumed to be independent of the currBAwer costs. All servers in our model are assumed to have
amount of unfinished work in the system and has finidentical CPU resources.
second moment. However, we do not assume any knowledgédditionally, the servers may be operated in an inactive
of the statistics ofA4;(t). For example,A;(t) could be a mode (such as P-states, CPU hibernation, or turning OFF) in
Markov-modulated process with time-varying instantarseo@rder to further save on energy costs. This can be advantageo
rates where the transition probabilities between diffestates if the workload is low. Indeed, we note from Fig. 2 that the
are not known. This models a scenario witpredictableand minimum powerF,,;, required to maintain the server in the
time-varying workloads. active state is typically substantial. It can be as high&#s of
P,.q. as reported in other works [1]. Therefore, turning idle
servers to OFF mode, or to some low power hibernation state,
can yield significant savings in power consumption. While an
Our control architecture for the virtualized data centénactive server does not consume any power, it also cannot
consists of three components as shown in Fig. 1. Evepyovide any service to the applications hosted on it. We thus
slot, for each application € A, an Admission Controller assume that, in any slot, new requests can only be routed to
determines whether to admit or decline the new requests. Tdive servers. Inactive servers can be turned active tdldéan
requests that are admitted are stored in the Router bufferébe increases in workload.
being routed to one of the servers hosting that application b Since turning servers ON/OFF frequently may be undesir-
the Router. Each serverj € S has a set of resourced); able (for example, due to hardware reliability issues), vile w
(such as CPU, disk, memory, network resources, etc.) tieat &cus on frame-based control policies in which time is dadd

~_ | 1 if applicationi is hosted on servef
%=1 0 else

A. Control Architecture
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: : : : : : Every slot, the Resource Controller allocates the ressurce
T aton 100 of each server among the VMs that host the applications run-

—#— quadratic model

240

ning on that server. This allocation is subject to the atdéla
control options. For example, the Resource Controller may
allocate different fractions of the CPU (or different numbé
cores in case of multi-core processors) to the VMs in that'slo
The Resource Controller may also use available techniques
such as DFS, DVS, DVFS, etc. to modulate the current CPU
speed which affects the CPU power consumption. WeZuse
denote the set of all such control options available at serve
This includes the option of making servginactive (so that no
power is consumed) if the current slot is the beginning ofa ne
frame. Let/;(t) € Z; denote the particular control decision
Fig. 2. Power vs CPU frequency for a Dell PowerEdge R610 sefilee  taken at serverj in slot ¢ under any policy and le;(t)
utilization value is the measured CPU utilization at a giv&RU frequency pe the corresponding power consumption. Then, the queueing
and loading level during the experiment. Also note the Sicgmt idle power. . L :

dynamics for the requests of applicatibat server; follows:

Usj(t +1) = max([Us; (t) — pij (1; (1)), 0] + Rij (1)~ (5)

—— quadratic model
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into frames of lengthl’ slots. The set of active servers is
chosen at the beginning of each frame and is held fixed fahere p;;(;(t)) denotes the service rate (in units of re-
the duration of that frame. This set can potentially chamge @uests/slot) provided to applicationon serverj in slot ¢
the next frame as workloads change. We note that while titig taking control actionl;(t). We assume that, for each
control decision is taken at a slower time-scale, otheruneso application, the expected value of this service rate as etifum
allocations decisions (such as admission control, rou®)J of the control actior; (¢) is known for allZ;(¢) € Z;. This can
frequency scaling and resource allocation at each activeige be obtained by application profiling and application maugli
are made every slot. The choice of an appropriate valu&fortechniques (e.g., [13] [14]). It is important to note that ée
is an implementation issue. We do not focus on optimizing thiot need to implement the dynamic (5). We will only require a
parameter in this work. The choice ®faffects a complexity- measure of the current backlog and knowledge of the expected
utility tradeoff as discussed in Sec. IV-B. service rate as a function of control decisions to implement
our control algorithm.

Thus, in every slot, a control policy needs to make the
_ following decisions:

Le_t A_Z-(t). _denote the number of new request arrivals forl) If t — nT (i.e., beginning of a new frame), determine the
application: in slot . !_et R_l-(t) be the number of requests out " Loy set of active serverS(t). Else, continue using the
Qf A;(¢) that are a(_jmltted into the Router bufferfqr application active set already computed for the current frame.
¢ by the Admission Controller. We denote t_h's buffer ,by 2) Admission control decision®;(¢) for all applications:.
Wi(t). We assume that any new request th"’_‘t IS not ad_mltteg) Routing decisionsk;;(t) for the admitted requests.
by the Admission Controller is declined. This can easily be4) Resource allocation decisiah(t) at each active server

generalized to the case where arrivals that are _no'F immﬂyi_ia}t (this includes selecting the CPU frequency that affects
accepted are stored in a buffer for future admission detisio the power consumptiot; (t) as well as CPU resource

Thus, for alli, ¢, we have: distribution among different VMSs).

0 < Ri(t) < Ai(t) Q) Our goal is to design an online control policy that maxi-
o mizes a joint utility of the sum throughput of the applicato
Let 2;;(t) be the number of requests for applicatiohat are 54 the energy costs of the servers subject to the available
routed from its Router buffer to servgrin slot ¢. Then the conirol options and the structural constraints imposedhizy t
queueing dynamics folV;(t) is given by: model. It is desirable to develop a flexible and robust reseur

Wit +1) = Wit) — Z Ri;(t) + Ri(t) @) allocation algorithm thadutomatically adapts to time-varying
J

C. Queueing Dynamics and Control Decisions

workloads. In this work, we will use the technique of Lya-

punov Optimization [15] to design such an algorithm.
Let S(t) denote the set of active servers in slotFor each

applicationi, the admitted requests can only be routed to those
servers that host applicatiérand are active in slat Thus, the . . _
routing decisionsk; ; (t) must satisfy the following constraints Consider any policyy for this model that takes control

IIl. CONTROL OBJECTIVE

every slot: decisionsS™ (t), R} (t), R} (t), I (t) € Z;, P](t) for all i,
. in slot t. Note that under any feasible poliey these control
Ri;(t) =0if j ¢ S(t) ora;; =0 (3) decisions must satisfy the admission control constraift (1
0< Y ayRi(t) < Wilt) 4)

) 1Additional constraints such as allocating a minimum amafi@PU share
Jes) to all active VMs can be included in this model.
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routing constraints (3), (4), and the resource allocation-c function, it is sufficient to consider only the class of siatry,

straintI;(t) € Z; every slot for alli, j. randomized policies that take control decisions indepehde
Let r]! denote the time average expected rate of admittefl the current queue backlog every slot. Specifically, at the
requests for applicationh under policyn, i.e., beginning of each frame, this policy chooses an active set
-1 of servers according to a stationary distribution in ard..i.
= tlim EZE{R?(T)} (6) fashion. On_c_e chose_n, other c_ontrol depisions are likewise
—oot = taken in an i.i.d. fashion according to stationary disttiinos.

Letr = (r,...,ry) denote the vector of these time averag'éor the basic model of Sec. Il with homogeneous application

e, Sty denae e tme avrage expeced pondE9, 57 SSES, CL esouces ¥ cio0nng 2 e
consumption of servef under policyn: e i ; .
P < policyn S. Specifically, we define the following collectidh of subsets

o1 of S:
e?é tlg(r)lo n goE {P;](T)} @)

Oé{@,{l},{1,2},{172,3},...,{1,2,3,...,M}} 9)
The expectations above are with respect to the possibly ran- . , .
domized control actions that polioy might take. Then we have the following. For brevity, we state this fact

pere without proof:

Let a; and 8 be a collection of non-negative weights tha _ A ) ) )
act as normalizing parameters. Then our objective is tagdesi Fact 1: (Optimal Stationary, Randomized Policy) For any

a policy 7 that solves the followingstochastic optimization &'ival rate vector(Ar,...,Ax) (inside or outside of the
data center capacity region), there exists a frame-based

roblem:
P stationary randomized control policy that chooses actets s
Maximize: Zair? — ﬁZe}’ from O every frame, makes admission control, routing and
i€A jes resource allocation decisions every slot independent ef th
Subjectto: 0<r!<\Vied gueue backlog and yields the following steady state values:
IJt)e;Vjes, vt =
ren @  fm > [ aE{R(n)} -8 E{PR(n)}]
=0 €A jES
Here, A represents theapacity region of the data center model _ N N
as described above. It is defined as the set of all possibig lon - Z ar; = f3 Z € (10)

term throughput values that can be achieved uadgfeasible ieA jes

resource allocation strategy. However, computing the optimal stationary, randomizedcpol
The objective in problem (8) is a general weighted lineaxplicitly can be challenging and its implementation impra

combination of the sum throughput of the applications artital as it requires knowledge of all system parameters (lik

the average power usage in the data center. This formwsrkload statistics) as well as the capacity region in adean

tion allows us to consider several scenarios. Specificdlly, Even if this policy can be computed for a given workload,

allows the design of policies that aaglaptive to time-varying it would not be adaptive to unpredictable changes in the

workloads. For example, if the current workload is inside thworkload and must be recomputed. In the next section, we

instantaneous capacity region, then this objective ermgmg Wwill present anonline control algorithm that overcomes these

scaling down the instantaneous capacity (by running CPUkallenges.

at slower speeds and/or turning OFF some active servers) to

achieve energy savings. Similarly, if the current worklaad IV. OPTIMAL CONTROL ALGORITHM

outside the instantaneous capacity region, then this thgec , i

encourages scaling up the instantaneous capacity (byngnnj N this section, we use the framework of Lyapunov Op-

CPUs at faster speeds and/or turning ON some inacti%‘ization to develop an optimal control algorithm for our

servers). Finally, if the workload is so high that it cannet medeI' Specifically, we pre_sent a dynamic contro_l algorithm
supported by using all available resources, this objeafiesvs Nt can be rs]hown LO achieve the optimal kjolutiqnandh_
prioritization among different applications. Furthermpiit ¢ 7i:J 10 the stochastic optimization problem (8). This

allows us to assign priorities between throughput and %erglgorithm i,s similar in spirit to the backpressure algarit
by choosing appropriate values af, §. roposed in [1_5] fpr problem; of Fhroughput and energy
optimal networking in time varying wireless networks.

A. Optimal Sationary, Randomized Policy

Problem (8) is similar to the general stochastic netwofk Data Center Control Algorithm (DCA)
utility maximization problem presented in [15] in the caxtte Let V' > 0 be a control parameter that is input to the
of wireless networks with time-varying channels. Supp@&e (algorithm. This parameter serves as a control probe thawsall
is feasible and let; ande; Vi, j denote the optimal value of the system administrator to tradeoff average delay forl tota
the objective function, potentially achieved by some asojt average utility as discussed later in Sec. IV-B. Appropriat
policy. Using the techniques developed in [15], it can bensho choice of this parameter depends on the particular system as

that to solve (8) and achieve the optimal value of the objectiwell as the desired tradeoff between performance and power
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cost. This parameter may also be varied over time to affd€PU shares, etc. is small and thus, the above optimization
this tradeoff. can be implemented in real time. It is important to note

Let W;(¢),U;;(t)Vi,j be the queue backlog values in slothat each server solves its own resource allocation problem
t. These are initialized t0. Every slot, the DCA algorithm independently using the queue backlog values of applicatio
uses the backlog values in that slot to make joint Admissidrosted on it and this can be implemented ifuldy distributed
Control, Routing and Resource Allocation decisions. As tHashion.
backlog values evolve over time according to the dynamicslf ¢ = nT, then a new active s&t*(¢) for the current frame
(2) and (5), the control decisions made by DCA adapt ie determined by solving the following:
these changes. However, we note that this is implemented
using knowledge of current backlog values only and does () =argmax [ZUz‘j(t)]E {1i; (1; ()} = VB Y Pi(t)

J

. . . S(t)eo I
not rely on knowledge of statistics governing future atfgva &
Thus, DCA solves for the objective in (8) by implementing + ZRij(t)(Wi(t) — Uij(t)):|
a sequence of optimization problems over time. The queue i
backlogs themselves can be viewed as dynamic Lagrange subject to;j € S(t), I;(t) € Z;, P;(t) > Ppin

multipliers that enable stochastic optimization [15]. X
The DCA algorithm operates as follows. constraintg1), (3), (4) (13)

Admission Control: For each applicatiof, choose the num- The above optimization can be understood as follows. To
ber of new requests to admR;(¢) as the solution to the determine the optimal active s8t ), the algorithm computes
following problem: the optimal cost for the expression within the brackets for

Maximize: Ri(t)[Vau — Wi(t)] every _possible active server set in th_e collectiOn (_Siven
. an active set, the above maximization is separable into-Rout
Subject to: 0 < R;(t) < A;(?) (11) ing decisions for each application and Resource Allocation
In pg@cisions at each active server. This computation is easily

This problem has a simple threshold-based solution. ; ; X ;
ticular, if the current Router buffer backlog for applicati performed using the procedure described earlier for Rgutin
and Resource Allocation when# nT'.

i, W;i(t) > Vay, then R;(t) = 0 and no new requests are® - . . .
admitted. Else, ifWi(t) < Vo, then R;(t) = A;(t) and all Since O has sizeM, the worst-case complexity of this

new requests are admitted. Note that this admission contffP_ IS Polynomial in}/. However, the computation can be

decision can be performed separately for each application.Sidnificantly simplified as follows. It can be shown that ieth
Routing and Resource Allocation: Let S(¢) be the active maximum queue backlog over all applications on any sejver

server set for the current frame tlf£ nT', then we continue to exceeds a finite constabiy, ., then that server must be part

use the same active set. The Routing and Resource Allocatfffhe active set. Thus, only th‘?se subset<bihat cqntaln
decisions are given as follows: these servers need to be considered when searching for the

Routing: Given an active server set, routing follows Q£Ptimal active set.

simple Join the Shortest Queue policy. Specifically, for any We_ note that it is possmle for this algorithm to inactivate
applicationi, let 5/ € S(t) be the active server with the Certain servers even if they have non-zero queue backla (an

smallest queue backlo (). If Wi(t) > Uy (1), then process it later when the server is activated again). Th1s ca
Ry (t) = Wi(t), ie. all requests in the Router buffer fofhappen, for. example, if the backlog on the server is small
applicationi are routed to servef'. Else, R;;(t) = 0vj and and t_he optimization (13) determines that the energy cost of
no requests are routed to any server for application order keeping the server ON (the second term) exceeds the weighted

to make these decisions, the Router requires the queuedgacl?jewif:e rate _achiew_ed (the first term). While we can S_hOW op-
informationU;;(¢)Vi, j. Given this information, we note that mality of this algorithm in terms of solving the objecti(®),

this routing decision can be performed separately for ealff @lSo consider a more practical (and potentially subag)im
application. strategy DCA-M that migrates or reroutes such unfinished
Resource Allocation: At each active servef € S(t), choose requests from inactive servers to other active serverseén th

a resource allocatio; (¢) that solves the following problem: next frame. Our S|_mulat|0n re_sults in Sec. VI suggest that th
performance of this strategy is very close to that under DCA.

Maximize: Z Uij (OE{uij (1; ()} — VBP;(t) Finally, the computation in (13) requires knowledge of the
i values of queue backlogs at all servers as well as the router
Subject to:;(t) € Z;, Pj(t) > Pnin (12) buffers. This can be implemented by a centralized controlle

) _ _ (that also implements Routing) that periodically gathédrs t
The above problem is a generalized max-weight problegackiog information and determines the active set for each

where the service rate provided to any application is weidhtfame. See further discussion in Sec. IV-C.
by its current queue backlog. Thus, the optimal solutionleiou

allocate resources so as to maximize the service rate of the .
most backlogged application. B. Performance Analysis

The complexity of this problem depends on the size of Theorem 1: (Algorithm Performance) Assume that all
the control optionsZ; available at servey. In practice, the queues are initialized t@). Suppose all arrivals in a slot
number of control options such as available DVFS stated;(¢) i.i.d. and are upper bounded by finite constants so that
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A;(t) < AMer for all i,t. Also let . be the maximum signaling to exchange the backlog information from phylsica
service rate (in requests/slot) over all applications iy slot. servers to controller nodes. The measure of backlog can be
Then, implementing the DCA algorithm every slot for anglirect or indirect depending on the application environtnen
fixed control parametel’ > 0 and frame siz€el' yields the In one extreme, as a direct approach, the datacenter psovide
following performance bounds: an application platform such as MapReduce or Hadoop over
1) The worst case queue backlog for each application Routehich all the applications are written. In such a set up,
buffer W;(t) is upper bounded by a finite constdm™** for there are explicit job monitoring, assignment, and coitect
all ¢ facilities in place that can support backlog measurements.
T a Another direct approach is to require applications (VMs)
Wit) < Wi SV + A; (14) to log job states and make them accessible to the control
Similarly, the worst case queue backlog for applicatioon framework. Various indirect approaches mainly depend on
any serverj is upper bounded bgWw;/™e* for all 4, ¢: monitoring the explicit signals that indicate the job aats/and
departures such as client request and server responsegegssa
Uij(t) < 2W" = 2(Vag + A7) (15) (e.g., web services), session initiation and terminatie.(
2) The time average utility achieved by the DCA algorithriYideo session), thread creation and termination, etc. The-a
is within BT /V of the optimal value: racy and feasibility of indirect approaches highly depend o
the particular application and hence different instruragoh
methods must be used to obtain a measure of backlog. The
[ZQ’E {Bi(n)} _ﬁZE{Pj(T)}] 2 optimality properties of our algorithm hold even when the
BT backlog values used are different from the actual values (as
Z a;ri = Z e; — N (16) long as they are off by a bounded value that does not depend
i€ A jes on V) making it robust to such noisy backlog estimates.

t—1
o1
liminf —
t—oo

=0 €A jeS

where B is a finite constant (defined precisely in the Ap-

pendix) that depends on the second moments of the arrival and V. EXTENSIONS

service processes. We note that the performance bounde abo\Here, we briefly discuss two extensions to the basic model.
are quite strong. In particular, pgft) establishesleterministic
worst case bounds on the maximum backlogs in the systemyat
all times. Therefore, by pai®) of the theorem, the achieved ~ _ ) o
average utility is withirO(1/V) of the optimal value. This can N this case, thes; variables need not be equal 187, j

be pushed arbitrarily close to the optimal value by incregsi SO that requests for an applicationcan only be routed to
the control parametéF. However, this increases the maximunfn€ Of those servers that hosts this application. The rgutin

queue backlog bound4), (15) linearly in V. Thus, by Little’s cqnstraints in (3), (4_1) are already general enough to captur
Theorem, this directly leads to af(1/V,V) utility-delay this. In the case of inhomogeneous CPU resources, the DCA

tradeoff. algorithm needs the following modification. In the active
We next prove the first part of Theorem Proof of part S€rver determination step, instead of only searching dwer t

(2) uses the technique of Lyapunov Optimization [15] and fllectionO of subsets in (9), now it may have to search over
provided in the Appendix. all possible subsets &. This can be computationally intensive

Proof of part (1): Suppose thal; (t) < W for all ; for whensS is large. It is possible to tradeoff complexity for utility
some timet. This is true fort = 0 as all queues are initialized ©Ptimality by resorting to sub-optimum heuristic approash
to 0. We show that the same holds for time- 1. We have Investigation of which is left out for brevity in this paper.

2 cases. IfW;(t) < Wme*r — Ame* then from (2), we have
Wi(t+1) < W™ (becauseR;(t) < A™ for all t). Else, if B. Multi-tier Applications

Inhomogeneous Placement and CPU Resources

Wi(t) > Wner—Aner, thenWi(t) > Vo + A7 — A" = Mmodern enterprise applications typically have multiplenco

Va;. Then, the flow control part of the algorithm choosegonents working in a tiered structure [12] [14]. An incoming

R;(t) = 0, so that by (2): request for such a multi-tier application is serviced byhetier
Wit +1) < Wi(t) < Wmee in a certain order before departing the system. Our framlewor

can be extended to treat this scenario by modeling the multi-
This proves (14). To prove (15), note that new requests alér application as aetwork of queues. Specifically, we define
routed from a Routing buffefV;(¢) to an application queue (7% (¢) as the queue backlog for thg" tier of applicationi
Ui;(t) only whenW;(t) > U;(t). SinceW;(t) < W™ and on serverj (wherek > 1). Then, the queueing dynamics for
since the maximum number of arrivals in a slotl;(¢) is Uikj(t) are given by:
wmaer U, (t) cannot excee@W, ™, O

Uf(t+1) = max[Uf (t) — p (1), 00+ Y RE'(®)

C. Instrumentation Requirements les()

The proposed framework does not require explicit modelinghereR’ ! (¢) denotes the arrivals 1@’3 (t) from the(k—1)t"
of the arrival and service processes. However, we requirdi@r of application: on serverl. For k = 1, this corresponds
measure of job backlogs at each VM and we require a conttol (5) where accepted requests are routed to the first tier of
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Average Total Utilty
Average Delay of Admitted Requests

Fig. 3. Average total utility vs V for different values of. Fig. 4. Average delay of admitted requests vs V for differesities of~.

applicationi on server;j after admission control decisions.(15). Fig. 5 shows the fraction of declined requestd’vsnder
Using the Lyapunov Optimization framework presented in thgoth algorithms. This, along with Figs. 3 and 4 shows the
previous sections together with the technique of backpressO(1/V, V) utility-delay tradeoff offered by the DCA algorithm
routing [15], DCA can be extended to treat such multi-tieyhere the average utility achieved can be pushed closeeto th

scenarios. optimal value with a tradeoff in terms of a linear increase in
average delay.
VI. SIMULATIONS In the second experiment, we fix the parametgrs=

We simulate the DCA and DCA-M algorithms in an ex5000,7 = 1.0 and consider the scenario where the input
ample virtualized data center consisting 1f0 servers and rate changes in an unpredictable manner. Specifically, for
hosting 10 applications. Each applicatiohis CPU intensive the first1/3 of the simulation interval, the input rate; =
and receives requests exogenously according to a randt#i0 requests/slot for all applications. Then the input rate
arrival process of raté\;. In the simulation setup, each CPuabruptly increases t8000 requests/slot before dropping to
is assumed to follow a quadratic power-frequency relatiod000 requests/slot in the last/3 of the simulation interval.
ship similar to the experimentally obtained quadratic peweln Fig. 6, we plot the number of active servers vs. frame
frequency curve in Fig. 2. Specifically, each CPU is assumg&gmber under the DCA algorithm. It can be seen that the
to have a discrete set of frequency options in the intenv@lgorithm quickly adapts to the new workload by increasing
[1.6GHz,...,2.6GHz] at increments 0f0.2 GHz and the or decreasing the number of active servers (and hence the
corresponding power consumption (in Watts) at frequeficyinstantaneous capacity) even when the workload changes in
is given by P,.;,, + 0(f — 1.6GHz)? where P,,;, = 120/  an unpredictable manner.
andf = 120W/(GHz)?. Thus, the CPU power consumption
at the highest frequency BI0WW. We assume that half of the VII. CONCLUSIONS ANDFUTURE WORK
servers in the data center are always ON and that decisions t
dynamically turn servers ON/OFF are applied to the remginirije
servers. Note that the dynamic operating frequency detsi

th this paper, we considered the problem of dynamic
source allocation and power management in virtualized
. . Qata centers. Prior work in this area uses prediction based
are still apphed .to all servers. The framg ;ife: 1000 slots approaches for resource provisioning. In this work, we have
and the simulations were run for one million slots. . ... used an alternate approach that makes use of the queueing
: The nl_meer of new requesjs generated for an ap_phc@ho formation available in the system to make online control
n a slotis assumed to be uniformly and_ randomly d|§tr!but cisions. This approach is adaptive to unpredictablegdmn
In [0’.2)‘1']' On average, a server running at the MINIMUIR, \vorkload and does not require estimation and prediction
(r_naX|m_um) speed can procem_p (400)_ requests/slot. In the of its statistics. Our approach uses the recently developed
simulations, the Fhro_ughput utility welghts are chosen & Qechnique of Lyapunov Optimization that allows us to derive
equal for ?" apphcaﬁmns, S0 th@‘i " O‘W' analytical performance guarantees of the algorithm.

In the first experiment, we fix the input rafe = 2000 The main focus of this work was on building an analytical

requests/slot for all applications and simulate the DCA aqpamework. As part of future work, we plan to have real system

E.CA"\BA a#gorlthtrr?s IO: cillfferent Chot'_(l:_fs fOf tr;_eﬁratmt: al/m% implementation of our algorithm and use standard benchmark
9s. 5 shows the total average utiiity Tor dilierent valaes ., 5aqs and applications to evaluate its performance.
the input parameteV under the two control algorithms. We

observe that the performance of DCA-M is very close to DCA.
Further, the total average utility achieved increases With
and converges to a maximum value for larger valued/’of Here, we prove par{2) of Theorem1 using the tech-
as predicted by (16). Fig. 4 plots the average delay of tiégue of Lyapunov Optimization [15]. This technique inveds
admitted requests VB. It can be seen that the average delagonstructing an appropriate Lyapunov function of the queue
increases linearly with/ as predicted by the bounds in (14)packlogs in the system, defining the conditional “Lyapunov

APPENDIX - PROOF OFTHEOREM 1 PART (2)
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Fig. 5. Fraction of declined requests vs V for different eslof~. Fig. 6. Number of active servers over time.

drift” of this function, and then developing a dynamic allyapunov Optimization Theorem (see Theorém in [15])
gorithm that minimizes this drift over all control policies along with aT-slot delayed Lyapunov analysis.
The performance bounds for this algorithm are obtained by

comparing the Lyapunov drift under this algorithm with toét REFERENCES
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