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The Optimality of Two Prices: Maximizing
Revenue in a Stochastic Communication System

Longbo Huang, Michael J. Neely

Abstract—This paper considers the problem of pricing and
transmission scheduling for an Access Point (AP) in a wireless
network, where the AP provides service to a set of mobile users.
The goal of the AP is to maximize its own time-average profit.
We first obtain the optimum time-average profit of the AP and
prove the “Optimality of Two Prices” theorem. We then develop
an online scheme that jointly solves the pricing and transmission
scheduling problem in a dynamic environment. The scheme uses
an admission price and a business decision as tools to regulate the
incoming traffic and to maximize revenue. We show the scheme
can achieve any average profit that is arbitrarily close to the
optimum, with a tradeoff in average delay. This holds for general
Markovian dynamics for channel and user state variation, and
does not require a-priori knowledge of the Markov model. The
model and methodology developed in this paper are general and
apply to other stochastic settings where a single party tries to
maximize its time-average profit.

Index Terms—Wireless Mesh Network, Pricing, Queueing,
Dynamic Control, Lyapunov analysis, Optimization

I. INTRODUCTION

In this paper, we consider the profit maximization problem
of an access point (AP) in a wireless mesh network. Mobile
users connect to the mesh network via the AP. The AP receives
the user data and transmits it to the larger network via a
wireless link. Time is slotted with integral slot boundaries
t ∈ {0, 1, 2, . . .}, and every timeslot the AP chooses an
admission price p(t) (cost per unit packet) and announces this
price to all present mobile users. The users react to the current
price by sending data, which is queued at the AP. While the AP
gains revenue by accepting this data, it in turn has to deliver
all the admitted packets by transmitting them over its wireless
link. Therefore, it incurs a transmission cost for providing
this service (for example, the cost might be proportional to
the power consumed due to transmission). The mission of the
AP is to find strategies for both packet admission and packet
transmission so as to maximize its time average profit while
ensuring queue stability.

We assume that the expected number of new packets sent
to the AP is determined every timeslot by a demand state
variable M(t) and a user demand function F (M(t), p(t)).
Specifically, the state variable M(t) represents the current
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condition of the user population that affects its aggregate
spending ability. For example, M(t) can represent the integer
number of users present at time t, or can be a rough esti-
mate of the aggregate “willingness-to-pay” (such as “Low”,
“Medium”, and “High”). The demand function F (M(t), p(t))
is equal to the expected number of packets that arrive on
slot t under a given user condition M(t) and a given price
p(t). We assume the AP knows the current demand state
M(t) and the demand function F (M(t), p(t)) for each slot
t. However, M(t) is assumed to vary according to a general
finite state ergodic Markov chain, and the transition and steady
state probabilities of M(t) may be unknown. Similarly, the
condition of the wireless channel from AP to the mesh network
is potentially time varying and is determined by a Markov
modulated channel state process S(t). The AP is assumed
to know the current channel state S(t) on each timeslot t,
although the transition and steady state probabilities of S(t)
are potentially unknown.

We develop a pricing and transmission scheduling algorithm
(PTSA) for the AP. The PTSA algorithm has low complexity
and can be viewed as making greedy decisions every timeslot.
Despite its simplicity, PTSA is able to dynamically react to
the time varying network conditions, and yields an average
net profit that can be pushed arbitrarily close to the optimum,
with a corresponding tradeoff in average queueing delay.

Many existing works on revenue maximization can be
found. Work in [1] [2] models the problem of maximizing
revenue as a dynamic program. Work in [3] and [4] model
revenue maximization as static optimization problems. A game
theoretic perspective is considered in [5], where equilibrium
results are obtained. Works [6], [7], and [8] also use game
theoretic approaches with the goal of obtaining efficient strate-
gies for both the AP and the users. The paper [9] looks at the
problem from a mechanism design perspective, and [10], [11]
consider profit maximization with Qos guarantees. Early work
on network pricing in [12], [13], and [14] consider throughput-
utility maximization rather than revenue maximization. There,
prices play the role of Lagrange multipliers, and are used
mainly to facilitate better utilization of the shared network
resource. This is very different from the revenue maximization
problem, where the service provider is only interested in its
own profit. Indeed, the revenue maximization problem can be
much more complex due to non-convexity issues.

The above prior work does not directly solve the profit
maximization problem for APs in a wireless network for one
or more of the following reasons: (1) Most works consider
time-invariant systems, i.e., the network condition does not
change with time. (2) Works that model the problem as an
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optimization problem rely heavily on the assumption that the
user utility function or the demand function is concave. (3)
Many of the prior works adopt the flow rate allocation model,
where a single fixed operating point is obtained and used
for all time. However, in a wireless network, the network
condition can easily change due to channel fading and/or node
mobility, so that a fixed resource allocation decision may not
be efficient. Also, although the utility functions can generally
be assumed to be concave, it is easy to construct examples
where the demand function is non-concave/non-convex even
if users have concave utility functions. Indeed, profit max-
imization problems are often non-convex in nature. Hence,
they are generally hard to solve, even in the static case where
the channel condition, user condition, and demand function
is fixed for all time. It is also common to look for single-
price solutions in these static network problems. Our results
show that single-price solutions are not always optimal, and
that even for static problems the AP can only maximize time
average profit by providing a “regular” price some fraction of
the time, and a “reduced price” at other times. Moreover, most
network pricing work considers flow allocation that neglects
the packet-based nature of the traffic, and neglects issues of
queueing delay. An exception is the recent work in [15] that
considers a packet-based model for a free market wireless
network. However, [15] focuses on network-wide efficiency
and on guarantees of non-negative profit to all participants, and
does not consider the very different problem of maximizing
revenue for a single AP.

In order to enable the AP to better react to the varying
network condition and to overcome the difficulty of solving
non-convex/non-concave optimization problems, we propose
a novel joint pricing and transmission scheduling algorithm
(PTSA). PTSA has the same nature as the schemes proposed
in [15], which are “state-dependent” [12], although it solves a
very different problem. PTSA bypasses the non-concavity/non-
convexity difficulty by turning the static optimization problem
into a stochastic optimization problem. Our analysis of the
performance of PTSA uses the Lyapunov techniques and
general utility-optimization framework developed in [16] [17]
[18]. In particular, we note that our resulting pricing algorithm
can be viewed as imposing a flow control mechanism that is
similar to [16]. However, the algorithm in [16] is designed to
provide fairness and social optimality, whereas the algorithm
in this paper maximizes revenue and therefore often exhibits
“two-price” behavior that is different from [16]. Our analysis
also considers general Markovian demand states and channels,
which change the structure of the performance-delay tradeoff
by a logarithmic factor when compared to the tradeoff derived
in [16] for arrivals and channels that are i.i.d. over slots.

We first consider a single channel AP system. In Section
II we describe the network model. In Section III, we discuss
some practical issues of our model. In Section IV we character-
ize the optimal time average profit and prove the “Optimality
of Two Prices” theorem. The PTSA algorithm is presented
in Section V, where performance optimality is proven. We
extend our results to a multi-channel AP system in Section
VI. Simulation results are provided in Section VII.

II. NETWORK MODEL

We consider the network as shown in Fig 1. The network
is assumed to operate in slotted time, i.e. t ∈ {0, 1, 2, ...}.

AP

Φ(cost(t), S(t))
F(M(t), p(t))

Network

Fig. 1. An Access Point (AP) that connects mobile users to a larger network.

A. Arrival Model: The Demand Function

We first describe the packet arrival model. Let M(t) be
the demand state at time t. M(t) might be the number of
present mobile users, or could represent the current demand
situation, such as the demand being “High”, “Medium” or
“Low”. We assume that M(t) evolves according to a finite
state ergodic Markov chain with state space M. Let πm
represent the steady state probability that M(t) = m. The
value of M(t) is assumed known at the beginning of each
slot t, although the transition and steady state probabilities
are potentially unknown.

Every timeslot, the AP first makes a business decision by
deciding whether or not to allow new data (this decision can
be based on knowledge of the current M(t) state). Let Z(t)
be a 0/1 variable for this decision, defined as:1

Z(t) =
{

1 if the AP allows new data on slot t,
0 else. (1)

If the AP chooses Z(t) = 1, it then chooses a per-unit price
p(t) for incoming data and advertises this price to the mobile
users. We assume that price is restricted to a set of price
options P , so that p(t) ∈ P for all t. We assume the set
P includes the constraint that prices are non-negative and
bounded by some finite maximum price pmax. Let R(t) be
the total number of packets that are sent by the mobile users
in reaction to this price. The income earned by the AP on slot
t is thus Z(t)R(t)p(t).

The arrival R(t) is a random variable that depends on the
demand state M(t) and the current price p(t) via a demand
function F (M(t), p(t)):

F : (M(t), p(t)) 7→ E {R(t)} . (2)

Specifically, the demand function maps M(t) and p(t) into the
expected value of arrivals E {R(t)}. We further assume that
there is a maximum value Rmax, so that R(t) ≤ Rmax for
all t, regardless of M(t) and p(t). The higher order statistics
for R(t) (beyond its expectation and its maximum value)
are arbitrary. The random variable R(t) is assumed to be
conditionally independent of past history given the current

1The Z(t) decisions are introduced to allow stability even in the possible
situation where user demand is so high that incoming traffic would exceed
transmission capabilities, even if price were set to its maximum value pmax.
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M(t) and p(t). The demand function F (m, p) is only assumed
to satisfy 0 ≤ F (m, p) ≤ Rmax for all m ∈M and all p ∈ P .

Example: In the case when M(t) represents the number of
mobile users in range of the AP at time t, a useful example
model for F (M(t), p(t)) is:

F (M(t), p(t)) = A(M(t))F̂ (p(t)),

where F̂ (p) is the expected number of packets sent by a single
user in reaction to price p, a curve that is possibly obtained
via empirical data; and A(M(t)) is a non-negative function
of M(t), e.g. A(M(t)) = θM(t), θ ≥ 0, which represents
the “effective number of participating users” generated by the
M(t) present users. In this case, we assume that the A(M(t))
is bounded by some value Amax and the maximum number
of packets sent by any single user is bounded by some value
Rsinglemax , so that Rmax = AmaxR

single
max .

In Section V, we show that this type of demand function
(i.e., F (m, p) = A(m)F̂ (p)) leads to an interesting situation
where the AP can make “demand state blind” pricing deci-
sions, where prices are chosen without knowledge of M(t).

B. Transmission Model: The Rate-Cost Function

Let S(t) represent the channel condition of the wireless
link from AP to the mesh network on slot t. We assume
that the channel state process S(t) is a finite state ergodic
Markov chain with state space S. Let πs represent the steady
state probability that S(t) = s. The transition and steady
state probabilities of S(t) are potentially unknown to the AP,
although we assume the AP knows the current S(t) value at
the beginning of each slot t.

Every slot t, the AP decides how much resource to allocate
for transmission. We model this decision completely by its
cost to the AP, denoted as cost(t). We assume that cost(t)
is chosen within some set of costs C, and that C includes
the constraint 0 ≤ cost ≤ Cmax for some finite maximum
cost Cmax. The transmission rate is then determined by
cost(t) and the channel state S(t) according to the rate-cost2

function µ(t) = Φ (cost(t), S(t)). In our problem, we assume
Φ(0, S(t)) = 0 for all S(t). Further, we assume there is a
finite maximum transmission rate, so that:

Φ (cost(t), S(t)) ≤ µmax for all cost(t), S(t), t. (3)

We assume that packets can be continuously split, so that
µ(t) = Φ (cost(t), S(t)) determines the portion of packets that
can be sent over the link from AP to the network at slot t (for
this reason, the rate function can also be viewed as taking units
of bits). Of course, the set C can be restricted to a finite set
of costs that correspond to integral units for Φ(cost(t), S(t))
in systems where packets cannot be split.

C. Queueing Dynamics and other Notations

Let U(t) be the queue backlog of the AP at time t, in units
of packets.3 Note that this is a single commodity problem as we

2This is essentially the same as the rate-power curve in [17].
3The packet units can be fractional. Alternatively, the backlog could be

expressed in units of bits.

do not distinguish packets from different users.4 We assume
the following queueing dynamics for U(t):

U (t+ 1) = max [U(t)− µ(t), 0] + Z(t)R(t), (4)

where µ(t) = Φ(cost(t), S(t)). Throughout the paper, we
adopt the following notion of queue stability:

E {U} , lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} <∞. (5)

III. DISCUSSION OF MODEL

A. Application Examples

Our model for pricing of access point services is general
and is useful in several different contexts. Below we outline
three important scenarios that have different assumptions on
the size of a timeslot and the nature of the transmission costs.

1) The “Packet Dropbox” Model: The simplest scenario is
one where there are many users, each with a single file to
send. Timeslots are large, on the order of tens of seconds to
tens of minutes. Each user is in range of the AP only for
one slot, and makes a single accept/reject decision based on
the advertised price. Such a scenario can be envisioned, for
example, in shopping areas where there might be a densely
deployed wireless mesh network with APs that act as “drop
boxes” for delay-tolerant data.

2) The Extended Hotspot Uplink Model: The second ex-
ample is where the AP represents a wireless hotspot, such as
at an airport or a coffee shop, where users spend a relatively
long period of time (perhaps one hour), while the timeslots are
very small (less than one second) and the delay requirements
are small (e.g., 1 to 50 slots). It extends the original model
to also allow multiple service channels. Specifically, the AP
maintains a “schedule queue” for each user. At every time slot,
the users accepting the price first send request “tokens” (which
are small compared to data packets) to the AP indicating the
amount of data to send. The AP then places the same amount
of virtual bits in the corresponding “schedule queues”. The AP
then measures the channel conditions that reflect the costs to
receive data from users at the current slot, and polls the chosen
users to receive packets from them. The sizes of the “schedule
queues” kept at the AP actually reflect the data in all users that
must be eventually received by the AP over uplink channels,
and the costs incurred by the AP are reception costs rather than
transmission costs. As we will see in Section VI, this extended
model can be used to allow for opportunistic scheduling in
cases where different users have different channel conditions.

3) The Extended Hotspot Downlink Model: The third ex-
ample is in a setting similar to the second example, but where
users are interested in obtaining data from the network, such
as downloading files. At each slot, users accepting the price
will send their requests to the AP, indicating the content and
amount of data they want to purchase. The AP will then obtain
the data from the network (assuming this is done quickly),
and sends them to the users over downlinks. In this case, the
AP aggregates all user data for transmission, polls users in a

4Our analysis can be extended to treat multi-commodity models, although
that is omitted for brevity.
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manner similar as in the second example, and incurs downlink
transmission costs when delivering the data. In these cases,
there might be a limit to the amount of data that can be sent
or received over one slot, so that a typical user makes repeated
transactions (over multiple slots) based on current prices.

B. Discussion of the Demand Model

Our traffic arrival model assumes the demand at slot t
depends only on the current demand state M(t) and price p(t)
through a general (possibly non-linear and non-convex) func-
tion F (M(t), p(t)). This model yields a revenue-maximizing
strategy where the AP has a time-varying price. The resulting
dynamic prices are qualitatively similar to the time-varying
prices seen in many real world economic markets. Such
behavior cannot be captured by mathematical models that a-
priori assume fixed price strategies.

While our model is quite general, we note the following
limitation: The demand state M(t) is assumed to be inde-
pendent of the pricing decisions made by the AP. This does
not capture situations where a user can anticipate a lower
future price and hence changes its demand. This problem is
most relevant in the second and third application examples
of section III-A, where users are in range of the AP for
many slots. While it is still profitable to charge a dynamic
price in such a scenario (particularly to reap profit from users
who cannot afford to wait for a reduced “sale price”), the
dynamics of this anticipatory behavior are complex and would
require demand to depend not only on the current demand state
and advertised price, but also on the evolution of the pricing
process itself. However, we note that our resulting pricing
algorithm generates prices where the long term averages and
peaks can be learned, but where it would be difficult to “guess”
the short term price dynamics (see simulations in Section VII).
Furthermore, users with much data to send over multiple slots
cannot afford to always wait until a lower price state is offered,
as the fraction of time such lower prices are offered can limit
their overall throughput (See Section V-E for an example).
Therefore, it is reasonable to assume that users send data when
they find the currently advertised price to be acceptable.

IV. CHARACTERIZING THE MAXIMUM PROFIT

In this section, we characterize the optimal average profit
that is achievable over the class of all possible control polices
that stabilize the queue at the AP. We show that it suffices for
the AP to use only two prices for every demand state M(t)
to maximize its profit.

A. The Maximum Profit

To describe the maximum average profit, we use an analysis
that is similar to the analysis of the capacity region in [19],
[20] and the minimum average power for stability problem
in [17]. Note that in [19], [20] and [17], the arrival rate is
taken as a given parameter, while in our case, the AP needs
to balance between the profit from data admission and the
cost for packet transmission. The following theorem shows
that optimality over all possible policies can be characterized
by a simpler class of stationary randomized strategies with
the following structure: Every slot, the AP observes M(t) =

m, and makes a business decision Z(t) by independently and
randomly choosing Z(t) = 1 with probability φ(m) (for some
φ(m) values defined for each m ∈ M). If Z(t) = 1, then the
AP allocates a price randomly from a countable collection of
prices {p(m)

1 , p
(m)
2 , p

(m)
3 , . . .}, with probabilities {α(m)

k }∞k=1.
Similarly, the AP observes S(t) = s and makes a transmission
decision by choosing cost(t) randomly from a set of costs
{cost(s)k }∞k=1 with probabilities {β(s)

k }∞k=1.
Theorem 1: (Maximum Profit with Stability) The optimal

average profit for the AP, with its queue being stable, is given
by Profitoptav , where Profitoptav is defined as the following:

Profitoptav = sup
{
Incomeav − Costav

}
(6)

s.t. Incomeav = Em
{
φ(m)

∞∑
k=1

α
(m)
k F (m, p(m)

k )p(m)
k

}
(7)

Costav = Es
{ ∞∑
k=1

β
(s)
k cost

(s)
k

}
(8)

λav = Em
{
φ(m)

∞∑
k=1

α
(m)
k F (m, p(m)

k )
}

(9)

µav = Es
{ ∞∑
k=1

β
(s)
k Φ

(
cost

(s)
k , s

)}
(10)

µav ≥ λav (11)
0 ≤ φ(m) ≤ 1 ∀m ∈M (12)

p
(m)
k ∈ P ∀k,∀m ∈M (13)

cost
(s)
k ∈ C, ∀k,∀s ∈ S (14)

∞∑
k=1

α
(m)
k = 1 ∀m ∈M (15)

∞∑
k=1

β
(s)
k = 1 ∀s ∈ S (16)

where sup{} denotes the supremum, Es and Em denote the
expectations over the steady state distribution for S(t) and
M(t), respectively, and φ(m), α(m)

k , p(m)
k , β(s)

k , and cost
(s)
k

are auxiliary variables with the interpretation given in the text
preceding Theorem 1.

The proof of Theorem 1 contains two parts. Part I shows
that no algorithm that stabilizes the AP can achieve an average
profit that is larger than Profitoptav . Part II shows that we can
achieve a profit of at least ρProfitoptav (for any ρ such that
0 < ρ < 1) with a particular stationary randomized algorithm
that also yields average arrival and transmission rates λav and
µav that satisfy λav < µav . The formal proof is similar to
the proof in [21] and is omitted for brevity. The following
important corollary to Theorem 1 is simpler and is useful for
analysis of the online algorithm described in Section V.

Corollary 1: For any Profitnoptav = Profitoptav − ε∗ > 0,5

where ε∗ > 0, there exists a control algorithm STAT ∗

that makes stationary and randomized business and pricing
decisions Z∗(t) and p∗(t) depending only on the current
demand state M(t) (and independent of queue backlog), and
makes stationary randomized transmission decisions cost∗(t)

5The case when Profitnopt
av = 0 can trivially be satisfied and thus is not

considered here.
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depending only on the current channel state S(t) (and inde-
pendent of queue backlog) such that:

E{Z∗(t)R∗(t)} ≤ E{µ∗(t)}, (17)

E{Z∗(t)p∗(t)F (M(t), p∗(t))} − E{cost∗(t)} = Profitnoptav ,
(18)

where µ∗(t) = Φ(cost∗(t), S(t)). The above expectations are
taken with respect to the steady state distributions for M(t)
and S(t). Specifically:

E {Z∗(t)R∗(t)} = Em{Z∗(t)F (m, p∗(t))},
E {µ∗(t)} = Es{Φ(cost∗(t), s)}. �

B. The Optimality of Two Prices

The following two theorems show that instead of consider-
ing a countably infinite collection of prices {p(m)

1 , p
(m)
2 , . . .}

for the stationary algorithm of Corollary 1, it suffices to
consider only two price options for each distinct demand state
M(t) ∈M.

Theorem 2: Let (λ(m)∗, Income(m)∗) represent any rate-
income tuple formed by a stationary randomized algorithm
that chooses Z(t) ∈ {0, 1} and p(t) ∈ P , so that:

E {Z(t)F (M(t), p(t)) |M(t) = m} = λ(m)∗,
E {Z(t)p(t)F (M(t), p(t)) |M(t) = m} = Income(m)∗,

then:
a) (λ(m)∗, Income(m)∗) can be expressed as a convex

combination of at most three points in the set Ω(m), defined:

Ω(m) M= {(ZF (m, p), ZpF (m, p)) | Z ∈ {0, 1}, p ∈ P} .
b) If (λ(m)∗, Income(m)∗) is on the boundary of the convex

hull of Ω(m), then it can be expressed as a convex combination
of at most two elements of Ω(m), corresponding to at most two
business-price tuples (Z1, p1), (Z2, p2).

c) If the demand function F (m, p) is continuous in p for
each m ∈ M, and if the set of price options P is connected,
then any (λ(m)∗, Income(m)∗) point (possibly not on the
boundary of the convex hull of Ω(m)) can be expressed as
a convex combination of at most two elements of Ω(m).

Proof: Part (a): It is known that for any vector random
variable ~X that takes values within a set Ω, the expected
value E{ ~X} is in the convex hull of Ω (see, for example,
Appendix 4.B in [20]). Therefore, the 2-dimensional point
(λ(m)∗, Income(m)∗) is in the convex hull of the set Ω(m). By
Caratheodory’s theorem (see, for example, [22]), any point in
the convex hull of the 2-dimensional set Ω(m) can be achieved
by a convex combination of at most three elements of Ω(m).

Part (b): We know from part (a) that (λ(m)∗, Income(m)∗)
can be expressed as a convex combination of at most three
elements of Ω(m) (say, ω1, ω2, and ω3). Suppose these
elements are distinct. Because (λ(m)∗, Income(m)∗) is on the
boundary of the convex hull of Ω(m), it cannot be in the
interior of the triangle formed by ω1, ω2, and ω3. Hence,
it must be on an edge of the triangle, so that it can be reduced
to a convex combination of two or fewer of the ωi points.

Part (c): We know from part (a) that (λ(m)∗, Income(m)∗)
is in the convex hull of the 2-dimensional set Ω(m). An

extension to Caratheodory’s theorem in [23] shows that any
such point can be expressed as a convex combination of at
most two points in Ω(m) if Ω(m) is the union of at most two
connected components. The set Ω(m) can be written as:

Ω(m) = {(0, 0)} ∪ {(F (m, p), pF (m, p)) | p ∈ P},
which corresponds to the cases Z = 0 and Z = 1. Let Ω̂(m)

represent the set on the right hand side of the above union, so
that Ω(m) = {(0, 0)} ∪ Ω̂(m). Because the F (m, p) function
is continuous in p for each m ∈ M, the set Ω̂(m) is the
image of the connected set P through the continuous function
(F (m, p), pF (m, p)), and hence is itself connected [24]. Thus,
Ω(m) is the union of at most two connected components.
It follows that (λ(m)∗; Income(m)∗) can be achieved via a
convex combination of at most two elements in Ω(m).

Theorem 3: (Optimality of Two Prices) Let (λ∗, Income∗)
represent the rate-income tuple corresponding to any stationary
randomized policy Z∗(t), p∗(t), cost∗(t), possibly being the
policies of Corollary 1 that achieve any near optimal profit
Profitnoptav . Specifically, assume the algorithm yields an av-
erage profit Profit∗av (defined by the left hand side of (18)),
and that:

λ∗ = Em{Z∗(t)F (m, p∗(t))},
Income∗ = Em{Z∗(t)p∗(t)F (m, p∗(t))}.

Then for each m ∈ M, there exists two business-price
tuples (Z(m)

1 , p
(m)
1 ) and (Z(m)

2 , p
(m)
2 ) and two probabilities

q
(m)
1 , q

(m)
2 (where q(m)

1 + q
(m)
2 = 1) such that:

λ∗ =
∑
m∈M

πm

2∑
i=1

[
q
(m)
i Z

(m)
i F (m, p(m)

i )
]
,

Income∗ ≤
∑
m∈M

πm

2∑
i=1

[
q
(m)
i Z

(m)
i p

(m)
i F (m, p(m)

i )
]
.

That is, a new stationary randomized pricing policy can be
constructed that yields the same average arrival rate λ∗ and
an average income that is greater than or equal to Income∗,
but uses at most two prices for each state m ∈M.6

Proof: For the stationary randomized policy Z∗(t) and
p∗(t), define:

λ(m)∗ M= E {Z∗(t)F (m, p∗(t)) |M(t) = m} ,
Income(m)∗ M= E {Z∗(t)p∗(t)F (m, p∗(t)) |M(t) = m} .
Note that the point (λ(m)∗, Income(m)∗) can be expressed
as a convex combination of at most three points ω

(m)
1 ,

ω
(m)
2 , ω

(m)
3 in Ω(m) (from Theorem 2 part (a)). Then

(λ(m)∗, Income(m)∗) is inside (or on an edge of) the triangle
formed by ω

(m)
1 , ω

(m)
2 , ω

(m)
3 . Thus, for some value δ ≥ 0 the

point (λ(m)∗, Income(m)∗ + δ) is on an edge of the triangle.
Hence, the point (λ(m)∗, Income(m)∗ + δ) can be achieved
by a convex combination of at most two of the ω

(m)
i values.

Hence, for each m ∈ M, we can find a convex combination
of two elements of Ω(m), defining a stationary randomized

6Because the new average income is greater than or equal to Income∗,
the new average profit is greater than or equal to Profit∗av when this new
pricing policy is used together with the old cost∗(t) scheduling policy.
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pricing policy with two business-price choices (Z(m)
1 , p

(m)
1 ),

(Z(m)
2 , p

(m)
2 ) and two probabilities q(m)

1 , q(m)
2 . This new policy

yields exactly the same average arrival rate λ∗, and has an
average income that is greater than or equal to Income∗.

Most work in network pricing has focused on achieving
optimality over the class of single-price solutions, and indeed
in some cases it can be shown that optimality can be achieved
over this class (so that two prices are not needed). However,
such optimality requires special properties of the demand
function (Section IV-D provides a sufficient condition for the
existence of a single optimal price). Instead, Theorem 3 shows
that for any demand function F (m, p), the AP can optimize
its average profit by using only two prices for every demand
state m ∈M. We note that there are similar logical arguments
about using finite price options to achieve good performance
in the economic literature. For example, [25] shows that under
certain conditions, the social value of using two price classes
is at least half of the optimal value. However, we note that
problems there typically consider selling a certain amount of
goods in a given time interval, e.g., [26], or assume excessive
demand will be lost, e.g., [27], thus are different from our
problem, which can be viewed as queueing the excessive
demand and serve them later.

Theorem 3 is also related to a classical result of Markov
decision theory that bounds the number of required modes for
constrained optimization over the class of stationary policies
[28]. Indeed, using a more detailed argument as in [28]
together with the stationarity and separability of pricing and
transmission scheduling that arise from Theorems 1 and 2,
our two-price result can likely be extended to show that there
exists a policy that achieves maximum revenue (or arbitrarily
close to it) where most demand states m ∈ M use only one
price, while at most one demand state requires two prices. We
omit this extended analysis for brevity. In fact, the following
example shows that the number two is tight, in that a single
fixed price does not always suffice to achieve optimality.

C. Example Demonstrating Necessity of Two Prices

For simplicity, we consider a static situation where the
transmission rate is equal to µ = 1 with zero cost for all t (so
that Φ(cost(t), S(t)) = 1 for all S(t) and all cost(t), including
cost(t) = 0). The demand state M(t) is also assumed to
be fixed for all time, so that F (m, p) can be simply written
as F (p). Let P represent the interval 0 ≤ p ≤ pmax, with
pmax = 9. We consider the following F (p) function:

F (p) =
{

10− 9
2p 0 ≤ p ≤ 2,

9
7 − 1

7p 2 < p ≤ 9. (19)

Note that the demand curve (19) is convex and monotone.
Indeed, it can represent a market demand generated by two
groups of customers having demands F (p) = 61

7 − 61p
14 , 0 ≤

p ≤ 2 and F (p) = 9
7 − p

7 , 0 ≤ p ≤ 9. Such demand functions
are common in the microeconomic literature, e.g., [29], for
modeling real world problems. The F (p) and pF (p) functions
corresponding to (19) are plotted in Fig. 2. Now consider the
situation when the AP only uses one price. First we consider
the case when Z(t) = 1 for all time. Since µ = 1, in order to
stabilize the queue, the AP has to choose a price p such that

0 5 10
0

1

2

3

4

5

6

7

8

9

10

p

0 5 10
0

1

2

3

4

5

6

p

F(p)pF(p)

A
1

B
2

A
2

B
1

Fig. 2. A1 = (2, 1), B1 = ( 9
2
, 9
14

), A2 = (2, 2) and B2 = ( 9
2
, 81
28

).

λ = F (p) ≤ 1. Thus we obtain that p has to be no less than 2
(points A1 and A2 in Fig. 2 show F (p) and F (p)p for p = 2).
It is easy to show that in this case the best single-price is p = 9

2
(points B1 and B2 in Fig. 2 show its F (p) and F (p)p), which
yields an average profit of Profitsingle = 81/28 ≈ 2.8929.
7 However, we see that in this case the average arrival rate
F (p) is only 9/14 ≈ 0.6429, which is only 65% of µ. Now
consider an alternative scheme that uses two prices p1 = 13

9
and p2 = 9

2 , with probabilities of 1
10 and 9

10 , respectively.
Then the resulting profit is:

ProfitTwo =
1
10
F (p1)p1 +

9
10
F (p2)p2

=
1
10
· 7

2
· 13

9
+

9
10
· 9

14
· 9

2
≈ 3.1091

which is strictly larger than Profitsingle. Further, the resulting
arrival rate is only:

λTwo =
1
10
F (p1) +

9
10
F (p2) =

1
10
· 7

2
+

9
10
· 9

14
≈ 0.9286

which is strictly less than µ = 1. Therefore the queue is stable
under this scheme [18].

Now consider the case when the AP uses a varying Z(t)
and a single fixed price. From Theorem 1 we see that this is
equivalent to using a probability 0 < φ < 1 to decide whether
or not to allow new data for all time.8 In order to stabilize the
queue, the AP has to choose a price p such that F (p)φ < µ.
Thus the average profit in this case would be F (p)pφ < pµ. If
p ≤ 2, then F (p)pφ < 2·1 = 2 (note that this is indeed just an
upper bound); else if 2 < p ≤ 9, F (p)pφ < F ( 9

2 )· 92 = 81/28.
Both are less than ProfitTwo obtained above. Therefore, no
single price policy is optimal.

It is interesting to note that the demand curve (19) actually
has two unit-elasticity points (which are usually profit maxi-
mization points in the economic literature) [29]: p = 10

9 and
p = 9

2 . However, none of them alone achieves the optimal
profit under the capacity constraint. Furthermore, it can be
verified that the optimal revenue is not achieved by any time
sharing between them. This indeed highlights the importance
of Theorem 3 and the need of an efficient algorithm.

D. Existence of a Single Optimal Price

While two prices are sufficient and necessary to achieve
optimal profit, here we provide a sufficient condition for

7Throughout the paper, numbers of this type are numerical results and are
accurate enough for our arguments.

8 The case when φ=0 is trivial and thus is excluded.
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the existence of a single optimal price for a demand state.
We first state the condition in the following corollary from
Theorem 2 and 3. Then we show that the class of non-
increasing linear demand functions satisfy this condition. Let
(λ(m)∗, Income(m)∗) represent any rate-income tuple formed
by a stationary randomized algorithm as in Theorem 2.

Corollary 2: Let m ∈ M. Suppose P = [a, b] for some
0 ≤ a ≤ b ≤ pmax, and F (m, p) is continuous in p. Also
suppose for any p1, p2, p3 ∈ P and 0 ≤ θ ≤ 1 that satisfy:

F (m, p3) = θF (m, p1) + (1− θ)F (m, p2), (20)

we have:

p3F (m, p3) ≥ θp1F (m, p1) + (1− θ)p2F (m, p2), (21)

Then there exist a single price p(m) and a probability q(m) for
m such that:

λ(m)∗ = q(m)F (m, p(m)),
Income(m)∗ ≤ q(m)p(m)F (m, p(m)).

Specifically, q(m) is the probability of choosing Z = 1 and
the price p(m). Further, if there exists a price p such that
F (m, p) = 0, then q(m) = 1.

Intuitively, equations (20) and (21) together imply that for
Z=1, the 2-dimensional curve (F (m, p), pF (m, p)) traced out
by p is concave in the (x, y) space (See Figure 3). We now
use this property to prove Corollary 2.

Proof: (Corollary 2) From Theorem 2 and 3 we see that
for any (λ(m)∗, Income(m)∗) tuple, there exist two points
ω

(m)
1 and ω

(m)
2 in Ω(m) so that one convex combination of the

two points yields (λ(m)∗, Income(m)∗ + δ) for some δ ≥ 0.
Now we consider three different cases: If (a) ω

(m)
1 = ω

(m)
2 ,

or (b) one of them is the point (0, 0) according to choosing
Z = 0, the corollary follows with q(m) being the probability
of not choosing Z = 0. Now consider (c) ω

(m)
1 6= ω

(m)
2 and

are both in (Figure 3 shows an example of such situation)

Ω̂(m) = {(F (m, p), pF (m, p)) | p ∈ P}.
We know that the (λ(m)∗, Income(m)∗ + δ) tuple can be

F(m,p
1
)

pF
(m

,p)

F(m,p
2
)F(m,p

3
)

p
3
F(m,p

3
) 

θ p
1
F(m,p

1
)+(1−θ p

2
F(m,p

2
)) 

F(m,p)

(Z=0) 

(Z=1)

Fig. 3. An example of (1) the (ZF (m, p), ZpF (m, p)) curve and (2) the
case when ω

(m)
1 6= ω

(m)
2 are in Ω̂(m).

written as: (λ(m)∗, Income(m)∗+δ) = q
(m)
1 ω

(m)
1 +q(m)

2 ω
(m)
2 ,

where ω
(m)
i = (F (m, p(m)

i ), p(m)
i F (m, p(m)

i )), and q
(m)
i are

probabilities such that q(m)
1 + q

(m)
2 = 1. Now since P = [a, b]

and F (m, p) is continuous in p, by the intermediate value
theorem, there exists p(m)

3 such that:

F (m, p(m)
3 ) = q

(m)
1 F (m, p(m)

1 ) + q
(m)
2 F (m, p(m)

2 ).

Thus by (21), we have:

p
(m)
3 F (m, p(m)

3 ) ≥ q(m)
1 p

(m)
1 F (m, p(m)

1 )+q(m)
2 p

(m)
2 F (m, p(m)

2 ).

Therefore using the single price p(m)
3 with q(m) = 1 yields

an income no less than Income(m)∗ + δ and yields a same
arrival rate.

When there exists p such that F (m, p) = 0, the point (0, 0)
is also in Ω̂(m). In this case (a) and (b) are included in (c).
Thus we always have q(m) = 1.

Lemma 1: Let m ∈ M. If P = [a, b] with 0 ≤ a ≤ b ≤
pmax, and F (m, p) = −Q(m)p+W (m), for some functions
Q(m),W (m) ≥ 0 such that F (m, p) ≥ 0, then there exists a
single optimal price for m.

Proof: We only need to show that F (m, p) satisfies the
conditions in Corollary 2, the details are omitted for brevity.

V. ACHIEVING THE MAXIMUM PROFIT

Even though Theorem 2 and 3 show the possibility of
achieving the optimum average profit by using only two prices
for each demand state, in practice, we still need to solve the
problem in Theorem 1. This often involves a very large number
of variables and would require the exact demand state and
channel state distributions, which are usually hard to obtain.
To overcome these difficulties, here we develop the dynamic
Pricing and Transmission Scheduling Algorithm (PTSA). The
algorithm offers a control parameter V > 0 that determines the
tradeoff between the queue backlog and the proximity to the
optimal average profit. For simplicity, we assume P is compact
and F (m, p) is continuous in p ∈ P . Likewise, we assume C
is compact and Φ(cost, s) is continuous in cost ∈ C.9

Admission Control: Every slot t, the AP observes the cur-
rent backlog U(t) and the user demand M(t) and chooses the
price p(t) to be the solution of the following problem:

Max : V F (M(t), p)p− 2U(t)F (M(t), p)
s.t. p ∈ P. (22)

If for all p ∈ P the resulting maximum is less than or equal to
zero, the AP sends the “CLOSED” signal (Z(t) = 0) and does
not accept new data. Else, it sets Z(t) = 1 and announces the
chosen p(t).

Cost/Transmission: Every slot t, the AP observes the current
channel state S(t) and backlog U(t) and chooses cost(t) to
be the solution of the following problem:

Max : 2U(t)Φ(cost, S(t))− V cost
s.t. cost ∈ C. (23)

The AP then sends out packets according to µ(t) =
Φ (cost(t), S(t)).

The control policy is thus decoupled into separate al-
gorithms for pricing and transmission scheduling. Note
from (22) that a larger U(t) increases the negative term
−2U(t)F (M(t), p) in the optimization metric, and hence
tends to lead to a higher price p(t). Intuitively, such a slow

9These assumptions are only made to ensure the existence of a well defined
max in equations (22) and (23). Without these assumptions, the algorithm and
the analysis can similarly be described and obtained, but are more involved.
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down of the packet arrival helps alleviate the congestion
in the AP. Note that the metric in (22) can be written as
F (M(t), p)

(
V p− 2U(t)

)
. This is positive only if p is larger

than 2U(t)/V . Thus, we have the following simple fact:
Lemma 2: Under the PTSA algorithm, if 2U(t)/V >

pmax, then Z(t) = 0. �
Notice that PTSA only requires the AP to solve the prob-

lems (22) and (23), which use current M(t) and S(t) states
but do not require statistical knowledge of how these states
evolve. While these problems may be non-convex, we note
that they are both optimizing a function of one variable over
an interval, and hence can easily be solved to obtain highly
accurate solutions. For instance, if the pricing set P contains
100 pricing options, the pricing decision is made just by
comparing the metric in (22) over each option. Alternatively,
for continuous price options, the function typically has a small
number of sub-intervals over which it is piecewise linear or
convex, so that the solution can be obtained by comparing the
optimums over each sub-interval.

A. Performance Results

In this section we evaluate the performance of PTSA. The
following theorem summarizes the performance results:

Theorem 4: PTSA stabilizes the AP and achieves the fol-
lowing bounds (assuming U(0) = 0):

U(t) ≤ Umax
M=V pmax/2 +Rmax, ∀ t (24)

Profitav ≥ Profitoptav −
B̃

V
, (25)

where:

Profitav
M= lim inf

t→∞
1
t

t−1∑
τ=0

E {Z(τ)P (τ)R(τ)− cost(τ)} ,

and where Profitoptav is the optimal profit characterized by (6)
in Theorem 1, and B̃ is defined in equation (41) of the proof,
and B̃ = O(log(V )).

Because B̃/V = O(log(V )/V ), the V parameter can be
increased to push the profit arbitrarily close to the optimum
value, while the worst case backlog bound grows linearly with
V . In fact, we can see from (22) and (23) that these results are
quite intuitive: when using a larger V , the AP is more inclined
to admit packets (setting p(t) to a smaller value and only
requiring p(t) ≥ 2U(t)/V ). Also, a larger V implies that the
AP is more careful in choosing the transmission opportunities
(indeed, Φ (cost(t), S(t)) must be more cost effective, i.e.
larger than V cost(t)/2U(t)). Therefore a larger V would yield
a better profit, at the cost of larger backlog. The proof of
Theorem 4 is given in Section V-C.

B. Discussion of Worst case Delay

Note that in the special case of a fixed µ(t) = µ for
all t, the worst case delay of any packet is upper bounded
by ( 1

2V pmax + Rmax)/µ. This is a very useful result. For
instance, if the users also require the worst case delay to
be no more than some constant D, the AP can choose V
to be such that D ≥ ( 1

2V pmax + Rmax)/µ (provided this
inequality is achievable). Then the delay requirement is met
and the revenue lost is less than B̃/V = O(log V/V ). This

is due to the fact that the delay constrained optimal revenue
is no more than Profitoptav , while PTSA gets within B̃/V of
Profitoptav . This is a unique feature of our algorithm, previous
results on QoS pricing are usually obtained based on queueing
approximations, e.g., [10], [11].

C. Proof of Performance

We first prove (24) in Theorem 4:
Proof: ((24) in Theorem 4) We prove this by induction. It

is easy to see that (24) is satisfied at time 0. Now assume
U(t) ≤ V pmax/2 + Rmax for some integer slot t ≥ 0. We
will prove that U(t + 1) ≤ V pmax/2 + Rmax. We have the
following two cases:

(a) U(t) ≤ V pmax/2: In this case, U(t+ 1) ≤ V pmax/2 +
Rmax by the definition of Rmax.

(b) U(t) > V pmax/2: In this case, 2U(t)/V > pmax. By
Lemma 2 the AP will decide not to admit any new data.
Therefore U(t+ 1) ≤ U(t) ≤ V pmax/2 +Rmax. �

In the following we prove (25) in Theorem 4 via a
Lyapunov analysis, using the framework of [18]. First de-
fine the Lyaponov function L(U(t)) to be: L(U(t)) ,
U2(t). Define the one-step unconditional Lyapunov drift as
∆(t)M=E{L(U(t+ 1))−L(U(t))}. Squaring both sides of (4)
and rearranging the terms, we see that the drift satisfies:

∆(t) ≤ B − E{2U(t)
[
Φ(cost(t), S(t))− Z(t)R(t)

]}, (26)

where B = R2
max + µ2

max. For a given number V > 0, we
subtract from both sides the instantaneous profit (scaled by V )
and rearrange terms to get:

∆(t)− V E
{
Z(t)p(t)R(t)− cost(t)}
≤ B − E

{
2U(t)Φ(cost(t), S(t))− V cost(t)}
−E
{
Z(t)

[
V p(t)R(t)− 2U(t)R(t)

]}
. (27)

Now we see that the PTSA algorithm is designed to mini-
mize the right hand side of the drift expression (27) over all
alternative control decisions that could be chosen on slot t.
Thus, we have that the drift of PTSA satisfies:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ B − E

{
2UP (t)Φ(cost∗(t), S(t))− V cost∗(t)}

−E
{
Z∗(t)

[
V p∗(t)R∗(t)− 2UP (t)R∗(t)

]}
, (28)

where the decisions Z∗(t), p∗(t), and cost∗(t) (and the re-
sulting random arrival R∗(t)) correspond to any other feasible
control action that can be implemented on slot t (subject to
the same constraints p∗(t) ∈ P and cost∗(t) ∈ C). Note
that we have used notations ∆P (t), ZP (t), pP (t), RP (t),
and costP (t) on the left hand side of the above inequality
to emphasize that this left hand side corresponds to the
variables associated with the PTSA policy. Note also that,
because the PTSA policy has been implemented up to slot
t, the queue backlog on the right hand side at time t is the
backlog associated with the PTSA algorithm and hence is also
denoted UP (t). We emphasize that the right hand side of the
drift inequality (28) has been modified only in those control
variables that can be chosen on slot t. Note further that R∗(t)
is a random variable that is conditionally independent of the
past given the p∗(t) price and the current value of M(t).
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Now consider the alternative control policy STAT ∗ de-
scribed in Corollary 1, which chooses decisions Z∗(t), p∗(t)
and cost∗(t) on slot t as a pure function of the observed M(t)
and S(t) states and yields:

Profitnoptav = Em
{
Z∗(t)R∗(t)p∗(t)} − Es

{
cost∗(t)

}
, (29)

λ∗av , Em
{
Z∗(t)R∗(t)

}
≤ µ∗av , Es

{
µ∗(t)

}
, (30)

where Profitnoptav = Profitoptav − ε∗ and Profitoptav is
the optimal average profit defined in Theorem 1, µ∗(t) =
Φ(cost∗(t), S(t)), and R∗(t) is the random arrival for a
given p∗(t) and M(t). Recall that Em{} and Es{} denote
expectations over the steady state distributions for M(t) and
S(t), respectively. Of course, the expectations in (29) and (30)
cannot be directly used in the right hand side of (28) because
the M(t) and S(t) distributions at time t may not be the same
as their steady state distributions. However, regardless of the
initial condition of M(0) and S(0) we have:

lim
t→∞

1
t

t−1∑
τ=0

E {Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)} = Profitnoptav .

(31)
Let fP (t) represent a short-hand notation for the left-hand

side of (28), and define g∗(t) as the right hand side of (28),
so that:

g∗(t)M=B − E
{

2UP (t)[µ∗(t)− Z∗(t)R∗(t)]}
−V E

{
Z∗(t)p∗(t)R∗(t)− cost∗(t)}, (32)

where we have rearranged terms and have used µ∗(t) to repre-
sent Φ(cost∗(t), S(t)). Thus, the inequality (28) is equivalent
to fP (t) ≤ g∗(t). To compute a simple upper bound on g∗(t),
note that for any integer d ≥ 0, we have:

UP (t− d)− dµmax ≤ UP (t) ≤ UP (t− d) + dRmax.

These inequalities hold since the backlog at time t is no
smaller than the backlog at time t − d minus the maximum
departures during the interval from t−d to t, and is no larger
than the backlog at time t−d plus the largest possible arrivals
during this interval. Plugging these two inequalities directly
into the definition of g∗(t) in (32) yields:

g∗(t) ≤ B + 2d(µ2
max +R2

max)
−E

{
2UP (t− d)[µ∗(t)− Z∗(t)R∗(t)]}

−V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} . (33)

Also note that (by the law of iterated expectations):

E
{
UP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)]}

= E
{
UP (t− d)E

{[
µ∗(t)− Z∗(t)R∗(t)] | χ(t− d)

}}
, (34)

where χ(t)M=[M(t), S(t), U(t)] is the joint demand state,
channel state, and queue state of the system. Since M(t) and
S(t) are Markovian and both have well defined steady state
distributions, and the STAT ∗ policy makes p∗(t) and cost∗(t)
decisions as a stationary and random function of the observed
M(t) and S(t) states (and independent of queue backlog),
we see that the resulting processes µ∗(t) and Z∗(t)R∗(t)

are Markovian and have well defined steady state averages.
Further, they converge exponentially fast to their steady state
values [30]. Of course, we know the steady state averages
are given by µ∗av and λ∗av , respectively. Therefore there exist
positive constants θ1, θ2, and 0 < γ1, γ2 < 1, such that:

E
{
µ∗(t) | χ(t− d)

} ≥ µ∗av − θ1γd1 , (35)

E
{
Z∗(t)R∗(t) | χ(t− d)

} ≤ λ∗av + θ2γ
d
2 . (36)

Plugging (35) and (36) into (34) yields:

E
{
UP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)]}

≥ −E
{
UP (t− d)

[
θ1γ

d
1 + θ2γ

d
2

]}
, (37)

where we have used the fact that λ∗av ≤ µ∗av (from (30)).
Plugging (37) directly into (33) yields:

g∗(t) ≤ B1 + 2E
{
UP (t− d)(θ1γd1 + θ2γ

d
2 )
}

−V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} , (38)

where B1
M=B + 2d(µ2

max + R2
max). However, the queue

backlog under PTSA is always bounded by Umax (by (24)
in Theorem 4). We now choose d large enough so that
θiγ

d
i ≤ 1/(2Umax) for i ∈ {1, 2}. Specifically, by choosing:

d M=

⌈
max
i=1,2

{
log
(
2θiUmax

)
log
(
1/γi

) }⌉
, (39)

we have 2Umax[θ1γd1 + θ2γ
d
2 ] ≤ 2. Inequality (38) becomes:

g∗(t) ≤ B1 + 2− V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} . (40)

Now define B̃ as follows:

B̃ M=B1 + 2 = (2d+ 1)(R2
max + µ2

max) + 2, (41)

where d is defined in (39). Because Umax = V pmax/2+Rmax
(by (24) in Theorem 4), the value of d is O(log(V )), and hence
B̃ = O(log(V )). Recalling that fP (t) ≤ g∗(t), where fP (t)
is the left hand side of (28), we have:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ B̃ − V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} .

The above inequality holds for all t. Summing both
sides over τ ∈ {0, 1, . . . , t − 1} and using ∆P (t) =
E
{
L(UP (t+ 1))− L(UP (t))

}
, we get:

E
{
L(UP (t))

}− E
{
L(UP (0))

}
−V

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≤ B̃t− V

t−1∑
τ=0

E {Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)} .

Dividing by V t, using the fact that L(UP (t)) ≥ 0, L(U(0)) =
0, and taking limits yields:

lim inf
t→∞

1
t

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

} ≥
Profitnoptav − B̃/V = Profitoptav − ε∗ − B̃/V, (42)

where we have used (31). The LHS of (42) is the liminf
time-average profit of the PTSA algorithm. Now let ε∗ → 0
completes the proof of Theorem 4.
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D. Demand Blind Pricing

In the special case when the demand function F (m, p) takes
the form of F (m, p) = A(m)F̂ (p) for A(m) ≥ 0, PTSA can
in fact choose the current price without looking at the current
demand state M(t). To see this, note in this case that (22) can
be written as:

Max : A(M(t))
[
V F̂ (p)p− 2U(t)F̂ (p)

]
s.t. p ∈ P. (43)

Thus we see that the price set by the AP under PTSA
is independent of M(t). So in this case, PTSA can make
decisions just by looking at the queue backlog value U(t).
This will be very useful if acquiring the demand state incurs
some cost to the AP.

E. The Effect of Users Anticipating Prices

Here we provide an example where some users try to
anticipate the AP’s price and only send packets when the
price is low. As we will see, anticipating the price can lead to
a significant throughput loss of the anticipating users. When
each user’s transmission is associated with some utility, we
see that anticipating the price can also lead to a significant
payoff (i.e., utility minus cost) loss of the anticipating users.

We consider an AP with a constant service rate µ serving
three homogeneous users. Each user will send 0, 1 or 2 packets
if the AP sets the price to be 1, 1/2 or 1/3. This can happen,
for instance, if each user has a utility function Utility(x) =
log(1 + x) and chooses x = 0, 1 or 2 to maximize its payoff
po(x) = Utility(x) − px when it sees a price p. We assume
that each user can send no more than 2 packets at a time, due
to some system constraint, such as a peak power constraint.
We thus obtain the demand function as:

F (p) =

 6 p = 1/3,
3 p = 1/2,
0 p = 1.

(44)

An AP implementing the PTSA algorithm will choose the
price p to maximize the following at every time slot :

V F (p)p− 2U(t)F (p) =

 2V − 12U(t) p = 1/3,
3V/2− 6U(t) p = 1/2,
0 p = 1.

Assume V = 100. It is easy to see that whenever U(t) <
V/12 ≈ 8.33, p = 1/3; else if U(t) < V/4 = 25, p = 1/2;
else p = 1. Recall that the queueing dynamic is given by:

U(t+ 1) = max[U(t)− µ, 0] +R(t).

We consider µ = 1.5 and µ = 4. First we look at the through-
put of each user when users react to the price “normally” and
do not try to wait for a low price. We summarize the results
in Fig. 4. For µ = 1.5, each user gets a throughput of 1/2,
i.e., sends a packet every other slot. The average packet price
for each user is 1/2 per packet. For µ = 4, each user gets a
throughput of 4/3 and pays an average of 5/12 per packet.

Now suppose user 1 algorithm changes so that it only sends
packets only when p(t) = 1/3. We similarly obtain Fig. 5. For
µ = 1.5, we see that after time slot 2, the price 1/3 will not
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The above inequality holds for all t. Summing both
sides over τ ∈ {0, 1, . . . , t − 1} and using ∆P (t) =
E

{
L(UP (t + 1))− L(UP (t))

}
, we get:

E
{
L(UP (t))

}− E
{
L(UP (0))

}
−V

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≤ B̃t− V

t−1∑
τ=0

E {Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)}

Dividing by V t, using the fact that L(UP (t)) ≥ 0, L(U(0)) =
0, and taking limits yields:

lim inf
t→∞

1
t

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

} ≥
Profitnopt

av − B̃/V = Profitopt
av − ε∗ − B̃/V (44)

where we have used (33). The left hand side of the above
inequality is the liminf time average profit of the PTSA
algorithm. Now let ε∗ → 0 completes the proof of Theorem
4.

D. Demand Blind Pricing
In the special case when the demand function F (m, p) takes

the form of F (m, p) = A(m)F̂ (p) for A(m) ≥ 0, PTSA can
in fact choose the current price without looking at the current
demand state M(t). To see this, note in this case that (23) can
be written as:

Max : A(M(t))
[
V F̂ (p)p− 2U(t)F̂ (p)

]
s.t. p ∈ P (45)

Thus we see that the price set by the AP under PTSA
is independent of M(t). So in this case, PTSA can make
decisions just by looking at the queue backlog value U(t).
This will be very useful if acquiring the demand state incurs
some cost to the AP.

E. The Effect of Users Anticipating Prices
Here we provide an example in which some users try to

anticipate the AP’s price and only send packets when the
price is low. As we will see, anticipating the price can lead
to a significant throughput loss of the anticipating users.

We consider an AP with a constant service rate µ serving
three homogeneous users. Each user will send 0, 1 or 2 packets
if the AP sets the price to be 1, 1/2 or 1/3.11 We thus obtain
the demand function as:

F (p) =

 6 p = 1/3
3 p = 1/2
0 p = 1

(46)

An AP implementing the PTSA algorithm will choose the
price p to maximize the following at every time slot :

V F (p)p− 2U(t)F (p) =

 2V − 12U(t) p = 1/3
3V/2− 6U(t) p = 1/2
0 p = 1

11This can happen if each user has a utility function Utility(x) = log(1+
x) and chooses x = 0, 1 or 2 to maximize Utility(x)− px.

Assume V = 100. It is easy to see that whenever U(t) <
V/12 ≈ 8.33, p = 1/3; else if U(t) < V/4 = 25, p = 1/2;
else p = 1. Recall that the queueing dynamic is given by:

U(t + 1) = max[U(t)− µ, 0] + R(t)

We consider two cases, µ = 1.5 and µ = 4. First we look
at the throughput of each user when every user reacts to the
price “normally” and does not try to wait for a low price.
We summarize the results in the following table. For µ =
1.5, the price sequence converges to the alternating sequence
{ 1

2 , 1, 1
2 , 1, ...} starting at time 11. Each user gets a throughput

of 1/2, i.e., sends a packet every other slot. The average payoff
for each user is 1/2 per packet. For µ = 4, the price converges
to the three-periodic pattern { 1

3 , 1
2 , 1

2 , ...} starting at time 2.
Each user gets a throughput of 4/3 and pays an average of
5/12 per packet.

µ = 1.5 µ = 4
Time t U(t) Price p(t) Time t U(t) Price p(t)

0 0 1/3 0 0 1/3
1 6 1/3 1 6 1/3
2 10.5 1/2 2 8 1/3
3 12 1/2 3 10 1/2
· · · 4 9 1/2
· · · 5 8 1/3

11 24 1/2 6 10 1/2
12 25.5 1 7 9 1/2
13 24 1/2 8 8 1/3

Now suppose user 1 sends packets only when p(t) = 1/3.
We similarly obtain the table below. For µ = 1.5, we see that
after time slot 2, the price 1/3 will not appear again. Thus
user 1 will not be able to send again after time 2, resulting a
throughput loss of 100%. While the other two users each gets
a throughput of 3/4 and pays 1/2 per packet on average. For
µ = 4, user 1 will get a throughput of 1, resulting a throughput
loss of 25%, while the other two users each gets a throughput
of 3/2 and pays 7/18 per packet on average.

µ = 1.5 µ = 4
Time t U(t) Price p(t) Time t U(t) Price p(t)

0 0 1/3 0 0 1/3
1 6 1/3 1 6 1/3
2 10.5 1/2 2 8 1/3
3 11 1/2 3 10 1/2
· · · 4 8 1/3
· · · 5 10 1/2

30 24.5 1/2 6 8 1/3
31 25 1 7 10 1/2
32 23.5 1/2 8 8 1/3
33 24 1/2 9 10 1/2
34 24.5 1/2 10 8 1/3

The case when two users only send packets at price 1/3 can
be similarly treated. For µ = 1.5, the two users anticipating
prices each gets a throughput of 1/5, resulting a throughput
loss of 60%. The “normal” user gets a throughput of 11/10 and
pays 31/66 per packet on average. For µ = 4, the two users
anticipating prices each gets a throughput 6/5, resulting a
throughput loss of 10%; while the other user gets a throughput
8/5 and pays 3/8 per packet on average. We note that when
all users anticipate prices, the users do gain the benefit of
paying less for the same throughput. However, such a case is

Fig. 4. The case when all users follow the AP’s prices. For µ = 1.5, we
see that (U(13), p(13)) = (U(11), p(11)). Thus the (U(t), p(t)) process
will repeat the pattern (24, 1/2), (25.5, 1) starting at time 11. For µ = 4,
we see that (U(5), p(5)) = (U(2), p(2)). The (U(t), p(t)) process repeats
the pattern (8, 1/3), (10, 1/2), (9, 1/2) starting at time 2.

appear again. Thus user 1 will not be able to send again after
time 2, resulting a throughput loss of 100%. The other two
users each get a throughput of 3/4 and pay 1/2 per packet on
average. For µ = 4, user 1 will get a throughput of 1, resulting
a throughput loss of 25%, while the other two users each get
a throughput of 3/2 and pay 7/18 per packet on average.

11

µ = 1.5 µ = 4
Time t U(t) Price p(t) Time t U(t) Price p(t)

0 0 1/3 0 0 1/3
1 6 1/3 1 6 1/3
2 10.5 1/2 2 8 1/3
3 11 1/2 3 10 1/2
· · · 4 8 1/3
· · · 5 10 1/2

28 23.5 1/2 6 8 1/3
29 24 1/2 7 10 1/2
30 24.5 1/2 8 8 1/3
31 25 1 9 10 1/2
32 23.5 1/2 10 8 1/3

8/5 and pays 3/8 per packet on average. We note that when
all users anticipate prices, the users do gain the benefit of
paying less for the same throughput. However, such a case is
not likely to happen as it requires cooperation among all the
users, which are non-cooperative in general. Even if the users
do cooperate, we see that such a situation is “unstable”, as
each user has the motivation to break the cooperation since it
can get a higher throughput by not cooperating.

VI. MULTI-CHANNEL PRICING AND TRANSMISSION
SCHEDULING

In this section, we extend the hotspot uplink model
in Section III to a more general case where users have
different channel conditions. For simplicity, we consider a
case where there is a fixed number of users accessing a
network via an AP, so the demand state M(t) does not
change with time. Such a situation can arise, for example,
when the number of users changes in a time scale much
larger than the time slot size.

A. System Model
1) Arrival Model: We consider an AP provides service to

a set of K users, denoted as K = {1, 2, ...,K}. Each user is
assumed to generate traffic that is going into the network, such
as uploading files to network servers. Each user pays for every
packet it wants to send to the network. At every time slot, the
AP first makes a business decision on whether or not to allow
new data. We use Z(t) as in (1) to denote this decision. If
the AP decides to accept new packets (Z(t) = 1), it chooses
a price p(t) ∈ P and announces it to all the K users. P is
assumed to include the constraint pmax ≥ p(t) ≥ 0. Let Ri(t)
be the total number of packets that user i decides to pay for
at time t in reaction to p(t). We assume Ri(t) to be a random
variable depending on the current price p(t) via a demand
function Fi(p(t)):

Fi : p(t) #→ E{Ri(t)} ∀i
We assume there is a maximum value Rmax so that Ri(t) ≤
Rmax for all i and all t. The random variable Ri(t) in this case
is assumed to be conditionally independent of the past history
given p(t). The demand functions are assumed to satisfy 0 ≤
Fi(p) ≤ Rmax for all p ∈ P and all i. We also assume there
exists a constant number rm such that Fi(p) ≤ rmFj(p) for
all i, j and for all p ∈ P . It is easy to see that rm ≥ 1. The
last assumption indicates that for a given price p, the demand
from one user is “not too different” from any other users.

2) Transmission Model: Store and Poll: The packets that
user i pays for at time t are first stored in a buffer at user i. The
users then send their request tokens to the AP, indicating the
numbers of packets that they want to send under the current
price. The AP maintains a “schedule queue” for each user
recording how many packets are waiting to be sent at the user.
Every time slot, the AP first collects the tokens and updates
its record of each user’s buffer size. The AP then looks at
the schedule queues and the channel conditions and decides
which users to serve as well as the rate at which they are
served. The chosen users will then be polled and send packets
with the corresponding rates.

Each user connects to the AP with a wireless link. Let Si(t)
represent the channel condition of the link from user i to the
AP at t. We assume the Si(t) process is a finite state ergodic
Markov chain with state space Si for all i. Every slot, the AP
decides how much resource to allocate for receiving packets
from each user. This decision is modeled by its cost to the AP,
denoted as cost(t) = (cost1(t), cost2(t), ..., costK(t)), where
costi(t) is the cost spent to receive packets from user i. We
assume cost(t) is chosen within some set of cost vectors C
and C includes the constraint 0 ≤ costi(t) ≤ Cmax for all
i and t. The transmission rate of user i is then determined
by cost(t) and Si(t) according to the cost-rate function
µi(t) = Φi(cost(t), Si(t)). We assume Φi(cost(t), Si(t)) = 0
if costi(t) = 0 and Φi(cost(t), Si(t)) ≤ µmax for all i, Si(t)
and for all time.

3) Queueing dynamics: Let Ui(t) be the queue backlog at
user i at time t.12 We assume the following queueing dynamics
for Ui(t):

Ui(t + 1) = max[U(t)− µi(t), 0] + Z(t)Ri(t)

Notice that if channels are the same for all users and the AP
can poll multiple users in a single slot, then the problem is
exactly the same as the one in Section II.

B. Multi-channel PTSA (MPTSA)

In this section we develop the multi-channel PTSA algo-
rithm (MPTSA). Define the Lyapunov function to be L(t) =∑

i∈K(Ui(t))2. We compute the unconditional drift as follows:

∆(t) ≤ B − E
{
2

∑
i∈K

Ui(t)[µi(t)− Z(t)Ri(t)]
}

where B = K(µ2
max + R2

max). Now subtract from both sides
the optimization metric :

h(t) = V E
{ ∑

i∈K
Z(t)p(t)Ri(t)−

∑
i∈K

costi(t)
}

Rearranging the terms, we obtain:

∆(t)− V E
{ ∑

i∈K
Z(t)p(t)Ri(t)−

∑
i∈K

costi(t)
}

≤ B − E
{
V

∑
i∈K

Z(t)p(t)Ri(t)− 2
∑
i∈K

Ui(t)Z(t)Ri(t)
}

(47)

−E{2
∑
i∈K

Ui(t)µi(t)− V
∑
i∈K

costi(t)}

12This is also the size of the schedule queue at the AP for user i.

Fig. 5. The case when one user anticipates the AP’s prices. For µ = 1.5,
we have (U(32), p(32)) = (U(28), p(28)). Thus (U(t), p(t)) repeats the
pattern (23.5, 1/2), (24, 1/2), (24.5, 1/2), (25, 1) starting at time 28. For
µ = 4, we see that (U(4), p(4)) = (U(2), p(2)). Thus (U(t), p(t)) repeats
the pattern (8, 1/3), (10, 1/2) starting at time 2.

The cases when two users only send packets at price 1/3 and
when all three users are anticipating the price can be similarly
analyzed. To also study the possible effect of price anticipation
on the user’s average payoff, we consider the case where
each user has the utility function Utility(x) = log(1 + x).
We compute each user’s average payoff, i.e., the average of
po(x) = Utility(x)− px, under the four different cases. The
results are shown in Fig. 6.

1

I. TABLE

µ = 1.5 µ = 4
Case User x p po x p po
3 NU NU 1/2 1/2 0.097 4/3 5/12 0.273
2 NU NU 3/4 1/2 0.145 3/2 7/18 0.313
1 AU AU 0 0 0 1 1/3 0.216
1 NU NU 11/10 31/66 0.217 8/5 3/8 0.336
2 AU AU 1/5 1/3 0.043 6/5 1/3 0.259
3 AU AU 1/2 1/3 0.108 4/3 1/3 0.288

II. WHEN TO HAVE A SINGLE U∗
V

It seems that in a energy minimization problem where the
power curve is continuous, we always have this condition. By
directly working on the dual function.

III. OPTIMAL ROUTING AND CACHING

Consider an ISP owns a network and is offering hosting
services to Content Providers and access service to customers.
We want to consider the problem of how should the ISP route
its traffic as well as store the contents within the network,
such that the delay to end users is within acceptable level.
The delay requirement can potentially come from the contract
with the CP. One naive way to do so would be to replicate
the data in all places. This, however, wont be very efficient
as CP typically has lots of data. Also, if the query rate for
a set of data is not very high, then the ISP can simply route
the packets through a long route. To simplify analysis, we can
model the link delay by using M/M/1 queueing models.

Specifically, we consider an ISP owns a network (V,L),
where V denotes the set of nodes and L is the set of edges.
Let Bi denote the storage space of node i, and Cl denote the
link capacity of the link l. The network topology is given by
the adjacent matrix A.

The CP is assumed to have K categories of data. The
queries to them come from different nodes in V . Denote λk

n

the query rate coming from node n for category k data. We
assume each query takes an exponential time of mean 1/µk

n.
The goal of the ISP is to place the data in different nodes, and
serves the user queries, i.e., route the data to the users in such
a way that the average delay experienced by customers are
within some predefined value D. Here delay consists of two
parts, the server processing delay Dp and the routing delay
Dr. We further assume that the storage cost at a node is cn

per unit data.
We consider only one type of data and only consider storing

one copy of the data in the network. But we allow data to be
split and stored in different nodes. A node storing ρ fraction
of the data is assume to have an incoming rate of ρλn, i.e.,
we assume that the arrival rate are uniform among all possible
data. Also, we assume that the ISP can choose to host k portion
of the CP’s data. To model this effect, we assume that the ISP
receives a payment of f(k) for supporting such data but the
arrival rate λn will be scaled by k.

Let’s try to write the problem as the following:

max : f(k)−
∑

n

kρncn

s.t.

IV. THOUGHTS ON SHORTEST PATH ROUTING

Suppose we are given a discrete network and a set of random
flows crossing the network. To keep things simple, we assume
all links can send one packet at a slot, and the rates of the
flows are known. In this case, we can run the max-concurrent-
commodity-flow algorithm and obtain all the routes and rates
on those routes, i.e., xc

l , where c is the commodity and l is
the link. We shall also obtain a set of Lagrange multipliers.

However, these would all be real numbers. We now want
to find a scheduling policy such that the time average delay
of the algorithm is minimized. This will also include splitting
the traffic to different paths. Indeed, if the rates “mix” fast
enough, we should have the delay being low.

Let’s do the scheduling in this way: at every link l, decide
to send a packet with probability

∑
c xc

l , then choose to send
a commodity c packet with probability xc

lP
c xc

l
. These are all

valid probabilities since cl = 1. In this case, we have a set
of discrete queues. [The only problem with this approach is
that we always have input rate=output rate, hence all queues
have infinite backlog. If we try to increase the service rate by
ε more, then this ε = O(1/n2). Then every queue will have
O(n2) delay, leading to a O(n3) delay.]

Is this problem NP-hard?

V. QUEUE GROUPING

A. queue grouping for analysis
The part where an additional term is used in the Lyapunov

function seems to be adding a redundant constraint that allows
an easy evaluation of the dual function. Specifically, we write

min 1
s.t. λi ≤

∑
s

psµis ∀i = 1, ..., N

µis ∈ Γs ∀s
θ
∑

i

λi ≤ θ
∑

i

∑
s

psµis

Now the dual becomes:

q = inf
µ

{
1 +

∑
i

Ui(λi −
∑

s

psµis)

+θUtot(
∑

i

λi −
∑

i

∑
s

psµis)
}

In this case, it is not difficult to see that the optimal
Multiplier is 0 and q∗ = 1. Using the same line of analysis as
in [=MWM=], we obtain that

‖U(t + 1)‖2 ≤ ‖U(t)‖2 − 2s(q∗ − q) + s2‖g‖2

≤ ‖U(t)‖2 + s2‖g‖2

−
∑

i

Ui(1− ρ)µsym
N − θUtot(rK+1 − λtot)

Then observe that
∑

i Ui = Utot, we obtain the similar result.
It seems this can be used to show that the Multiplier is on

average O(N) away from the optimal Multiplier. We first look
at a

This suggests that we can have other ways of evaluating the
dual function and obtain tight delay bounds.

However, the grouped Lyapunov function is not clear.

Fig. 6. x, p, po denote the average throughput, cost per packet and payoff.
NU and AU refer to the “normal” user and the price-anticipating user.

We see that when all users anticipate the price, the users
can achieve higher payoffs and pay lower prices. For example,
when µ = 4 and all users anticipate the price, each user pays
the lowest price 1/3 per packet and gets a throughput-payoff
pair of ( 4

3 , 0.288), which is better than ( 4
3 , 0.273), obtained
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if they all follow the price. However, in all other cases, the
anticipating users will lose in both throughput and payoff. For
instance, when µ = 1.5 and two users anticipate the price,
the two anticipating users each get a throughput-payoff pair
of ( 1

5 , 0.043). This is more than 50% less than ( 1
2 , 0.097),

which is what they could achieve if they simply follow the
price. When µ = 1.5 and only one user tries to anticipate
the price, the anticipating user even gets zero throughput and
zero payoff (100% loss). Moreover, the situation when all users
anticipate the price is not likely going to happen as it requires
cooperation among all the users, which are non-cooperative
in general. Even if the users do cooperate, we see that such
a situation is “unstable”, as each user has the motivation to
break the cooperation since it can get a better performance
by not cooperating. For example, when µ = 4 and all users
are anticipating the price, if user 1 switches to follow the
price, it will get a throughput-payoff pair of ( 8

5 , 0.336), which
is strictly better than ( 4

3 , 0.288), obtained if it continues to
anticipate the price.

We note that in the above example, if the user’s average pay-
off is instead defined as Utility(x̄)− px, where x̄ and px are
the average throughput and the average payment respectively,
then in some cases a user can improve its payoff performance
by anticipating the price. Understanding the effects of general
user anticipating strategies is an important topic for future
research.

VI. MULTI-CHANNEL PRICING AND TRANSMISSION
SCHEDULING

In this section, we consider the extended hotspot uplink
model in Section III. For simplicity, we consider a case where
there is a fixed number of users accessing a network via an AP,
so the demand state M(t) does not change with time. Such a
situation can arise, e.g., when the number of users changes in
a time scale much larger than the time slot size.

A. System Model

1) Arrival Model: We consider an AP provides service to
a set of K users, denoted as K = {1, 2, ...,K}. Each user is
assumed to generate traffic that is going into the network, such
as uploading files to network servers. Each user pays for every
packet it wants to send to the network. At every time slot, the
AP first makes a business decision on whether or not to allow
new data. We use Z(t) as in (1) to denote this decision. If
the AP decides to accept new packets (Z(t) = 1), it chooses
a price p(t) ∈ P and announces it to all the K users. P is
assumed to include the constraint pmax ≥ p(t) ≥ 0. Let Ri(t)
be the total number of packets that user i decides to pay for
at time t in reaction to p(t). We assume Ri(t) to be a random
variable depending on the current price p(t) via a demand
function Fi(p(t)): Fi : p(t) 7→ E{Ri(t)} for all i.

We assume there is a maximum value Rmax so that Ri(t) ≤
Rmax for all i and all t. The random variable Ri(t) in this case
is assumed to be conditionally independent of the past history
given p(t). The demand functions are assumed to satisfy 0 ≤
Fi(p) ≤ Rmax for all p ∈ P and all i. We also assume there
exists a constant number rm such that Fi(p) ≤ rmFj(p) for
all i, j and for all p ∈ P . It is easy to see that rm ≥ 1. The

last assumption indicates that for a given price p, the demand
of one user is “not too different” from those of other users.

2) Transmission Model: Store and Poll: The packets that
user i pays for at time t are first stored in a buffer at user i. The
users then send their request tokens to the AP, indicating the
numbers of packets that they want to send under the current
price. The AP maintains a “schedule queue” for each user
recording how many packets are waiting to be sent at the user.
Every time slot, the AP first collects the tokens and updates
its record of each user’s buffer size. The AP then looks at the
schedule queues and the channel conditions and decides which
users to serve as well as the rates at which they are served.
The chosen users will then be polled and send packets with
the corresponding rates.

Each user connects to the AP with a wireless link. Let Si(t)
represent the channel condition of the link from user i to the
AP at t. We assume the Si(t) process is a finite state ergodic
Markov chain with state space Si for all i. Every slot, the AP
decides how much resource to allocate for receiving packets
from each user. This decision is modeled by its cost to the AP,
denoted as cost(t) = (cost1(t), cost2(t), ..., costK(t)), where
costi(t) is the cost spent to receive packets from user i. We
assume cost(t) is chosen within some set of cost vectors C
and C includes the constraint 0 ≤ costi(t) ≤ Cmax for all
i and t. The transmission rate of user i is then determined
by cost(t) and Si(t) according to the cost-rate function
µi(t) = Φi(cost(t), Si(t)). We assume Φi(cost(t), Si(t)) = 0
if costi(t) = 0 and Φi(cost(t), Si(t)) ≤ µmax for all i, Si(t)
and for all time.

3) Queueing Dynamics: Let Ui(t) be the queue backlog
at user i at time t.10 We assume the following queueing
dynamics: Ui(t+ 1) = max[Ui(t)− µi(t), 0] +Z(t)Ri(t),∀i.
Notice that if channels are the same for all users and the AP
can poll multiple users in a single slot, then the problem is
exactly the same as the one in Section II.

B. Multi-channel PTSA (MPTSA)

In this section we develop the multi-channel PTSA algo-
rithm (MPTSA). Define the Lyapunov function to be L(t) =∑
i∈K(Ui(t))2. We compute the unconditional drift as follows:

∆(t) ≤ B − E
{

2
∑
i∈K

Ui(t)[µi(t)− Z(t)Ri(t)]
}
,

where B = K(µ2
max +R2

max). Now subtract from both sides
the optimization metric: h(t) = V E

{∑
i∈K Z(t)p(t)Ri(t) −∑

i∈K costi(t)
}
. Rearranging the terms, we obtain:

∆(t)− V E
{∑
i∈K

Z(t)p(t)Ri(t)−
∑
i∈K

costi(t)
}

≤ B − E
{
V
∑
i∈K

Z(t)p(t)Ri(t)− 2
∑
i∈K

Ui(t)Z(t)Ri(t)
}

(45)

−E{2
∑
i∈K

Ui(t)µi(t)− V
∑
i∈K

costi(t)}.

This drift is similar as in the single channel case. Now choose
the corresponding prices and costs to minimize the right hand

10This is also the size of the schedule queue at the AP for user i.
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side of (45), we obtain the following multi-channel PTSA
algorithm (MPTSA):

Admission Control: Every slot t, the AP observes all Ui(t)
and chooses the price p(t) to be the solution of the following
problem:

Max :
∑
i∈K

[
V Fi(p)p− 2Ui(t)Fi(p)

]
, s.t. : p ∈ P. (46)

If for all p ∈ P , the maximum is less than or equal to zero,
the AP sends the “CLOSED” signal (Z(t) = 0) and does not
admit any new packet. Else it sets Z(t) = 1 and announces
the chosen price p(t).

Cost/Reception: Every slot, the AP observes all the channel
states Si(t) and backlogs Ui(t) and chooses cost(t) to be the
vector that solves the following problem:

Max :
∑
i∈K

[
2Ui(t)Φi(cost, Si(t))− V costi

]
s.t. : cost ∈ C. (47)

Then the AP polls all the users with costi > 0 and coordi-
nates them to send their data according to the chosen rates
Φi(cost, Si(t)). Idle fill is used if needed.

Notice even though the multi-channel problem is more
complicated than the single channel one, (46) retains the
simplicity of (22): maximize a function of one variable over
an interval. The difference is that now the objective function
is a sum of several functions. The complexity of solving (47)
depends largely on the structure of C. But in the special case
when only one channel can be active in a slot, (47) can be
simply solved by computing the optimization metric for each
user assuming it is the only user.

C. MPTSA Performance

The performance results of MPTSA are summarized in the
following theorem.

Theorem 5: The MPTSA algorithm stabilizes all queues
and achieves the following (Assuming Ui(0) = 0 for all i):∑

i∈K
Ui(t) ≤ Umax = V pmaxr

2
mK/2 +KRmax, (48)

Profitav ≥ Profitoptav −O(log(V )/V ). (49)

Proof: We first prove (48) by induction:
(a) Suppose at time t, we have

∑
i∈K Ui(t) ≤

V pmaxr
2
mK/2. Then by definition, we have

∑
i∈K Ui(t+1) ≤

V pmaxr
2
mK/2 +KRmax.

(b) Now suppose we have
∑
i∈K Ui(t) > V pmaxr

2
mK/2.

For any feasible price p, denote the set of users having
2Ui(t) − V p > 0 as Ip. We first have the following for all
0 ≤ p ≤ pmax from the fact that rm ≥ 1:

V pr2m(K − |Ip|) + V p|Ip| < 2
∑
i∈K

Ui(t)

≤
∑
j∈Ip

2Uj(t) + 2r2m
∑
i/∈Ip

Ui(t),

here |Ip| is the cardinality of Ip. Rearrange terms, we have

r2m
∑
i/∈Ip

[V p− 2Ui(t)] <
∑
j∈Ip

[2Uj(t)− V p]. (50)

Now choose an Fi(p) to be such that Fi(p) > 0. If there is no
such i, we see that Fi(t) = 0 for all i, thus no new packets
will be admitted. Without loss of generality, let F1(p) > 0.
From (50) we have:

rm
∑
i/∈Ip

F1(p)[V p− 2Ui(t)] <
1
rm

∑
j∈Ip

F1(p)[2Uj(t)− V p].

This means:∑
i/∈Ip

Fi(p)[V p− 2Ui(t)] <
∑
j∈Ip

Fj(p)[2Uj(t)− V p], (51)

and thus
∑
i∈K Fi(p)[V p − 2Ui(t)] < 0. Therefore no new

data will be accepted.
Now we prove (49). Similar as in the proof of Theorem

4, we define g∗(t) to be the right hand side of (45) when an
alternate policy is used:

g∗(t) , B − E
{

2
∑
i∈K

UMP
i (t)[µ∗i (t)− Z∗(t)R∗i (t)]

}
−V E

{∑
i∈K

Z∗(t)p∗(t)R∗i (t)−
∑
i∈K

cost∗i (t)
}
,

where the decisions Z∗(t), p∗(t) and cost∗i (t) correspond to
the feasible control action that can be implemented on slot t of
the alternate policy and UMP

i (t) denotes the backlog of user
i when the MPTSA algorithm is implemented up to time t.
Now plug in the optimal stationary randomized policy and use
the same approach as in the proof of Theorem 4, we obtain:

g∗(t) ≤ B + 2Kd(µ2
max +R2

max)

−2E
{∑
i∈K

UMP
i (t− d)[µ∗i (t)− Z∗(t)R∗i (t)]

}
−V E

{∑
i∈K

Z∗(t)p∗(t)R∗i (t)−
∑
i∈K

cost∗i (t)
}

≤ B1 + 2E
{∑
i∈K

UMP
i (t− d)θiγdi

}
−V E

{∑
i∈K

Z∗(t)p∗(t)R∗i (t)−
∑
i∈K

cost∗i (t)
}
,

where B1 = B + 2Kd(µ2
max + R2

max) and θi > 0, 0 <
γi < 1 are constants depend on the Markov Chain processes
Si(t). Since Ui(t) ≤ Umax for all i and t, by choosing d ,⌈

maxi∈K

{
log(2θiUmax)

log(1/γi)

}⌉
= O(log(V )), we obtain:

g∗(t) ≤ B1 +K − V E
{∑
i∈K

Z∗(t)p∗(t)R∗i (t)−
∑
i∈K

cost∗i (t)
}
.

The rest follows exactly as in the proof of Theorem 4.

VII. SIMULATION

In this section, we provide simulation results for the PTSA
algorithm. For simplicity, we only simulate the single channel
system. We compare two types of arrival processes. In the
first case, the arrival R(t) is deterministic and is exactly equal
to F (M(t), p(t)). In the other case, we assume that R(t) is
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a Bernoulli random variable, i.e., R(t) = 2F (M(t), p(t)) or
R(t) = 0 with equal probabilities. 11

Now we provide our simulation results. We assume M =
{Low,High}, S = {Good,Bad}. The demand curve for
M(t) = Low is given by:

F (Low, p) =

 4 0 ≤ p ≤ 1,
−6p+ 10 1 < p ≤ 3

2 ,− 2
17p+ 20

17
3
2 < p ≤ 10.

(52)

The demand curve for M(t) = High is given by:

F (High, p) =

 10− p 0 ≤ p ≤ 2,
−6p+ 20 2 < p ≤ 3,
− 1

7p+ 17
7 3 < p ≤ 10.

(53)

The rate-cost curve is given by :

Φ(cost(t), S(t)) = log(1 + γS(t)cost(t)), (54)

where 0 ≤ cost ≤ 10, γS(t) = 2 if S(t) = Good and
γS(t) = 1 else. Both the demand state and the channel are
assumed to vary according to a two-state Markov Chain with
transition probabilities to the other state being both 0.4. Fig. 7
shows the backlog and profit performance of PTSA under this
dynamic setting. We see that the profit converges quickly to
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the optimum value and the backlog is no larger than the worst
case bound. We now also look at the prices chosen by PTSA:
We see in Fig. 8 that in fact PTSA quickly determines the
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Fig. 8. Prices chosen according to demand state M(t) for V=100

optimum prices for each state, and consequently determines
the optimum traffic share of the two different demand states.

11For simplicity here, we assume R(t) can take fractional values. Alterna-
tively, we could restrict packet sizes to integral units and make the probabilities
be such that E {R(t) | p(t),M(t)} = F (M(t), p(t)).

In this case, we see that for each demand state, only one price
is chosen. This is different from the simulation results in [21].
In [21], we simulated an example similar to the one of Fig. 2
and indeed observed a two-price phenomenon.
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Fig. 9. Upper: prices chosen in the first 5×104 slots; Lower: prices chosen
over an interval of 200 slots (V=1000)

However, it is not always the case that prices chosen by
PTSA converge to a two-price process. Fig. 9 shows the result
for the following setting: M = {Low,High}, state transition
probabilities being both 0.4, service rate µ = 2.28 with no
cost, and demand functions are F (High, p) = 10− 1

10p
2 and

F (Low, p) = 10
1+p2 , both with 0 ≤ p ≤ 10. We see that prices

fluctuate within some interval over the whole period of time.
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