EE 352 Homework 0
Redekopp

Name: ___ Score: ________
Due: See Blackboard

Use this HW as a review and assessment or your knowledge of binary representation systems and computer arithmetic.

1.) **Architecture Overview:** Study the lecture slides posted on Blackboard and answer the following questions. (5 pts. each)

 a. **True / False:** To overcome the memory wall problem, most architectural improvements focus on reducing memory latency because it is easier to improve than bandwidth.

 b. **True / False:** A primary reason for the movement toward processors with multiple, simple cores is the effect of power consumption on high frequency, complex cores.

2.) Perform the following number system conversions. Note: It may be easier to convert them to the desired base in a different order than shown here. (2 pts. per conversion)

 a. 1100101.1011\(_2\) = ?\(_8\) = ?\(_{16}\) = ?\(_{10}\)

 b. 1A9.D\(_{16}\) = ?\(_8\) = ?\(_2\) = ?\(_{10}\)

 c. 617\(_8\) = ?\(_{16}\) = ?\(_2\) = ?\(_{10}\)

3.) What are the corresponding decimal representations for the following binary strings? (2 pts. each)

<table>
<thead>
<tr>
<th>Binary String</th>
<th>8-bit unsigned format</th>
<th>8-bit 2’s complement format</th>
</tr>
</thead>
<tbody>
<tr>
<td>10110110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11011011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.) For each of the following decimal numbers find the corresponding 8-bit representation using the indicated systems. Note: Some numbers may NOT be representable w/ 8-bits. If this is the case, put **NA** for the answer. Also find the minimum bits needed to represent the number in the 2’s complement system. (2 pts. ea.)

<table>
<thead>
<tr>
<th>Signed Mag.</th>
<th>2’s Complement</th>
<th>Minimum bits needed using 2’s complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.) Each C declaration of the variable \(x \) is initialized to a value in decimal. Show that value represented in hex using the appropriate size indicated by the variable type (e.g. char = 1-byte = 2 hex digits). Do not use a calculator. (2 pts. each)

a. short int \(x = 13; \)
b. short int \(x = -32,767; \)
c. unsigned char \(x = 246; \)
d. int \(x = -4096; \)
e. unsigned char \(x = 193; \)
f. int \(x = -1; \)
g. unsigned char \(x = \text{‘a’}; \)
h. short int \(x = 40; \)
i. unsigned char \(x = 97; \)
j. char \(x = -79; \)

6.) Convert the powers of 2 shown below to its approximate decimal value using K to represent \(10^3 \), M for \(10^6 \), G for \(10^9 \), and T for \(10^{12} \). (e.g. \(2^{12} \approx 4K \)) [2 pts. each]

a. \(2^{19} = ? \)
 i. \(9K \)
 ii. \(512K \)
 iii. \(512M \)
 iv. \(256K \)
 v. \(256M \)
 c. \(2^{43} = ? \)
 i. \(8G \)
 ii. \(8T \)
 iii. \(16M \)
 iv. \(16G \)
 v. \(16T \)

b. \(2^{36} = ? \)
 i. \(64M \)
 ii. \(64G \)
 iii. \(8M \)
 iv. \(8G \)
 v. \(8T \)
 d. \(2^{24} = ? \)
 i. \(4K \)
 ii. \(4M \)
 iii. \(8M \)
 iv. \(16M \)
 v. \(16G \)