
1

Verilog HDL

Mark Redekopp

2

Purpose

• HDL’s were originally used to model and
simulate hardware before building it

• In the past 30 years, synthesis tools were
developed that can essentially build the
hardware from the same description

• A progression continues allowing more
abstract descriptions to be used for both
simulating a hardware/software design and
synthesizing actual hardware

3

Differences from Software

• Software programming languages specify a sequence of
operations to be executed with implied ordering
– Operations executed in sequential order (line 1, line 2, line 3)

• Hardware Description Languages (HDLs) like Verilog and VHDL
do NOT describe a temporal sequence of operations like
software but a spatial/physical hardware design
– HDL processes (code blocks) execute in parallel (not sequentially)

assign f = a + b;

assign g = (s==1) ? a : b;

v = x+y;

tmp = d-v;

Software

Perform x+y first and

store the result in v. Only

then assign d-v in the tmp.

Hardware

This description models a mux and an

adder running in parallel. One operation

does not run *BEFORE* another

Event Driven Paradigm: If a, b, or s

changes, f and/or g will be re-

evaluated

1

2

1

1

4

HW Description Differences

• "Execution" of our described hardware model is "event-based"
– This means that code executes (really hardware updating) when certain

events occur (like an input changing)

• Given the description below
– Execution does NOT occur in sequence/order

– But if 'b' changes (which is an input to 'g') then the assign statement for
'g' executes which then triggers the assign statement for 'f' to execute.

+

Sum

0

1

s

b

c

a

f

g

assign f = a + g;
assign g = (s==1) ? b : c;

5

HW Description Differences

• "Execution" of our described hardware model is "event-
based", in that code executes when certain events occur (like
an input changing)

• Given the description below
– Execution does NOT occur in sequence/order

– But if 'b' changes (which is an input to 'g') then the assign statement
for 'g' executes which then triggers the assign statement for 'f' to
execute.

+

Sum

0

1

s

b

c

a

f

g

assign f = a + g;
assign g = (s==1) ? b : c;

1

2

3

12

3

6

VERILOG BASICS

7

Modules

• Each Verilog designs starts as a block diagram (called
a “module” in Verilog)

• Start with input and output signals, then describe
how to produce outputs from inputs

module m1(x,y,z,f,g);

// circuit
// description

endmodule

Software analogy: Modules are like functions, but also like classes in

that they are objects that you can instantiate multiple times.

Module

x

y

z[2:0]

f

g

8

Ports

• Input and output signals of a module are called ports (similar
to parameters/arguments of a software function)

• Unlike software, ports need to be declared as input or output

• Vectors declared using [MSB:LSB] notation

Module

module m1(x,y,z,f,g);
input x,y;
input [2:0] z;
output f;
output [1:0] g;
endmodule

x

y

z[2:0]

f

g[1:0]

These are the ports

9

Signal Types

• Signals represent the inputs, outputs, and
internal values

• Signals need to be typed
– Similar to variables in software (e.g. int, char)

• 2 basic types
– Wire: Represents a node whose value can be

derived from its input drivers' values
• Only for modeling combinational logic or

structural descriptions (wiring outputs of a
module instance to another)

• Should be used for any signals produced by assign
statements

– Reg(ister): Used for signals that are described
behaviorally
• Important: reg type signals do NOT imply they

are produced by a hardware register but instead
refers to the simulator's need to use storage to
track this signals value

• Should be used for anything produced by an
always or initial block (be it combinational or
sequential)

module m1(x,y,z,f,g);

input x,y;
input [2:0] z
output f;
output reg [1:0] g;

wire n1, n2;
reg n3, n4;
...
endmodule

Inputs are always type

‘wire’. Outputs are assumed

‘wire’ but can be redefined

as ‘reg’

10

Ports Revisited

• In Verilog 2001, the direction and
type of ports may be provided
together in the module declaration

Module

module m1(x,y,z,f,g);
input x,y;
input [2:0] z;
output f;
output [1:0] g;

reg [1:0] g;
...

x

y

z[2:0]

f

g[1:0]

Pre-Verilog2001

module m1(
input x,
input y,
input [2:0] z;
output reg f;
output [1:0] g);

...

Verilog2001

11

Constants

• Multiple bit constants can be written in the form:

– [size] `base value

• size is number of bits in constant

• base is o or O for octal, b or B for binary, d or D for decimal, h or H for

hexadecimal

• value is sequence of digits valid for specified base

– Values a through f (for hexadecimal base) are case-insensitive

• Examples:
– 4'b0000 // 4-bits binary

– 6'b101101 // 6-bits binary

– 8'hfC // 8-bits in hex

– Decimal is default base

– 17 // 17 decimal converted to appropriate
// number of unsigned bits (i.e. 32'b010001

12

Structural vs. Behavioral Modeling

Structural

• Starting with primitive
gates, build up a hierarchy
of components and specify
how they should be
connected

Behavioral

• Describe behavior and let
synthesis tools select
internal components and
connections

13

Structural Modeling

• Starting with primitive gates,
build up a hierarchy of
components and specify how
they should be connected

X Y

S

Co

Half

Adder

Structural

specification of

a half adder

Use half adders to structurally describe an

incrementer

module ha(x,y,s,co);
input x,y;
output s,co;

xor i1(s,x,y);
and i2(co,x,y);

endmodule

module incrementer(a,z);
input [3:0] a;
output [3:0] z;
wire [3:1] c;

ha ha0(a[0],1,z[0],c[1]);
ha ha1(a[1],c[1],z[1],c[2]);
ha ha2(a[2],c[2],z[2],c[3]);
ha ha3(a[3],c[3],z[3],);

endmodule

X Y

S

Co HA

X Y

S

Co HA

X Y

S

Co HA

X Y

S

Co HA

A0A1A2A3

Z0Z1Z2Z3

1C1C2C3

14

Structural Modeling of Logic Gates

• Modules and primitive gates can be instantiated
using the following format:
module_name instance_name(output, input1, input2,…)

• Input and outputs must be wire types

• Built-in supported Gates: and, or, not, nand,
nor, xor, xnor

module m1(c16,c8,c4,f);
input c16,c8,c4;
output f;
wire n1;

or i1(n1,c8,c4);
nand i2(f,c16,n1);

endmodule

FC16

C8

C4

“n1”

net (wire)

Verilog Description

“i2”

instance name

15

Instantiating User-Defined Modules
• Format: module_name instance_name(port1, port2, port3, …)

• Positional mapping

– Signals of instantiation ports are associated using the order of module’s port
declaration (i.e. order is everything)

• Named mapping

– Signals of instantiation ports are explicitly associated with module’s ports (i.e.
order is unimportant)

– module_name instance_name(.module_port_name(signal_name),…);

module ha(x,y,s,co);
...

endmodule

module incrementer(a,z);
ha ha0(a[0],1,z[0],c[1]);
...

endmodule

module ha(x,y,s,co);
...

endmodule

module incrementer(a,z);
ha ha0(.x(a[0]),

.s(z[0]),

.y(1),

.co(c[1]));
...

endmodule

Positional mapping

Named Mapping

16

Internal Signals

• Define signals (wire or reg) for each internal
signal/wire

module m2(x,y,z,f);

input x,y,z;
output f;
wire n1,n2,n3;

and u1(n1,x,z); // instance names need

and u2(n2,x,y); // not be declared
not u3(n3,z);
or u4(f,n1,n2,n3);

endmodule

X
Z

X
Y

Z

F

N1

N2

N3

17

Behavioral Modeling

• Describe behavior and let synthesis tools select internal
components and connections

• Advantages:

– Easier to specify

– Synthesis tool can pick appropriate implementation (for
speed / area / etc.)

Use higher level operations and let synthesis

tools infer the necessary logic

module incrementer(a,z);
input [3:0] a;
output [3:0] z;

assign z = a + 1'b1;

endmodule

Could instantiate an
appropriate

implementation (e.g.
ripple-carry adder, a fast
carry-lookahead adder,

etc.) or optimize the
design as needed

18

Operators

• Operator types

– Non-blocking / Blocking assignment (<=, =)

– Arithmetic (+, -, *, /, %)

– Relational (<, <=, >, >=)

– 2-State Equality (0,1 only) (==, !=)

– 4-State Equality (0,1,Z,X) (=== , !==)

– Logical (&&, ||, !)

– Bitwise (~, &, |, ^, ~^)

– Reduction (&, ~&, |, ~|, ^, ~^)

– Shift (<<, >>)

– Conditional (? :)

– Concatenation and replication { }

19

assign Statement
• Used for combinational logic

expressions

• Must output to a wire signal type!

• Can be used anywhere in the body of a
module’s code

• All assign statements run in parallel

• Change of any signal on RHS (right-hand
side) triggers re-evaluation of LHS
(output)

• Format:

– assign output = expr;

• ‘&’ means AND

• ‘|’ means OR

• ‘~’ means NOT

• ‘^’ means XOR

• Can use arithmetic operators too (and
synthesis will infer adder, multiplier, etc.)

module m1(c16,c8,c4,f);
input c16,c8,c4;
output f;

assign f = ~(c16 & (c8 | c4));

endmodule

FC16

C8

C4

module m1(c16,c8,c4,f);
input c16,c8,c4;
output f;
wire n1;

or i1(n1,c8,c4);
nand i2(f,c16,n1);

endmodule

20

Multi-bit (Vector) Signals

• Reference individual bits
or groups of bits by
placing the desired index
in brackets
(e.g. x[3] or x[2:1])

• Form vector from
individual signals by
placing signals in
brackets
(i.e. { }) and separate
with commas

module m1(x,f);

input [2:0] x;
output f;

// f = minterm 5
assign f = x[2] & ~x[1] & x[0];

endmodule

module incrementer(a,x,y,z);

input [2:0] a;
output x,y,z;

assign {x,y,z} = a + 1;

endmodule

21

More Assign Statement

• Can be used with other
operators besides simple
logic functions
– Arithmetic

(+, -, *, /,%=modulo/remainder)

– Shifting (<<, >>)

– Relational
(<, <=, >, >=, !=, ==)

• Produces a single bit output
(‘1’ = true / ‘0’ false)

– Conditional operator (? :)

• Syntax:
condition ? statement_if_true : statement_if_false;

module m1(x,y,sub,s,cout,d,z,f,g);
input [3:0] x,y;
input sub;
output [3:0] s,d;
output [3:0] z;
output cout,f,g;

assign {cout,s} = {0,x} + {0,y};
assign d = x – y;
assign f = (x == 4'h5);
assign g = (y < 0);
assign z = (sub==1) ? x-y : x+y;

endmodule

Sample “Assign” statements

22

Always Block (Combinational)

• Primary unit of parallelism in code

– always and assign statements run in parallel

– Statements w/in always blocks are executed
sequentially

• Format
– always @(sensitivity list)

begin
statements

end

• Always blocks are “executed” when there is a change
in a signal in the sensitivity list

• When modeling combinational logic, sensitivity lists
should include ALL inputs (i.e. all signals in the RHS’s)
– Verilog2001 allows @* as a shorthand all RHS signals

• Generation of a signal must be done within a single
always block (not spread across multiple always
blocks)

– Signals generated in an always block must be declared
type reg

module addsub(a,b,sub,s);

input [3:0] a,b;
input sub;
output reg [3:0] s;
reg [3:0] bmux;

always @(b,sub)
begin
if(sub == 1)

bmux <= ~b;
else

bmux <= b;
end

always @*
begin
s = a + bmux + sub;

end
endmodule

23

Always Block (Sequential)

• Flip-flops (sequential logic)
are modeled using an
always block sensitive to the
edge (posedge or negedge)
of the clock
– block will only be executed on

the positive edge of the clock

• Generally, use the non-
blocking assignment
operator (<=) in clocked
“always” blocks

module accumulator(x,z,clk,rst);

input [3:0] x;
input clk,rst;
output [3:0] z;
reg [3:0] z;

always @(posedge clk)
begin
if(rst == 1)
z <= 4'b0000;

else
z <= z + x;

end

endmodule

24

Procedural Statements

• Must appear inside an always or initial block

• Procedural statements include

– if…else if…else…

– case statement

– for loop (usually unnecessary for describing logic)

– while loop (usually unnecessary for describing logic)

25

If…Else If…Else Statements

• Syntax
if(expr)

statement;

else if(expr)

statement;

else

statement;

• If multiple statements
exist in the body of
if…else if…else then
enclose in begin…end
construct

// 4-to-1 mux description
always @*
begin
if(sel == 2'b00)
y <= i0;

else if(sel == 2'b01)
y <= i1;

else if(sel == 2'b10)
y <= i2;

else
y <= i3;

end
...

...
if(rst == 1)
begin
q1 <= 0;
q2 <= 0;
end
else
begin
q1 <= d;
q2 <= q1;
end

26

Case Statements

• Syntax
case(expr)

option1:

begin
statements;

end

option2: statement;

[default: statement;]

endcase

• Default statement is optional

• If multiple statements as the body of an option then enclose
in begin…end construct

// 4-to-1 mux description

always @(i0,i1,i2,i3,sel)
begin
case(sel)
2’b00: y <= i0;
2’b01: y <= i1;
2’b10: y <= i2;
default: y <= i3;

endcase
end

27

More About Always Blocks

• When writing an always block your goal is to provide enough
of a description to allow the tools to fill in a truth table for
one more output signals
– Cases can be overwritten with the last assignment taking precedence

– Any use of loops or if statements is essentially "0-time" operation to
describe a truth table

reg f;
reg [2:0] a;
always @*
begin
f <= 0; // all rows = 0
// now overwrite desired
// locations with 1s
if(a < 2) f <= 1;
else if(a == 3'b101) f <= 1;
else if(a % 3 == 1) f <= 1;

end

A2 A1 A0 F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

28

Understanding Combinational Always
Blocks: Full Adder

• Consider a full adder (adds 3 bits to produce a 2-bit sum)
– Block diagram, truth table, and logic implementation shown below

• 4 different description approaches are shown in the subsequent slides

– Approach 1 is likely the easiest/preferred approach

– Approach 2-4 are there to illustrate how various Verilog constructs operate
and are interpreted

Full

Adder

X Y

Cin

S

Cout

A2 A1

S0

S1 A0

A2 A1 A0 S1 S0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

29

Approach 1 and 2

• Approach 1 (Preferred): Just use Verilog's built in operators
– Synthesis tool will determine logic

• Approach 2: Determine the logic yourself (via some
minimization approach) and describe the logic equations.

integer i;
wire [2:0] a;
wire [1:0] sum;

assign sum[0] = a[2] ^ a[1] ^ a[0];
assign sum[1] = (a[2] & a[1]) |

(a[2] & a[0]) |
(a[1] & a[0]);

integer i;
wire [2:0] a;
wire [1:0] sum;

assign sum = a[2] + a[1] + a[0];

Approach 1 Approach 2

30

Approach 3

• Describe the truth table uses cases or if statement
– Synthesis tool will determine logic

A2 A1 A0 S1 S0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

integer i;
reg [2:0] a;
reg [1:0] sum, cnt;
always @*
begin

if(a == 3'b000)
sum <= 2'b00;

else if(a == 3'b001 || a == 3'b010 || a == 3'b100)
sum <= 2'b01;

else if(a == 3'b011 || a == 3'b101 || a == 3'b110)
sum <= 2'b10;

else
sum <= 2'b11;

end

Approach 3

31

Approach 4

• Here a for loop executes in "0-time" to determine the correct output
– The key is that loops and if statements execute to determine/complete a truth table

which is then synthesized to logic

– There is NO sequential logic inferred in this design, even though the description uses
sequence

– Note: You almost never need for loops to describe hardware (Other than maybe
memory or register arrays)

A2 A1 A0 S1 S0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

integer i;
reg [2:0] a;
reg [1:0] sum, cnt;
always @*
begin

cnt = 0;
for(i=0; i < 3; i=i+1)
begin

cnt = cnt + a[i];
end
sum <= cnt;

end

Approach 4

32

UNDERSTANDING SIMULATION
AND TIME

33

Understanding Simulation Timing

• When expressing parallelism, an understanding of
how time works is crucial

• Even though ‘always’ and ‘assign’ statements specify
operations to be run in parallel, simulator tools run
on traditional computers that can only execute
sequential operations

• To maintain the appearance of parallelism, the
simulator keeps track of events in a sorted event
queue and updates signal values at appropriate
times, triggering more statements to be executed

34

Explicit Time Delays

• In testbenches, explicit
delays can be specified
using ‘# delay’

– When this is done, the
RHS of the expression is
evaluated at time t but the
LHS is not updated until
t+delay

module m1_tb;
reg a,b,c;
wire w,x,y,z;
initial begin

a = 1;
#5; // delay 5 ns (ns = default)

a = 0;
b = 0;
#2; // delay 2 more ns

a = 1;
end

endmodule

Time Event

0 ns a = 1

5 ns a = 0

5 ns b = 0

7 ns a = 1

Simulator Event Queue

35

Explicit Time Delays

• Assignments to the same
signal without an
intervening delay will cause
only the last assignment to
be seen

module m1_tb;
reg a,b,c;
wire w,x,y,z;

initial begin
a = 1;
#5 // delay 5 ns (ns = default)
a = 0;
a = 1;

end
endmodule

Time Event

0 ns a = 1

5 ns a = 0→1Simulator Event Queue

36

Explicit Propagation Delay

• When modeling logic, explicit propagation
delays can be inserted
– Normally behavioral descriptions should avoid

this since the delays will be determined by the
synthesis tools

• Verilog supports different propagation
delay paradigms

• One paradigm is to specify the delay with
the RHS of an assignment in an always
block.

• When this is done, the RHS of the
expression is evaluated at time t but the
LHS is not updated until t+delay

• This is called “transport” delay since we are
specifying the time to transport the value
from inputs to output

module m1(a,b,c,w,x,y,z);
input a,b,c;
output w,x,y,z;

always @(a,b,c)
begin

w <= #4 a ^ b;
x <= #5 b | c;

end

endmodule

Time Event

0 ns a,b,c = 0,0,1

4 ns w = 0

5 ns x = 1

Simulator Event Queue

37

Implicit Time Delays

• Normal behavioral descriptions don’t
model propagation delay until the
code is synthesized

• To operate correctly the simulators
event queue must have some notion
of what happens first, second, third,
etc.

• Delta (δ) time is used
– Delta times are purely for ordering events

and all occur in “0 simulated time”

– The first event(s) occur at time 0 ns

– Next event(s) occur at time 0 + δ

– Next event(s) occur at time 0 + 2δ

always @(a,b,c,w,x,y)
begin

w <= a ^ b;
x <= b | c;
y <= w & x;
z <= ~y;

end

Time Event Triggers

0 ns a,b,c = 0,0,1 w and x assigns

0 + δ w=0, x=1 y assign

0 + 2δ y = 0 z assign

0 + 3δ z = 1 Anything
sensitive to z

Simulator Event Queue

assign w = a ^ b;
assign x = b | c;
assign y = w & x;
assign z = ~y;

Equivalent

Implementations

38

TESTBENCHES

39

Testbenches

• Generate input stimulus (values) to
your design over time

• Simulator will run the inputs through
the circuit you described and find
what the output from your circuit
would be

• Designer checks whether the output
is as expected, given the input
sequence

• Testbenches consist of code to
generate the inputs as well as
instantiating the design/unit under
test and possibly automatically
checking the results

Testbench Module

Unit Under Test (UUT)

(Your design module)

Code to generate

input stimulus

Inputs Outputs

40

Testbench Modules

• Declared as a module
just like the design
circuit

• No inputs or outputs

module my_tb;

// testbench code

endmodule

41

Testbench Signals

• Declare signals in the
testbench for the inputs and
outputs of the design under
test
– inputs to your design should

be declared type ‘reg’ in the
testbench (since you are
driving them and their value
should be retained until you
change them)

– outputs from your design
should be declared type ‘wire’
since your design is driving
them

module my_tb;

reg x,y,z;
wire f,g;

endmodule

module m1(x,y,z,f,g);

input x,y,z;
output f,g;

...

Unit Under Test

Testbench

42

UUT Instantiation

• Instantiate your design module
as a component (just like you
instantiate a gate in you design)

• Pass the input and output
signals to the ports of the
design

• For designs with more than 4 or
5 ports, use named mapping
rather than positional mapping

module my_tb;

reg x,y,z;
wire f,g;

m1 uut(x,y,z,f,g);
/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));
*/

endmodule

module m1(x,y,z,f,g);

input x,y,z;
output f,g;
...

endmodule

Unit Under Test

Testbench

43

Generating Input Stimulus (Values)

• Now use Verilog code
to generate the input
values over a period of
time

module my_tb;

reg x,y,z;
wire f,g;

m1 uut(x,y,z,f,g);
/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));
*/

endmodule

module m1(x,y,z,f,g);

input x,y,z;
output f,g;
...

endmodule

Unit Under Test

Testbench

44

Initial Block Statement

• Tells the simulator to run this
code just once (vs. always block
that runs on changes in
sensitivity list signals)

• Inside the “initial” block we can
write code to generate values
on the inputs to our design

• Use “begin…end” to bracket the
code (similar to { .. } in C or
Java)

module my_tb;

reg x,y,z;
wire f,g;

m1 uut(x,y,z,f,g);

initial
begin

// input stimulus
// code

end

endmodule

Testbench

45

Assignment Statement

• Use ‘=‘ to assign a
signal a value

– Can assign constants

• x = 0; y = 1;

– Can assign logical
relationships

• x = ~x // x = not x

• x = y & z // x = y and z

module my_tb;

reg x,y,z;
wire f,g;

m1 uut(x,y,z,f,g);

initial
begin

x = 0;

end

endmodule

Testbench

46

Aggregate Assignment Statement

• Can assign multiple signals at
once

• Place signals in brackets
(i.e. { }) and separate with
commas

• Multiple bit constants can be
written in the form:

• num_bits ’{b,o,d,h} value

– 4’b0000 // 4-bits binary

– 6’b101101 // 6-bits binary

– 8’hFF // 8-bits in hex

– Decimal is default

– 17 // 17 decimal

module my_tb;

reg x,y,z;
wire f,g;

m1 uut(x,y,z,f,g);

initial
begin

{x,y,z} = 3’b000;

end

endmodule

Testbench

47

Time

• We must explicitly
indicate when and how
much time should pass
between assignments

• Statement (‘#’ indicates a
time delay):
– # 10; // wait 10 ns;

– # 50; // wait 50 ns;

• Default timescale is
nanoseconds (ns)

module my_tb;

reg x,y,z;
wire f,g;

m1 dut(x,y,z,f,g);

initial
begin

{x,y,z} = 3’b000;
#10;
{x,y,z} = 3’b001;
#25;

end

endmodule

Testbench

48

Integer Signal Type

• To model a collection of bits
representing a number, declare
signals as type ‘integer’

• Assigning an integer to a bit or
group of bits will cause them to
get the binary equivalent

• Assigning an integer value too
large for the number of bits will
cause just the LSB’s of the
number to be assigned
– Assigning 810=10002 to a 3-bit value

will cause the 3-bit value to be 000
(i.e. the 3 LSB’s of 1000)

module my_tb;

reg w,x,y,z;
integer num;

initial
begin
num = 15;
{w,x,y,z} = num;
// assigns
// w,x,y,z = 1111
#10;
num = num+1;
// num = 16
{w,x,y,z} = num;
// w,x,y,z = 0000

end
endmodule

Testbench

49

For loop

• Integers can also be used
as program control
variables

• Verilog supports ‘for’
loops to repeatedly
execute a statement

• Format:
– for(initial_condition;

end_condition; increment
statement)

module my_tb;

reg a,b;
integer i;

initial
begin

for(i=0;i<4;i=i+1)
begin
{a,b} = i;

end
end

endmodule

Here, ‘i’ acts as a counter for a loop.

Each time through the loop, i is

incremented and then the decimal value

is converted to binary and assigned to a

and b

You can’t do

“i++” as in

C/C++ or Java

a,b = 00,

then 01,

then 10,

then 11

50

For loop

• Question: How much time
passes between
assignments to {a,b}

• Answer: 0 time…in fact if
you look at a waveform,
{a,b} will just be equal to
1,1…you’ll never see any
other combinations

• We must explicitly insert
time delays!

module my_tb;

reg a,b;
integer i;

initial
begin

for(i=0;i<4;i=i+1)
begin
{a,b} = i;
#10;

end
end

endmodule

Now, 10 nanoseconds will pass before

we start the next iteration of the loop

51

Generating Sequential Stimulus

• Clock Generation
– Initialize in an initial block

– Continue toggling via an always
process

• Reset generation
– Activate in initial block

– Deactivate after some period of
time

– Can wait for each clock edge via
@(posedge clk)

module my_tb;
reg clk, rst, s;

always #5 clk = ~clk;

initial begin
clk = 1; rst = 1; s=0;
// wait 2 clocks
@(posedge clk);
@(posedge clk);
rst = 0;
s=1;
@(posedge clk);
s=0;
end

endmodule

Generated stimulus

CLK

RST

S

52

BLOCKING VS. NON-BLOCKING
ASSIGNMENT

53

(Non) Blocking Assignment Overview

• There are two different assignment operators in Verilog (and
most HDLs)

• Non-blocking (<=): Schedule an update for the value of a
variable for the next possible simulation (aka delta) time
– Similar to "propagation" delay

– More common in hardware descriptions

• Blocking (=): Update the value of a signal/variable immediately
(in current and simulated time)
– Similar to assignment in software programming languages (variable

immediately updates)

– More common for simulation/testbenches

54

(Non-) Blocking Assignment Example 1

reg [31:0] a;
initial a = 0;
always(@posedge clk)
begin

a <= a+1;
a <= a+1;

end

reg [31:0] a;
initial a = 0;
always(@posedge clk)
begin

a = a+1;
a = a+1;

end

a is 0
Schedule a to be 1
Schedule a to be 1

a is 0
Update a to be 1
Update a to be 2

0a

0a

0a

Simulated
Time

Scheduled
Event

t=0

t=0

t=0

@t=0+δ, a=1

@t=0+δ, a=1

1 t=0 +δa

1a

2a

0a

Simulated
Time

Scheduled
Event

t=0

t=0

t=0

55

(Non-) Blocking Assignment Example 2

reg a, b;

always(@posedge clk)
begin

a <= b;
b <= a;

end

reg a, b;

always(@posedge clk)
begin

a = b;
b = a;

end

Schedule a to be 1
Schedule b to be 0

Update a to be 1
Update b to be 1

1b

1b

1b

Simulated
Time

Event

t=0

t=0

t=0

@t=0+δ, a=1

@t=0+δ, b=0

0 t=0 +δb

1b

1b

1b

Simulated
Time

Event

t=0

t=0

t=0

0a

0a

0a

1a

1a

1a

0a

56

Synthesis: Blocking vs. Non-Blocking

• Non-blocking: Each updated signal
will result in a separate register (flip-
flop)

• Blocking: Due to the semantics of
the blocking assignment, the code to
the right results in a single register
feedback the same value.

reg a,b;
always @(posedge clk)
begin

a = b;
b = a;

end

reg a,b;
always @(posedge clk)
begin

a <= b;
b <= a;

end

Synthesis Result with

Non-Blocking Assignment

D Q

D-FF

D Q

D-FF

BA

CLK CLK

Synthesis Result with

Blocking Assignment

D Q

D-FF

B

CLK

57

Non-Blocking Assignment and Registered
Outputs

• General rule: Use non-blocking assignments when describing a
registered (clocked) output
– Your description should work equally well regardless of the order in which

the simulator executes always blocks

– With blocking assignments, different ordering may lead to different
simulation results

reg d,q0,q1;
// block 1
always @(posedge clk)
begin

q0 <= d;
end
// block 2
always @(posedge clk)
begin

q1 <= q0;
end

reg d,q0,q1;
// block 1
always @(posedge clk)
begin

q0 = d;
end
// block 2
always @(posedge clk)
begin

q1 = q0;
end

Same simulation results

regardless of execution order

If Block 2 executes first, same result as non-

blocking (q1 = q0 & q0 = d)…LUCKY!

If Block 1 executes first, q1 = d…BAD!!

D Q

D-FF
D Q

D-FF

q1q0

CLK CLK

d

58

Review: Full-Adder Description

• Recall the description of a full-adder below

• Should we use blocking or non-blocking assignments
for cnt?

A2 A1 A0 S1 S0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

integer i;
reg [2:0] a;
reg [1:0] sum, cnt;
always @*
begin

cnt = 0;
for(i=0; i < 3; i=i+1)
begin

cnt = cnt + a[i];
end
sum <= cnt;

end

Approach 4

59

Review: Full-Adder Description

• Recall the description of a full-adder below

• Should we use blocking or non-blocking assignments
for cnt?

A2 A1 A0 S1 S0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

integer i;
reg [2:0] a;
reg [1:0] sum, cnt;
always @*
begin

cnt = 0;
for(i=0; i < 3; i=i+1)
begin

cnt = cnt + a[i];
end
sum <= cnt;

end

Approach 4

60

Missing Cases: Inferring Latches

• Take care when describing
combinational processes to cover all
input cases or provide a default value

reg f; reg [2:0] a;
always @*
begin

if(a < 2) f <= 1;
else if(a >= 4) f <= 1;
// missing else to cover
// cases 2 (010) and 3 (011)

end

A2 A1 A0 F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

D Q F
D-Latch

EN

A2
A1

A1

A2

reg f; reg [2:0] a;
always @*
begin

if(a < 2) f <= 1;
else if(a >= 4) f <= 1;
else f <= 0;

end

A2
A1

F

Correct Description:

Synthesis/Simulation View

Incorrect Description:

Synthesis/Simulation View

When A2,A1=01

our description

indicates that f

should retain its

value

(thus the latch)

reg f; reg [2:0] a;
always @*
begin

f <= 0;
if(a < 2) f <= 1;
else if(a >= 4) f <= 1;

end

61

Missing Cases: Sensitivity Lists

• Missing a signal in the sensitivity list of a
combinational process will lead to strange simulation
behavior (but generally correct synthesis)

reg f; wire a,b,c;
always @(a or b or c) // or @*
begin

f <= 0;
if((a==0 && b==1) ||

(b==1 && c==1))
f <= 1;

end

Correct Description:

Synthesis/Simulation View Synthesis View

A
B

B
C

F

reg f; wire a,b,c;
always @(a or b)
Begin

f <= 0;
if((a==0 && b==1) ||

(b==1 && c==1))
f <= 1;

end

A
B

B
C

F

A
B

B
C

D Q F
D-Latch

EN

Change in A or B

(but not C)

Simulation ViewSynthesis View

62

Sensitivity List: Synchronous vs. Asynchronous
Reset

• Asynchronous Reset:
– Q is initialized when the reset signal is asserted (regardless of the clock

state)

• Synchronous Reset
– Q is initialized only on a clock edge AND the reset signal is asserted

D Q

D-FF
CLK

CLR

RESET

D Q

always @(posedge clk)
begin

if(reset == 1)
q <= 0;

else
q <= d;

end

always @(posedge clk, posedge reset)
begin

if(reset == 1)
q <= 0;

else
q <= d;

end

Synchronous ResetAsynchronous Reset

63

DESIGN APPROACHES

64

General Tips

• Don't start coding…start drawing
– Sketch out the physical, component-level block diagram of the design

– Identify what happens per clock (i.e. clock boundaries or where
registers are needed)

• Partition your design
– Identify repeated components and extract modules/hierarchy

– See slides below to help organize how you will describe your logic

• Setup a testbench and test setup
– Take time to create a useful waveform setup (.do) files

CLK

D[31:0] Q[31:0]

Reg

CLR

P[31:0]

PE

RST

CLK

Q[31:0]

+

0

1 0

1

0001

CE

65

Partitioning 1

• Given the counter design below a
few methods of partitioning are
possible

• Option 1: Separate combinational
and sequential process

• Option 2: Combined process

reg [31:0] q; wire [31:0] p;
wire ce, pe, rst, clk;
reg [31:0] d;
always @*
begin

if(pe == 1) d <= p;
else if(ce == 1) d <= q+1;
else d <= q;

end
always @(posedge clk)
begin

if(clr == 1) q <= 0;
else q <= d;

end

Correct Description:

Synthesis/Simulation View

Separate Processes

CLK

D[31:0] Q[31:0]

Reg

CLR

P[31:0]

PE

RST

CLK

Q[31:0]

+

0

1 0

1

0001

CE

reg [31:0] q; wire [31:0] p;
wire ce, pe, rst, clk;

always @(posedge clk)
begin

if(clr == 1) q <= 0;
else if(pe == 1) q <= p;
else if(ce == 1) q <= q+1;

end Combined Processes

66

Traffic Light State Machine
module trafficlight(s1, s2, clk, rst, msg, ssg, mtg, msr,

ssr, mtr);

input s1, s2, clk, rst;

output msg, ssg, mtg, msr, ssr, mtr;

reg msg, ssg, mtg, msr, ssr, mtr;

reg [1:0] state;

reg [1:0] state_d;

wire s;

parameter MT = 2'b11;

parameter MS = 2'b10;

parameter SS = 2'b00;

assign s = s1 | s2;

always @(state, s)

begin

if(state == MS)

state_d = SS;

else if(state == SS)

if(s == 1)

state_d = MT;

else

state_d = MS;

else // state == MT

state_d = MS;

end

always @(posedge clk)

begin

if(rst == 1)

state <= SS;

else

state <= state_d;

end

always @(state)

begin

mtg = 0; msg = 0; ssg = 0;

mtr = 0; msr = 0; ssr = 0;

case(state)

MT:

begin

mtg = 1; ssr = 1; msr = 1;

end

MS:

begin

msg = 1; ssr = 1; mtr = 1;

end

SS:

begin

ssg = 1; msr = 1; mtr = 1;

end

endcase

end

endmodule

SSG

MSG

MTG
S = 1

S = 0

On Reset

(power on)

67

Partitioning 2
• One approach to describing your

design is to break it into cones of logic
– A cone of logic ends with a registered

signal/output and includes all the signals
that feed that registered output (usually
back to the previous registers or primary
inputs)

reg [31:0] q1, q2, a, b;
reg [2:0] op;
wire rst, clk;

always @(posedge clk)
begin

if(rst == 1) q1 <= 0;
else

q1 <= a + {b[29:0],2'b00};
end
always @(posedge clk)
begin

if(rst == 1) q2 <= 0;
else if(op == 3'b000)

q2 <= a+b;
else if(op == 3'b001)

q2 <= a-b;
...

end

Cone 1

Cone 2

68

CLK

D[31:0] Q[31:0]

Reg

CLR

P[31:0]

PE

RST

CLK

Q[31:0]

+

0

1 0

1

0001

CE

R[31:0]
+

A[31:0]

Partitioning 3
• When an output (e.g. QP1 below) is

needed in multiple cones it is likely
easiest to produce that in a separate
process to produce an intermediate
output that can be used in multiple
other processes

reg [31:0] q;
wire [31:0] p, r, a, qp1;
wire rst, clk, ce, pe;

assign qp1 = q + 1;

always @(posedge clk)
begin

if(rst == 1) q <= 0;
else if(pe == 1) q <= p;
else if(ce == 1) q <= qp1;

end

assign r = qp1 + a;
QP1

69

Partitioning 4

• For combinational processes
(muxes and adders) consider
using assign statements (over
always blocks)

// mux
assign y = (sel == 1) ? a : b;

// adder
assign y = x + 1;

	Slide 1: Verilog HDL
	Slide 2: Purpose
	Slide 3: Differences from Software
	Slide 4: HW Description Differences
	Slide 5: HW Description Differences
	Slide 6: Verilog Basics
	Slide 7: Modules
	Slide 8: Ports
	Slide 9: Signal Types
	Slide 10: Ports Revisited
	Slide 11: Constants
	Slide 12: Structural vs. Behavioral Modeling
	Slide 13: Structural Modeling
	Slide 14: Structural Modeling of Logic Gates
	Slide 15: Instantiating User-Defined Modules
	Slide 16: Internal Signals
	Slide 17: Behavioral Modeling
	Slide 18: Operators
	Slide 19: assign Statement
	Slide 20: Multi-bit (Vector) Signals
	Slide 21: More Assign Statement
	Slide 22: Always Block (Combinational)
	Slide 23: Always Block (Sequential)
	Slide 24: Procedural Statements
	Slide 25: If…Else If…Else Statements
	Slide 26: Case Statements
	Slide 27: More About Always Blocks
	Slide 28: Understanding Combinational Always Blocks: Full Adder
	Slide 29: Approach 1 and 2
	Slide 30: Approach 3
	Slide 31: Approach 4
	Slide 32: Understanding Simulation and Time
	Slide 33: Understanding Simulation Timing
	Slide 34: Explicit Time Delays
	Slide 35: Explicit Time Delays
	Slide 36: Explicit Propagation Delay
	Slide 37: Implicit Time Delays
	Slide 38: Testbenches
	Slide 39: Testbenches
	Slide 40: Testbench Modules
	Slide 41: Testbench Signals
	Slide 42: UUT Instantiation
	Slide 43: Generating Input Stimulus (Values)
	Slide 44: Initial Block Statement
	Slide 45: Assignment Statement
	Slide 46: Aggregate Assignment Statement
	Slide 47: Time
	Slide 48: Integer Signal Type
	Slide 49: For loop
	Slide 50: For loop
	Slide 51: Generating Sequential Stimulus
	Slide 52: Blocking vs. Non-Blocking Assignment
	Slide 53: (Non) Blocking Assignment Overview
	Slide 54: (Non-) Blocking Assignment Example 1
	Slide 55: (Non-) Blocking Assignment Example 2
	Slide 56: Synthesis: Blocking vs. Non-Blocking
	Slide 57: Non-Blocking Assignment and Registered Outputs
	Slide 58: Review: Full-Adder Description
	Slide 59: Review: Full-Adder Description
	Slide 60: Missing Cases: Inferring Latches
	Slide 61: Missing Cases: Sensitivity Lists
	Slide 62: Sensitivity List: Synchronous vs. Asynchronous Reset
	Slide 63: Design Approaches
	Slide 64: General Tips
	Slide 65: Partitioning 1
	Slide 66: Traffic Light State Machine
	Slide 67: Partitioning 2
	Slide 68: Partitioning 3
	Slide 69: Partitioning 4

