Verilog HDL

Mark Redekopp

Purpose

 HDL's were originally used to model and
simulate hardware before building it

* |n the past 30 years, synthesis tools were
developed that can essentially build the
hardware from the same description

* A progression continues allowing more
abstract descriptions to be used for both
simulating a hardware/software design and
synthesizing actual hardware

N (S Viterbi .®
Differences from Software

* Software programming languages specify a sequence of
operations to be executed with implied ordering

— Operations executed in sequential order (line 1, line 2, line 3)

 Hardware Description Languages (HDLs) like Verilog and VHDL
do NOT describe a temporal sequence of operations like
software but a spatial/physical hardware design
— HDL processes (code blocks) execute in parallel (not sequentially)

Software Hardware
Perform x+y first and This description models a mux and an
store the resultin v. Only adder running in parallel. One operation
then assign d-v in the tmp. does not run *BEFORE* another
@ v = X+Y; D assign f = a + b;
@ tmp = d-v; (D assign g = (s==1) ? a : b;

Event Driven Paradigm: Ifa, b, or s
changes, f and/or g will be re-
evaluated

i, TS(“Viterbi ®

School of Engineering

HW Description Differences

 "Execution" of our described hardware model is "event-based"

— This means that code executes (really hardware updating) when certain
events occur (like an input changing)

* Given the description below
— Execution does NOT occur in sequence/order

— But if 'b' changes (which is an input to 'g') then the assign statement for
'g' executes which then triggers the assign statement for 'f' to execute.

T

+ Sum—b@

2+ 83 O—

(s==1) ? b : c;

assign f
assign g

HW Description Differences

* "Execution" of our described hardware model is "event-
based", in that code executes when certain events occur (like

an input changing)
* Given the description below

— Execution does NOT occur in sequence/order

— But if 'b' changes (which is an input to 'g') then the assign statement
for 'g' executes which then triggers the assign statement for 'f' to
execute.

\
g; | G} " ©)

©)
.F

assign

assigné

VERILOG BASICS

Modules

e Each Verilog designs starts as a block diagram (called
a “module” in Verilog)

e Start with input and output signals, then describe
how to produce outputs from inputs

« —» module mi(x,y,z,f,g);

// circuit

y —_—>
Module // description

2[2:0] = endmodule

Software analogy: Modules are like functions, but also like classes in
that they are objects that you can instantiate multiple times.

i, TS(“Viterbi

School of Engineering

* |Input and output signals of a module are called ports (similar
to parameters/arguments of a software function)

* Unlike software, ports need to be declared as input or output
e Vectors declared using [MSB:LSB] notation

These are the ports

X ———» module mi1(x,y,z,f,g);
input x,y;

input [2:0] z;

y — 1 Module output f;

— ¢[1:0] output [1:0] g;

2[2:0] — endmodule

i, TS(“Viterbi -

School of Engineering

Signal Types

Signals represent the inputs, outputs, and
internal values

Signals need to be typed module ml(x,y,z,f,8);
— Similar to variables in software (e.g. int, char)

input x,y;

2 basic types input [2:0] z
— Wire: Represents a node whose value can be output f;
derived from its input drivers' values output reg [1:0] g;

* Only for modeling combinational logic or
structural descriptions (wiring outputs of a

module instance to another) wire nl, n2;
* Should be used for any signals produced by assign reg n3, n4;
statements L.
(ister): Used for signals that are described endmodule
behaviorally
* Important: reg type signals do NOT imply they Inputs are always type

are produced by a hardware register but instead bxnyirem?
refers to the simulator's need to use storage to wire’. Outputs are assumed

track this signals value ‘wire’ but can be redefined
* Should be used for anything produced by an as ‘req’

always or initial block (be it combinational or
sequential)

I (/S C Viterbi (U2

School of Engineering

Ports Revisited

* In Verilog 2001, the direction and ngzie zlif"y’z’f’g”
type of ports may be provided input [2:0] z;
together in the module declaration output f;

output [1:0] g;

reg [1:0] g;

Pre-Verilog2001

module mi(
——> f input X,
input
y — Module P Ve

input [2:0] z;
output reg f;
output [1:0] g);

—> 9[1.0]

Verilog2001

- USCViterbi @
Constants

 Multiple bit constants can be written in the form:
— [size] "base value
* size is number of bits in constant

* base is o or O for octal, b or B for binary, d or D for decimal, h or H for
hexadecimal

* value is sequence of digits valid for specified base
— Values a through f (for hexadecimal base) are case-insensitive
 Examples:
— 4'b0000 // 4-bits binary
— 6'b101101 // 6-bits binary
— 8'hfC // 8-bits in hex

— Decimal is default base

— 17 // 17 decimal converted to appropriate
// number of unsigned bits (i.e. 32'b010001

Structural vs. Behavioral Modeling

Structural

e Starting with primitive
gates, build up a hierarchy
of components and specify
how they should be
connected

Behavioral

Describe behavior and let
synthesis tools select
internal components and
connections

N (S Viterbi (2
Structural Modeling

* Starting with primitive gates, [nodule ha(x,y,s,co);
build up a hierarchy of input x,y;
. output S,CO;
components and specify how :)
xor 1i1(s,X,Y);
they should be connected e A2 @5, 715
X Y endmodule
o module incrementer(a,z);
’ _<:: 11 Structural input [3:0] ag)
P specification of) g
paer a half adder output [3:8] z;
L wire [3:1] c;

A3 A2 Al AO ha hae(a[0],1,z[0],c[1]);
:__"___0_3 _____ c2 | 51____}__7 ha hal(a[1],c[1],z[1],c[2]);
[y ‘ X Y | XY ‘ X Y || ha ha2(a[2],c[2],z[2],c[3]);
| 4 Co HA Co HA Co HA CoHA || ha ha3(a[3],c[3],2[3],);

: S S S S : endmodule
R F==-== Foo--- ==
Z3 Z2 z1 Z0

Use half adders to structurally describe an
incrementer

i, TS(“Viterbi

School of Engineering

Structural Modeling of Logic Gates

 Modules and primitive gates can be instantiated

using the following format:
module _name instance name(output, inputl, input2,..)

* |Input and outputs must be wire types

* Built-in supported Gates: and, or, not, nand,
nor, xor, Xxnor

module ml1(cl1l6,c8,c4,f);
input cl16,c8,c4;
output f;

F .
__i:x}__ wire nl;
C8
C4 X \\ or 1il(nl,c8,c4);

Cle B

\\ \ nand i2(f,c16,nl);
“n1” “i2” endmodule
N1 instance name

net (wire)

Verilog Description

i, TS(“Viterbi 9

School of Engineering

Instantiating User-Defined Modules

* Format: module name instance name(portl, port2, port3, ..)
* Positional mapping

— Signals of instantiation ports are associated using the order of module’s port
declaration (i.e. order is everything)

* Named mapping

— Signals of instantiation ports are explicitly associated with module’s ports (i.e.
order is unimportant)

— module name instance_name(.module port name(signal name),..);

module ha(x,y,s,co); module ha(x,y,s,co0);
endmodule §\l endmodule
module incréemehten(a,2); module incr

ha hao(a[9],1,z[0],c[1]); ha hao(.x

ces .s(zfo]),
endmodule y(1),

.co(c[1]));

Positional mapping

endmodule Named Mapping

Internal Signals

* Define signals (wire or reg) for each internal
signal/wire

module m2(x,y,z,f);

input x,y,z;
output f;
wire nl,n2,n3;

and ul(nl,x,z); // instance names need
and u2(n2,x,y); // not be declared é =) ::i::)»—F
not u3(n3,z); N2
or u4(f,nl,n2,n3);

i

N
;
w

endmodule

N UsCViterbi (p
School of Engineering

Behavioral Modeling

* Describe behavior and let synthesis tools select internal
components and connections

* Advantages:

— Easier to specify
— Synthesis tool can pick appropriate implementation (for

speed / area / etc.)

module incrementer(a,z);
input [3:0] a; Could instantiate an

output [3:0] z; appropriate
implementation (e.g.

assign z = a + 1'bl; \\> ripple-carry adder, a fast

endmodule carry-lookah.eafi adder,
etc.) or optimize the

design as needed

Use higher level operations and let synthesis
tools infer the necessary logic

- 00000000 USCViterbi
Operators

Operator types

Non-blocking / Blocking assignment (<=, =

Arithmetic (+, -, *, /, %)
Relational (<, <=, >, >=)
2-State Equality (0,1 only) (==,
4-State Equality (0,1,Z,X) (===
Logical (&&, ||, !)

Bitwise (~, &, |, », ~A
Reduction (&, ~&, |, ~[, », ~°
Shift (<<, >>)

Conditional (?:)

Concatenation and replication

=)

, 1==)

t}

School of Engineering

i, TS(“Viterbi

School of Engineering

assign Statement

 Used for combinational logic
expressions

F
* Must output to a wire signal type! c8 :Z>—'_}

C4

Cle B

* Can be used anywhere in the body of a

module’s code module ml1(cl1l6,c8,c4,f);
.] input cl6,c8,c4;
* All assign statements run in parallel output £;
* Change of any signal on RHS (right-hand wire nl;
side) triggers re-evaluation of LHS or il1(nl,c8,c4);
(output) nand i2(f,cl16,nl);
° Format: endmodule
— assign output = expr;
. '&’ means AND mOdu1e ml(C16, C8, C4,'F);
input cl6,c8,c4;

* ‘|” means OR

., output f;
* “means NOT
« ‘N means XOR assign f = ~(c16 & (c8 | c4));
* Can use arithmetic operators too (and endmodule

synthesis will infer adder, multiplier, etc.)

Multi-bit (Vector) Signals

Reference individual bits
or groups of bits by
placing the desired index
in brackets

(e.g. x[3] or x[2:1])
Form vector from
individual signals by
placing signals in
brackets

(i.e.{ }) and separate
with commas

module m1(x,f);
input [2:0] x;
output f;
// £ = minterm 5
assign f = x[2] & ~x[1] & x[0];

endmodule

module incrementer(a,x,y,z);

input [2:0] a;
output x,y,z;

assign {x,y,z} = a + 1;

endmodule

e — ()5 \terbi
More Assign Statement

e (Can be used with other

operators besides Simple module ml(x,y,sub,s,cout,d,z,f,g);
logic functions input — [3:0] x,y;
input sub;
— Arithmetic output [3:0] s,d;
. tput 3:0 5
(+, -, *, /,%=modulo/remainder) xtgﬂt [3:61 zout,ﬂg;
— Shifting (<<, >>) assign {cout,s} = {0,x} + {0,y};
) assign d = x - y;
— Relational assign f = (x == 4'h5);
(<, <=, >, >=, =, ==) assign g = (y < 9);
assign z = (sub==1) ? x-y : x+y;

* Produces a single bit output
(111 = true / Iol false) endmodule
Sample “Assign” statements

— Conditional operator (? :)

* Syntax:
condition ? statement if true : statement_if false;

i, TS(“Viterbi (2

School of Engineering

Always Block (Combinational)

Primary unit of parallelism in code
— always and assign statements run in parallel
— Statements w/in always blocks are executed
sequentially

Format

— always @(sensitivity list)
begin
statements
end

Always blocks are “executed” when there is a change
in a signal in the sensitivity list

When modeling combinational logic, sensitivity lists
should include ALL inputs (i.e. all signals in the RHS’s)
— Verilog2001 allows @* as a shorthand all RHS signals

Generation of a signal must be done within a single
always block (not spread across multiple always
blocks)
— Signals generated in an always block must be declared
type reg

module addsub(a,b,sub,s);

input [3:0] a,b;
input sub;

output reg [3:0] s;
reg [3:0] bmux;

always @(b,sub)

begin
if(sub == 1)
bmux <= ~b;
else
bmux <= b;
end
always @*
begin

S = a + bmux + sub;
end
endmodule

Always Block (Sequential)

Flip-flops (sequential logic)
are modeled using an
always block sensitive to the
edge (posedge or negedge)
of the clock
— block will only be executed on
the positive edge of the clock
Generally, use the non-
blocking assignment
operator (<=) in clocked
“always” blocks

module accumulator(x,z,clk,rst);

input [3:0] x;
input clk,rst;
output [3:0] z;

reg [3:0] z;
always @(posedge clk)
begin
if(rst == 1)
Z <= 4'b0000;
else
Z <= Z + X;
end
endmodule

Procedural Statements

 Must appear inside an always or initial block

* Procedural statements include
— if...else if...else...
— case statement
— for loop (usually unnecessary for describing logic)

— while Ioop (usually unnecessary for describing logic)

B (S Vierbi
If...Else If...Else Statements

o Syntax // 4-to-1 mux description oo
: always @* if(rst == 1)
if(expr) begin begin
statement; if(sel == 2'b00) ql <= 0;
. y <= 10; q2 <= 0;
else if(expr) else if(sel == 2'bo1l) end
statement; y <= 11; else
? else if(sel == 2'b10) begin
else y <= i2; ql <= d;
statement; else 92 <= ql;
y <= 13; end
end
* If multiple statements

exist in the body of
if...else if...else then
enclose in begin...end
construct

i, TS(“Viterbi

School of Engineering

Case Statements

o Syntax // 4-to-1 mux description
case(expr) always @(10,11,12,13,sel)
. begin
optionl: case(sel)
. L . - 10
begin 2°bo0: y <= i0;

2°bO1: y <= il;

statements; 2°b10: y <= i2;
end default: y <= i3;
. endcase
option2: statement; end

[default: statement;]
endcase

e Default statement is optional

* If multiple statements as the body of an option then enclose
in begin...end construct

— ()5 \terbi
More About Always Blocks

 When writing an always block your goal is to provide enough
of a description to allow the tools to fill in a truth table for
one more output signals
— Cases can be overwritten with the last assignment taking precedence

— Any use of loops or if statements is essentially "0-time" operation to
describe a truth table

reg f;

reg [2:0] a; A2 | Al [AO0 |F

always @* o |o |o |1

begin o |o |1 |1
f <=0; // all rows = © 0 1 0 0
// now overwrite desired o 11 1 1o
// locations with 1s T 1o 1o |2
if(a < 2) f <= 1;
else if(a == 3'b101) f <= 1; S e
else if(a % 3 == 1) f <= 1; S N I

end 1 {1 |1 |12

i, TS(Viterbi

Understanding Combinational Always
Blocks: Full Adder

* Consider a full adder (adds 3 bits to produce a 2-bit sum)
— Block diagram, truth table, and logic implementation shown below

* 4 different description approaches are shown in the subsequent slides
— Approach 1 is likely the easiest/preferred approach

— Approach 2-4 are there to illustrate how various Verilog constructs operate
and are interpreted

A2 A1 A0 |S1 |so «
A2 Al T Te 1o s v %
5
: : o 0o 1 |0 |1 - 7
X Y
o 1 o0 |o |1
s1«{c. . Ful c l— A0 o 1 1 |1 |o X:D—
outAdder n Y
1 0 o0 |o |1 L
T 1 0 1 |1 |o Cin —_)5:>_ Cou
1 1 o |1 |o v
S0 1 1 1 |1 |1 Cin —_>_

Approach 1 and 2

e Approach 1 (Preferred): Just use Verilog's built in operators

— Synthesis tool will determine logic

* Approach 2: Determine the logic yourself (via some
minimization approach) and describe the logic equations.

integer 1i;
wire [2:0] a;
wire [1:0] sum;

assign sum = a[2] + a[1] + a[@];

Approach 1

integer 1i;
wire [2:0] a;
wire [1:0] sum

e

assign sum[0Q]
assign sum[1]

a[2] ~ a[1] ~ a[e];
(a[2] & a[1]) |
(a[2] & a[e]) |
(a[1] & a[e]);

Approach 2

i, TS(“Viterbi

School of Engineering

Approach 3

e Describe the truth table uses cases or if statement

— Synthesis tool will determine logic

>
N
>
(Y
>
o
wn
=
wn
o

integer i;

reg [2:0] a;
reg [1:0] sum, cnt;
always @*
begin
if(a == 3'b000)
sum <= 2'b0o0;
else if(a == 3'be@1 || a == 3'b010 || a == 3'b100)
sum <= 2'b0O1l;
else if(a == 3'b011 || a == 3'b101 || a == 3'b110)
sum <= 2'bl0O;
else
sum <= 2'b1l1l;

R, P P, P, O O O O
R O O +» +» O O
B O B O B O L O
R B B O B O O O
R O O R O RrR B O

end

Approach 3

i, TS(“Viterbi s

School of Engineering

Approach 4

* Here a for loop executes in "0O-time" to determine the correct output

The key is that loops and if statements execute to determine/complete a truth table
which is then synthesized to logic

There is NO sequential logic inferred in this design, even though the description uses
sequence

Note: You almost never need for loops to describe hardware (Other than maybe
memory or register arrays)

integer i; A2 A1 A0 |S1 (so
reg [2:0] a;
reg [1:0] sum, cnt; L g 0 |9 0
always @* 0 0 1 |0 1
begin o 1 o |o |1
cnt = 0;
for(i=0; i < 3; i=i+l) 0 1 1 |1 0
begin 1 o o |o |2
cnt = cnt + a[i];
end 1 0 1 |1 0
sum <= cnt; 1 1 0 1 0
end 1 1 1 1 1
Approach 4

UNDERSTANDING SIMULATION
AND TIME

Understanding Simulation Timing

* When expressing parallelism, an understanding of
how time works is crucial

* Even though ‘always’ and ‘assign’ statements specify
operations to be run in parallel, simulator tools run
on traditional computers that can only execute
sequential operations

* To maintain the appearance of parallelism, the
simulator keeps track of events in a sorted event
gueue and updates signal values at appropriate
times, triggering more statements to be executed

Explicit Time Delays

module ml tb;

* In testbenches, explicit e h s
delays can be specified e beein
using ‘# delay' #5; // delay 5 ns (ns = default)
— When this is done, the oo
RHS of the expression is 28 gl CEEy & RS e
evaluated at time t but the a = 1;
LHS is not updated until enjr?lgdule
t+delay
O ns a=1
Simulator Event Queue 5 ns 2=0
5ns b=0
7 ns a=1

Explicit Time Delays

e Assignments to the same
signal without an
intervening delay will cause

only the last assighment to
be seen

Simulator Event Queue

module ml_tb;
reg a,b,c;
wire w,X,y,z;

initial begin
a =1;
#5 // delay 5 ns (ns = default)
a = 0;
a =1;
end
endmodule

O ns a=1

5ns a=p->1

i, TS(“Viterbi

School of Engineering

Explicit Propagation Delay

* When modeling logic, explicit propagation
delays can be inserted

— Normally behavioral descriptions should avoid
this since the delays will be determined by the
synthesis tools

* Verilog supports different propagation
delay paradigms

* One paradigm is to specify the delay with
the RHS of an assignment in an always
block.

* When this is done, the RHS of the
expression is evaluated at time t but the
LHS is not updated until t+delay

* Thisis called “transport” delay since we are
specifying the time to transport the value
from inputs to output

module ml(a,b,c,w,x,y,z);
input a,b,c;
output w,X,y,z;

always @(a,b,c)
begin

W <= #4 a " b;
X <= #5 b | c;
end

endmodule

O ns a,b,c=0,0,1
4 ns w=0
5ns x=1

Simulator Event Queue

i, TS(“Viterbi €

School of Engineering

Implicit Time Delays

Normal behavioral descriptions don’t
model propagation delay until the
code is synthesized

* To operate correctly the simulators

event queue must have some notion
of what happens first, second, third,
etc.

Delta (6) time is used

— Delta times are purely for ordering events
and all occur in “0 simulated time”

— The first event(s) occur at time 0 ns
— Next event(s) occur at time 0 + 6
— Next event(s) occur at time 0 + 26

always @(a,b,c,w,x,y)

begin
w <= a ™ b;
X <=b | c;
y <= w & X;

Equivalent
Implementations

dZ =Y assign w = a ~ b;
en assign x = b | c;
assign y = w & x;

assign z = ~y;
Time Event Triggers

Ons a,b,c=0,0,1 wand x assigns
0+6 w=0, x=1 y assign
0+26 y=0 Z assign
0+36 z=1 Anything

sensitive to z

Simulator Event Queue

TESTBENCHES

Testbenches

Generate input stimulus (values) to
your design over time

Simulator will run the inputs through
the circuit you described and find
what the output from your circuit
would be

Designer checks whether the output
is as expected, given the input
seguence

Testbenches consist of code to
generate the inputs as well as
instantiating the design/unit under
test and possibly automatically
checking the results

Testbench Module

Code to generate

input stimulus

A

y ¥

y ¥

Inputs

Outputs

Unit Under Test (UUT)
(Your design module)

Testbench Modules

* Declared as a module
just like the design
circuit

* No inputs or outputs

module my_tb;
// testbench code

endmodule

Testbench Signals

* Declare signals in the
testbench for the inputs and
outputs of the design under
test

— inputs to your design should
be declared type ‘reg’ in the
testbench (since you are
driving them and their value
should be retained until you
change them)

— outputs from your design
should be declared type ‘wire
since your design is driving
them

’

module mi(x,y,z,f,g);

input x,y,z;
output f,g;

Unit Under Test

module my_tb;

r‘eg X)y)z.;
wire f,g;

endmodule

Testbench

UUT Instantiation

Instantiate your design module
as a component (just like you
instantiate a gate in you design)

Pass the input and output
signals to the ports of the
design

For designs with more than 4 or
5 ports, use named mapping
rather than positional mapping

module ml(x,y,z,f,g);

input Xx,y,z;
output f,g;

endmodule

Unit Under Test

module my_tb;

reg X,y,z;
wire f,g;

ml uut(x,y,z,f,g);
/¥ ml uut(.x(x), .y(y),
.2(z), .f(f),
-8(8));
*/
endmodule

Testbench

i, TS(“Viterbi

School of Engineering

Generating Input Stimulus (Values)

* Now use Verilog code module mi(x,y,2,¥,g);
] input Xx,y,z;
to generate the input output f,g;
values over a period of T
t| me Unit Under Test

module my_tb;

reg X,y,z;
wire f,g;

ml uut(x,y,z,f,g);

/* m1l uut(.x(x), .y(y),
.z(z), .f(f),
-8(8));

)

endmodule

Testbench

Initial Block Statement

* Tells the simulator to run this
code just once (vs. always block
that runs on changes in
sensitivity list signals)

* Inside the “initial” block we can

write code to generate values
on the inputs to our design

* Use “begin...end” to bracket the
code (similarto{..}in Cor
Java)

module my_tb;

r‘eg x.’y.’z;
wire f,g;

ml uut(x,y,z,f,g);
initial
begin

// input stimulus
// code

end

endmodule

Testbench

Assignment Statement

* Use ‘="to assign a
signal a value

— Can assign constants
*x=0; y=1
— Can assign logical
relationships
* Xx="Xx //x=notx
e x=y&z //x=yandz

module my_tb;

r‘eg X,y,Z;
wire f,g;

ml uut(x,y,z,f,g);
initial
begin
X = 0;
end

endmodule

Testbench

Can assign multiple signals at module my_tb;
Once . . reg X,y,Z_;
Place signals in brackets wire f,g;
(i.e. { }) and separate with
1 uut f ;
CommaS m uu (x)y)zJ)g))
Multiple bit constants can be ;“11,:131
written in the form: €gLn
num_bits ’{b,0,d,h} value {X—' Y, Z} = 37 b@@@;
— 4’b0000 // 4-bits binary end
— 6’b101101 // 6-bits binary endmodule

— 8'hFF // 8-bits in hex
— Decimal is default
— 17 // 17 decimal

Testbench

 We must explicitly
indicate when and how
much time should pass
between assignments

e Statement (‘#’ indicates a
time delay):
—#10; //wait 10 ns;
—#50; //wait 50 ns;

e Default timescale is
nanoseconds (ns)

module my_tb;

r‘eg X,y,Z;
wire f,g;

ml dut(x,y,z,f,g);
initial
begin

{x,y,z} = 3°b000;
#10;
{x,y,z} = 3°beo1l;
#25;

end

endmodule

Testbench

i, TS(“Viterbi

School of Engineering

Integer Signal Type

* To model a collection of bits
representing a number, declare
signals as type ‘integer’

* Assigning an integer to a bit or
group of bits will cause them to
get the binary equivalent

* Assigning an integer value too
large for the number of bits will
cause just the LSB’s of the
number to be assigned

— Assigning 8,,=1000, to a 3-bit value
will cause the 3-bit value to be 000
(i.e. the 3 LSB’s of 1000)

module my_tb;

reg

w)x)sz;

integer num;

initial
begin

end

num = 15;
{w,x,y,z} = num;
// assigns

// wW,X,y,z = 1111
#10;

num = num+1;

// num = 16
{w,X,y,2z} = num;
// W,X,y,z = 0000

endmodule

Testbench

For loop

* Integers can also be usec

as program control
variables

* Verilog supports ‘for’
loops to repeatedly
execute a statement

* Format:

— for(initial_condition;

end_condition; incremen

statement)

module my_tb;

reg a,b;
integer 1; You can’t do
oL “iI++” as in
initial C/C++ or Java
begin /
for(i=0;i<4;i=i+1)
begin . a,b = 00,
{a,b} = 1; then 01,
then 10,
end then 11
end
endmodule

Here, ‘i’ acts as a counter for a loop.
Each time through the loop, i is
incremented and then the decimal value
IS converted to binary and assigned to a
and b

For loop

e Question: How much time

passes between
assignments to {a,b}

Answer: O time...in fact if
you look at a waveform,
{a,b} will just be equal to
1,1...you’ll never see any
other combinations

We must explicitly insert
time delays!

module my_tb;

reg a,b;
integer i;
initial
begin
for(i=0;i<4;i=i+1)
begin
{a,b} = i;
#10;
end
end
endmodule

Now, 10 nanoseconds will pass before
we start the next iteration of the loop

i, TS(“Viterbi -«

School of Engineering

Generating Sequential Stimulus

* Clock Generation module my_tb;
— Initialize in an initial block res clk, rst, s;
— Continue toggling via an always always #5 clk = ~clk;
process
* Reset generation initial begin
— Activate in initial block clk = 15 rst = 1; s=0;

// wait 2 clocks
@(posedge clk);
@(posedge clk);

— Deactivate after some period of
time

— Can wait for each clock edge via

rst = 0;
@(posedge clk) s=1;
@(posedge clk);
CLK | B s=0;
end
RST endmodule
S

Generated stimulus

BLOCKING VS. NON-BLOCKING
ASSIGNMENT

i, TS(“Viterbi 2

School of Engineering

(Non) Blocking Assignment Overview

* There are two different assignment operators in Verilog (and
most HDLs)

* Non-blocking (<=): Schedule an update for the value of a
variable for the next possible simulation (aka delta) time
— Similar to "propagation" delay
— More common in hardware descriptions
* Blocking (=): Update the value of a signal/variable immediately
(in current and simulated time)

— Similar to assignment in software programming languages (variable
immediately updates)

— More common for simulation/testbenches

i, TS(“Viterbi

School of Engineering

(Non-) Blocking Assignment Example 1

ais0
Scheduleato be 1
Scheduleato be 1

ais0
Updateatobel
Updateato be 2

reg [31:0] a;
initial a = 0;
always (@posedge clk)
begin

a <= a+l;

a <= a+l;
end

reg [31:0] a;
initial a = 0;
always (@posedge clk)

begin
a = a+l;
a = a+l;

Simulated Scheduled
Time Event
t=0
t=0 @t=0+0, a=1
t=0 @t=0+0, a=1
t=0 +0
Simulated Scheduled
Time Event
t=0
t=0
t=0

i, TS(“Viterbi -«

School of Engineering

(Non-) Blocking Assignment Example 2

Scheduleatobe 1
Schedule b to be 0

Updateatobel
Update b to be 1

Simulated Event
reg a, b; Time
t=0
always (@posedge clk)
begin — — _
a <= b; t=0 @t=0+0, a=1
b <= as = = =
Wy t=0 @t=0+0, b=0
t=0 +O
Simulated Event
reg a, b; Time
t=0
always (@posedge clk)
begin —
5 e o t=0
b = a; =
end =0

i, TS(“Viterbi

School of Engineering

Synthesis: Blocking vs. Non-Blocking

reg a,b;
always @(posedge clk)
begin

* Non-blocking: Each updated signal S <= b;
will result in a separate register (flip- b <= a;

end
flop)

A

D Q D Q
D-FF D-FF

CLK—> CLK—>

Synthesis Result with
Non-Blocking Assignment

* Blocking: Due to the semantics of

the blocking assignment, the code to s (posedge <1K)
the right results in a single register SH
feedback the same value. emt; - a;
B
D Q
CLK—> D-FF

Synthesis Result with
Blocking Assignment

I (JSC Viterbi
Non-Blocking Assighnment and Registered

Outputs

* General rule: Use non-blocking assignments when describing a

registered (clocked) output

— Your description should work equally well regardless of the order in which
the simulator executes always blocks

— With blocking assignments, different ordering may lead to different

simulation results

reg d,qo,q1;
// block 1
always @(posedge clk)
begin
qo <= d;
end
// block 2
always @(posedge clk)
begin
ql <= go;
end

Same simulation results
regardless of execution order

CLK—

O

D-FF

qo0

CLK—

O

D-FF

ql

reg d,qo,ql;
// block 1
always @(posedge clk)
begin
qe = d;
end
// block 2
always @(posedge clk)
begin
ql = qo;
end

If Block 2 executes first, same result as non-
blocking (q1 = q0 & q0 = d)...LUCKY!
If Block 1 executes first, g1 = d...BAD!!

i, TS(“Viterbi

School of Engineering

Review: Full-Adder Description

e Recall the description of a full-adder below
* Should we use blocking or non-blocking assignments

for cnt?
integer i; A2 A1 A0 |S1 (so
reg [2:0] a;
reg [1:0] sum, cnt; 0 0 0 0 0
always @* 0 0 1 |0 1
begin o 1 o |o |12
cnt = 0;
for(i=0; i < 3; i=i+l) 0 1 1 |1 0
begin 1 o0 o0 |o |1
cnt = cnt + a[i];
end 1 0 1 |1 |o
sum <= cnt; 1 1 0 1 0
end 1 1 1 1 1
Approach 4

i, TS(“Viterbi

School of Engineering

Review: Full-Adder Description

e Recall the description of a full-adder below
* Should we use blocking or non-blocking assignments

for cnt?
integer i; A2 A1 A0 |S1 (so
reg [2:0] a;
reg [1:0] sum, cnt; 0 0 0 0 0
always @* 0 0 1 |0 1
begin o 1 o |o |12
cnt = 0;
for(i=0; i < 3; i=i+l) 0 1 1 |1 0
begin 1 o0 o0 |o |1
cnt = cnt + a[i];
end 1 0 1 |1 |o
sum <= cnt; 1 1 0 1 0
end 1 1 1 1 1
Approach 4

i, TS(“Viterbi

School of Engineering

Missing Cases: Inferring Latches

* Take care when describing

combinational processes to cover all
input cases or provide a default value

reg f; reg [2:0] a; reg f; reg [2:0] a;
always @* always @*
begin begin

if(a < 2) f <= 1; f <= 0;

else if(a »>= 4) f <= 1; if(a < 2) f <= 1;

else f <= 0; else if(a >= 4) f <= 1;
end end

A2 | AL [A0 | F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

reg f; reg [2:0] a;

always @*

begin

if(a < 2) f <= 1;

else if(a >= 4) f <= 1;

// missing else to cover

// cases 2 (010) and 3 (011)

Al A2

end

Al ﬁ>7[> Qb— F WhenA2A1=01
D-Latch

our description

Correct Description:

Synthesis/Simulation View Synthesis/Simulation View

EN «4—____ indicates that f
Ay —O should retain its

Incorrect Description: value
(thus the latch)

* Missing a sighal in the sensitivity list of a
combinational process will lead to strange simulation
behavior (but generally correct synthesis)

reg

.F

end

f; wire a,b,c;

always @(a or b or c) // or @*
begin

<= 0;

if((a==0 && b==1) ||

(b==1 && c==1))
f <= 1;

A —O
B E—
F
e -
C _
Correct Description:
Synthesis/Simulation View

reg f; wire a,b,c;
always @(a or b)
Begin
f <= 0;
if((a==0 && b==1) ||
(b==1 && c==1))

f <= 1;
end
A —Q
A —J B —
B — D
F D-Latch Q
B —
s —) e - TEN
C —1 _
Change in A or B
(but not C)
Synthesis View Simulation View

i, TS(“Viterbi

School of Engineering

Sensitivity List: Synchronous vs. Asynchronous
Reset

e Asynchronous Reset:

— Qs initialized when the reset signal is asserted (regardless of the clock
state)

* Synchronous Reset

— Qis initialized only on a clock edge AND the reset signal is asserted

D —D Q Q

CLK _> D-FF
CLR
RESET—I
always @(posedge clk, posedge reset) always @(posedge clk)
begin begin
if(reset == 1) if(reset == 1)
q <= 0; q <= 0;
else else
q <= d; q <= d;
end end

Asynchronous Reset Synchronous Reset

DESIGN APPROACHES

- USCViterbi
General Tips

* Don't start coding...start drawing

— Sketch out the physical, component-level block diagram of the design

School of Engineering

— ldentify what happens per clock (i.e. clock boundaries or where
registers are needed)

e Partition your design

— Identify repeated components and extract modules/hierarchy

— See slides below to help organize how you will describe your logic

* Setup a testbench and test setup

— Take time to create a useful waveform setup (.do) files

CE
P[31:0]

PE
RST-

D[31:0] Q[31:0]

Reg

CLK

CLR
CLK

Q[31:0]

I (S C Viterbi (62
Partitioning 1

* Given the counter design below a
few methods of partitioning are
possible

* Option 1: Separate combinational
and sequential process

* Option 2: Combined process

L

Q[31:0]

+ 1 0
0001 D[31:0] Q[31:0]
CE
P[31:0] \iIJ Reg
PE
RST: CLR
CLK CLK

Correct Description:
Synthesis/Simulation View

School of Engineering

reg [31:0] q; wire [31:0] p;
wire ce, pe, rst, clk;
reg [31:0] d;
always @*
begin
if(pe == 1) d <= p;
else if(ce == 1) d <= q+1;
else d <= q;
end
always @(posedge clk)
begin
if(clr == 1) q <= 0;
else q <= d;

end Separate Processes

reg [31:0] q; wire [31:0] p;
wire ce, pe, rst, clk;

always @(posedge clk)

begin
if(clr == 1) q <= 0;
else if(pe == 1) q <= p;
else if(ce == 1) q <= q+1;

end Combined Processes

Traffic Light State Machine

USC Viterbi

School of Engineering

On Reset
\\(power on)
module trafficlight(sl, s2, clk, rst, msg, ssg, mtg, msr, always @(posedge clk)
ssr, mtr); begin
input s1, s2, clk, rst; if(rst == 1)
output msg, ssg, mtg, msr, ssr, mtr; state <= SS;
else
reg msg, ssg, mtg, msr, ssr, mtr; state <= state_d;
end
reg [1:0] state;
reg [1:0] state_d; always @(state)
wire S; begin
parameter MT = 2'bll; mtg = O0; msg = @; ssg = 0;
parameter MS = 2'b10; mtr = ©; msr = @; ssr = 0;
parameter SS = 2'b00; case(state)
MT:
assign s = s1 | s2; begin
always @(state, s) mtg = 1; ssr = 1; msr = 1;
begin end
if(state == MS) MS:
state_d = SS; begin
else if(state == SS) msg = 1; ssr = 1; mtr = 1;
if(s == 1) end
state_d = MT; SS:
else begin
state_d = MS; ssg = 1; msr = 1; mtr = 1;
else // state == MT end
state_d = MS; endcase
end end

endmodul

e

- 01 USCViterbi ,
Partitioning 2

* One approach to describing your reg [31:0] q1, q2, a, b;
. . A . reg [2:0] op;
design is to break it into cones of logic | uire rst, cik;
— A cone of logic ends with a registered always @(posedge clk)
signal/output and includes all the signals | begin

that feed that registered output (usually if(rst == 1) ql <= 0;

else
back to the previous registers or primary ql <= a + {b[29:0],2'b0O};
inputs) end
always @(posedge clk)
begin

if(rst == 1) g2 <= 0;

else if(op == 3'b000)

Cone 1 q2 <= a+b;

else if(op == 3'b001)
g2 <= a-b;

end

Cone 2

-
3]
i)
R
O
o
14
o
O
o
v
o
=
©
=
o

I (S C Viterbi (2
Partitioning 3

« When an output (e.g. QP1 below) is
needed in multiple cones it is likely
easiest to produce that in a separate
process to produce an intermediate
output that can be used in multiple

other processes

))
0001

CE
P[31:0]

PE
RST:

| D[31:0] Q[31:0]

Reg

CLK

CLR
CLK

A[31:0]

Q[31:0]

R[31:0]

|
|

School of Engineering

reg [31:0] q;
wire [31:0] p, r, a, qpl;
wire rst, clk, ce, pe;

assign qpl = q + 1;

always @(posedge clk)
begin
if(rst == 1) q <= 0;
else if(pe == 1) q <= p;
else if(ce == 1) q <= qpl;
end

assign r = qpl + a;

Partitioning 4

* For combinational processes
(muxes and adders) consider
using assign statements (over
always blocks)

// mux
assign y = (sel ==

// adder
assign y = x + 1;

1) ? a :

b;

	Slide 1: Verilog HDL
	Slide 2: Purpose
	Slide 3: Differences from Software
	Slide 4: HW Description Differences
	Slide 5: HW Description Differences
	Slide 6: Verilog Basics
	Slide 7: Modules
	Slide 8: Ports
	Slide 9: Signal Types
	Slide 10: Ports Revisited
	Slide 11: Constants
	Slide 12: Structural vs. Behavioral Modeling
	Slide 13: Structural Modeling
	Slide 14: Structural Modeling of Logic Gates
	Slide 15: Instantiating User-Defined Modules
	Slide 16: Internal Signals
	Slide 17: Behavioral Modeling
	Slide 18: Operators
	Slide 19: assign Statement
	Slide 20: Multi-bit (Vector) Signals
	Slide 21: More Assign Statement
	Slide 22: Always Block (Combinational)
	Slide 23: Always Block (Sequential)
	Slide 24: Procedural Statements
	Slide 25: If…Else If…Else Statements
	Slide 26: Case Statements
	Slide 27: More About Always Blocks
	Slide 28: Understanding Combinational Always Blocks: Full Adder
	Slide 29: Approach 1 and 2
	Slide 30: Approach 3
	Slide 31: Approach 4
	Slide 32: Understanding Simulation and Time
	Slide 33: Understanding Simulation Timing
	Slide 34: Explicit Time Delays
	Slide 35: Explicit Time Delays
	Slide 36: Explicit Propagation Delay
	Slide 37: Implicit Time Delays
	Slide 38: Testbenches
	Slide 39: Testbenches
	Slide 40: Testbench Modules
	Slide 41: Testbench Signals
	Slide 42: UUT Instantiation
	Slide 43: Generating Input Stimulus (Values)
	Slide 44: Initial Block Statement
	Slide 45: Assignment Statement
	Slide 46: Aggregate Assignment Statement
	Slide 47: Time
	Slide 48: Integer Signal Type
	Slide 49: For loop
	Slide 50: For loop
	Slide 51: Generating Sequential Stimulus
	Slide 52: Blocking vs. Non-Blocking Assignment
	Slide 53: (Non) Blocking Assignment Overview
	Slide 54: (Non-) Blocking Assignment Example 1
	Slide 55: (Non-) Blocking Assignment Example 2
	Slide 56: Synthesis: Blocking vs. Non-Blocking
	Slide 57: Non-Blocking Assignment and Registered Outputs
	Slide 58: Review: Full-Adder Description
	Slide 59: Review: Full-Adder Description
	Slide 60: Missing Cases: Inferring Latches
	Slide 61: Missing Cases: Sensitivity Lists
	Slide 62: Sensitivity List: Synchronous vs. Asynchronous Reset
	Slide 63: Design Approaches
	Slide 64: General Tips
	Slide 65: Partitioning 1
	Slide 66: Traffic Light State Machine
	Slide 67: Partitioning 2
	Slide 68: Partitioning 3
	Slide 69: Partitioning 4

