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EE 457 Unit 7b

Main Memory Organization
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Motivation

• Organize main memory to 

– Facilitate byte-addressability 

while maintaining…

– Efficient fetching of the words in a cache block

• Low order interleaving (L.O.I) helps us achieve this
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Interleaving Analogy

• Consider a journal consisting of 1000 pages (000-999) bound in 
– 10 volumes (0-9) of 

– 100 pages each (00-99)

Method I
(Consecutive pages 

in a volume)

Method II
(Consecutive pages in 

consecutive volumes)
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…

991

…
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…
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Volume 9

Volume 0

Volume 1

Volume 9
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Interleaving Analogy

• Example: Say article 73 runs from page 730-739
– In Method I: Article 73 is completely in volume 7

– In Method II: The 73rd page of each volume form article 73 as shown 
below

• Which do you prefer?
– If reading the article you may say method I

– If you have to make a copy of the article and you have 10 photocopy 
machines with 10 friends to help you might say method II
• Back to the scenario of reading the article, given those same 10 friends they could 

open each volume to page 73 for you so that you can read in a continuous manner

Page 730 is page 73 of volume 0

Page 731 is page 73 of volume 1

…

Page 739 is page 73 of volume 9

Low Order 

Interleaving
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Byte Addressability

1. Intel 8085: 16-bit addr., 8-bit data, 
byte addressable processor.

Memory space: 216 = 64KB, A15-A0, D7-D0

2. Intel 8086: 20-bit addr., 16-bit data, byte 
addressable, little-endian proc.

Memory space: 220 = 1MB, A19-A0 
[A19-A1, BHE (BE1), A0 (BE0)], D15-D0

3. Intel 80386: 32-bit addr., 32-bit data, 
byte addressable, little-endian proc.

Memory space: 232 = 4GB, A31-A0 
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

A15-A0

64K

8

A19-A1

½ MB

8

½ MB

8

D[15:8] D[7:0]

BHE=0 A0=0

A31-A2

8

1 GB

8

D[31:24] D[7:0]

BE3

88

BE2 BE1 BE0

Byte 43 Byte 42 Byte 41 Byte 40 = Word 40

Byte 41 Byte 40 = Word 40
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Byte Addressability
4. Intel 80386: 32-bit addr., 32-bit data, byte 

addressable, big-endian proc.

Memory space: 232 = 4GB, A31-A0 
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

5. Little-Endian system, 2-way interleaved system: 
32-bit addr., 32-bit data, 
byte addressable
(Narrow, 32-bit data bus b/w mem. and cache)

Memory space: 232 = 4GB, A31-A0 
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

6. Same as 5 above, 
but 4-way interleaved

A31-A2

8

1 GB

8

D[31:24] D[7:0]

BE0

88

BE1 BE2 BE3

Byte 40 Byte 41 Byte 42 Byte 43 = Word 40

A31-A3

8

½  GB

D[31:24]

8 8 8

BE3 BE2 BE1 BE0 BE3 BE2 BE1 BE0

8 8 8 8

D[7:0] D[31:24] D[7:0]

XCVR XCVR

D[31:0]

Narrow Bus

A31-A4

A2=1

A2=0

XCVR XCVR XCVR XCVR

D[31:0]

A3,A2 = 11 A3,A2 = 10 A3,A2 = 01 A3,A2 = 00

¼   

GB
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2-Way L.O.I.
• System address bus uses

– A1:A0 and size info to 
generate /BE3../BE0 
(Byte Enables)
• In a 32-bit data bus, we need 2 

address bits to produce the 4 
BE’s

• In a 64-bit data bus, we would 
need 3 address bits to produce 8 
BE’s

– Lower order bits to select a 
“bank”
• Only 1 address bit, A2, to select 

one of 2 banks

– Upper bits connect to each 
memory chip
• Each memory chip is just a 

collection of ½ GB requiring 29 
address bits…we can connect 
appropriate 29 bits

A31-A3

A
2

8
-A

0

8

½  GB

D[31:24]

A
2

8
-A

0

8 8 8

BE3 BE2 BE1 BE0 BE3 BE2 BE1 BE0

8 8 8 8

D[7:0] D[31:24] D[7:0]

XCVR XCVR

D[31:0]

Narrow Bus

A2=1 A2=0

A2=1 A2=0

Shift of 3-bits in 
address 

connections

Bank 1 Bank 0
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4-Way L.O.I.

• System address bus 
uses
– A1:A0 and size info to 

generate /BEi (Byte 
Enables)

– Lower order bits to 
select a “bank”

– Upper bits connect to 
each memory chip

Shift of 4-bits in address 
connections

Bank 3

A31-A4

A
2

7
-0

A
2

7
-0

A
2

7
-0

A
2

7
-0

XCVR XCVR XCVR XCVR

D[31:0]

A3,A2 = 

11

A3,A2 = 

10

A3,A2 = 

01

A3,A2 = 

00

¼   

GB

Bank 2 Bank 3 Bank 2



9

Organization Options

Bus

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Multiplexer

Mem.

Bank

0

Mem.

Bank

1

Mem.

Bank

2

Mem.

Bank

3

Bus

CPU

Cache

c.) EE 457 Interleaved
b.) Wide Memory 

Organization

a.) One-word-wide 

memory Organization



10

Organization Comparison

• Assume following latencies

• Find time to access a cache line of 4-words

Send address to MM 1 clock

MM (DRAM) Access Time 15 clocks

Transfer time for one word 1 clock

a. Narrow Memory 1 + 4*15 + 4*1 = 65 clocks
(assume mem. controller will 

auto-increment address)

b. Wide Memory 1 + 15 + 1 = 17 clocks

c. Interleaved Memory 1 + 15 + 4*1 = 20 clocks
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Example

• Consider a set-associative mapping and physical organization of main 
memory, cache data RAMs, and cache tag RAMs.

• Specs:

– 32-bit physical address, byte-addressable system

– Cache Size = 64KB

– Block Size = 4 words (16 bytes)

– Set Size = 4 blocks (64 bytes)

TAG SET WORD BYTE

Member

A1 – A0A3 – A2A13-A4A31-A14

/BE3 - /BE0

# of MM Blocks = 232 / 24 = 228

# of Cache Blocks = 216 / 24 = 212

# of Sets = 212 cache blocks / 22 blocks/set = 210

# of Groups = 228 MM blocks / 210 sets = 218



12

Tag RAM Example

Set

Tag RAM

(Holding Tags & Valid 

Bits for Way 0)

DI

DO
A13-A4

A31-A14 

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid 

Bits for Way 2)

DI

DO
A13-A4

A31-A14 

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid 

Bits for Way 1)

DI

DO
A13-A4

A31-A14 

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid 

Bits for Way 3)

DI

DO
A13-A4

A31-A14 

+ V-bit

A

= Hit/Miss

Tag
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MM & Data RAM Example
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DRAM TECHNOLOGIES
Main memory organization



15

Memory Module Organization
• Memory module is designed to 

always access data in chunks the 
size of the data bus (64-bit data 
bus = 64-bit accesses)

• Parallelizes memory access by 
accessing the byte at the same 
location in all (8) memory chips 
at once 

• Only the desired portion will be 
forwarded to the registers

• Note the difference between 
system processor address and 
local memory chip addresses

A4...

500x1

0x0 F8

22...

8A0x1

0x0 2C

6D...

570x1

0x0 E4

A
[3

1
:3

]

D[63:56] D[15:8] D[7:0]

DWord at address 0x000c:   A[31:0] = 0000…1100

0000..01

578A

Processor with 64-bit Data Bus

fb 8A 57c6 13a79850

50

A[2:0] + SIZE
100 DWORD

Byte/     7         6          5           4            3         2         1          0

Lane

Processor Core / Registers

• Each chip on the module reads 1 byte and 
outputs it to form a collectively larger word 
on the data bus (i.e. 8-bytes = 64-bits)

1

Control

0
0
0

0
..

0
1

0x5098a7fb
2

4

3

5

017

f e 8

101117

Byte address from 

individual chip perspective

Byte address from 

system/processor perspective
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Memory Chip Organization

• Memory technologies share the 
same layout but differ in their 
cell implementation
– SRAM
– DRAM

• Memories require the row bits 
be sent first and are used to 
select one row (aka "word line")
– Uses a hardware component 

known as a decoder

• All cells in the selected row 
access their data bits and 
output them on their respective 
"bit line"

• The column address is sent next 
and used to select the desired  
8 bit lines (i.e. 1 byte)
– Uses a hardware component 

known as a mux

A
d
d
r. D

e
c
o
d
e
r

Row 

Addr

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[1024]

Amplifiers & Column Mux

1K Bit Lines

Data[7:0] in/out

X
X

X
R

o
w

C
o
l

0
0
0
0
0
0
0
0
0
1

0
0

0
0

0
1

0
0
0
0

0
x
0
0
0
4
1
0

Column 

Addr

10-bits

Cell Cell
WL[1]

1 1

1 0

0 0

SRAM and DRAM differ 

in how each cell is 

made, but the 

organization is roughly 

the same
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SRAM vs. DRAM

• Dynamic RAM (DRAM) Cells (store 1 bit)
– Will lose values if not refreshed periodically every few milliseconds 

[i.e. dynamic]

– Extremely small (1 Transistor & a capacitor)

• Means we can have very high density (GB of RAM)

– Small circuits require more time to access the bit

• SLOW

– Used for main memory

• Static RAM (SRAM) Cells (store 1 bit)
– Will retain values as long as power is on [i.e. static]

– Larger (6 transistors)

– Larger circuitry can access bit faster 

• FASTER

– Used for cache memory

This Photo by Unknown Author 

is licensed under CC BY-NC

http://kellblog.com/2013/12/01/the-customer-acquisition-cost-cac-ratio-another-subtle-saas-metric/
https://creativecommons.org/licenses/by-nc/4.0/
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Memory Controller

• DRAMs require non-trivial hardware 
controller (aka memory controller)

– To split up the address and send the 
row and column address as the right 
time

– To periodically refresh the DRAM cells

– Plus more…

• Used to require a separate chip from 
the processor

• But due to scaling (i.e. Moore's Law) 
most processors integrate the 
controller on-chip 

– Helps reduce access time since fewer 
hops

Legacy architectures used separate 

chipsets for the memory and I/O controller

Current general-purpose processors usually 

integrate the memory controller on chip.
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Implications of Memory Technology 

• Memory latency of a single access using 
current DRAM technology will be slow

• We must improve bandwidth  

– Idea 1: Access more than just a single word at a 
time (to exploit spatial locality)

– Technology: Fast Page Mode, DDR SDRAM, etc.

– Idea 2: Increase number of accesses serviced in 
parallel (in-flight accesses)

– Technology: Banking



20

Legacy DRAM Timing

• Can have only a single access “in-flight” at once

• Memory controller must send row and column address 
portions for each access

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Row 

Address

Column

Address

Data in / out

Memory Array

Legacy DRAM

(Must present new Row/Column address for each access)

MC Address 

Bus

Data

Bus

/CAS

/RAS

Row 

Address

Column 

Address

Data 

In / Out

Row 

Address

Column 

Address

Data 

In / Out

Timing 

Generator/CAS

/RAS

tRC

tRAC

tRC= Cycle Time (110ns) = Time before next access 

can start

tRAC=Access Time (60ns)  = Time until data is valid
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Fast Page Mode DRAM Timing

• Can provide multiple column addresses with 
only one row address

R
o
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e

c
o

d
e

r

Column Muxes

Row 

Address

Column

Address

Data in / out

Fast Page Mode

(Future address that fall in same row can 

pull data from the latched row)

Memory Array

Timing 

Generator/CAS

/RAS

R
e
g
.

MC Address 

Bus

Data

Bus

/CAS

/RAS

Row 

Address

Column 

Address

Data 

In / Out

Column 

Address

Data 

In / Out



22

Synchronous DRAM Timing

• Registers the column address and automatically increments it, 
accessing n sequential data words in n successive clocks called 
bursts… n=4 or 8 usually)

R
o
w

 D
e
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d
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r

Column Muxes

Column Latch/Register
Column

Address

Data in / outSDRAM (Synchronous DRAM)

Addition of clock signal.  Will get up to ‘n’ consecutive 

words in the next ‘n’ clocks after column address is sent

R
e
g
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n
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Memory Array

Timing 

Generator/CAS
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Row 
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R
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g
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Row 
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Column 
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CLK

Data 

i

Data 

i+1

Data 

i+2

Data 
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CLK
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Bus
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/RAS

Row 

Address

Column 
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CLK

Data 

i

Data 
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i+2

Data 

i+3
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DDR SDRAM Timing

• Double data rate access data every half clock 
cycle
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Column Muxes

Column Latch/Register
Column

Address

Data in / outDDR SDRAM (Double-Data Rate SDRAM)

Addition of clock signal.  Will get up to ‘2n’ consecutive 

words in the next ‘n’ clocks after column address is sent

R
e
g
/C

n
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Memory Array
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Generator/CAS
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R
e
g
.
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Banking

• Divide memory into “banks” duplicating row/column decoder 
and other peripheral logic to create independent memory arrays 
that can access data in parallel 
– uses a portion of the address to determine which bank to access

Row / 

Column 

Address

Data

Bank 0 Bank 1

Bank 2 Bank 3

Bank 0Bank 0Bank 0Bank 0Address

Data
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Bank Access Timing

• Consecutive accesses to different banks can be overlapped 
and hide the time to access the row and select the column

• Consecutive accesses within a bank (to different rows) 
exposes the access latency 

MC Address 

Bus

Data

Bus

Row 

1

CLK

Col

1

Row 

2a

Col

2a

Row 

2b

Col

2b

Data 2aData 1 Data 2b

Access 1 maps to bank 1 while access 2a maps to bank 2 

allowing parallel access.  However, access 2b immediately 

follows and maps to bank 2 causing a delay.

Delay due to bank conflict

Bank 1 
Access

Bank 2 
Access A

Bank 2 
Access b
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Programming Considerations

• For memory configuration given earlier, accesses to the same bank but different row 
occur on an 32KB boundary

• Now consider a matrix multiply of 8K x 8K integer matrices (i.e. 32KB x 32KB)

• In code below…m2[0][0] @ 0x10010000 while m2[1][0] @ 0x10018000

int m1[8192][8192], m2[8192][8192], result[8192][8192];

int i,j,k;

...

for(i=0; i < 8192; i++){

for(j=0; j < 8192; j++){

result[i][j]=0;

for(k=0; k < 8192; k++){

result[i][j] += matrix1[i][k] * matrix2[k][j] ;

} } }

Unused Row Bank Col. Unused

A31-A29 A28…A15 A14,A13 A12…A3 A2..A0

00 1 0000 0000 0001 0 00 0000000000 000

00 1 0000 0000 0001 1 00 0000000000 000

0x10010000

0x10018000

m1 m2

x
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DMA
Direct Memory Access
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Direct Memory Access (DMA)

• Large buffers of data often 
need to be copied between:

– Memory and I/O (video data, 
network traffic, etc.)

– Memory and Memory (OS space 
to user app. space)

• DMA devices are small 
hardware devices that copy 
data from a source to 
destination freeing the 
processor to do “real” work

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System 

Bus

I/O Bus

DMA
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Data Transfer w/o DMA

• Without DMA, processor would 
have to move data using a loop

• Move 16Kwords pointed to by ($s1) 
to ($s2)

li    $t0,16384

AGAIN: lw    $t1,0($s1)

sw    $t1,0($s2)

addi  $s1,$s1,4

addi  $s2,$s2,4 

subi  $t0,$t0,1

bne   $t0,$zero,AGAIN

• Processor wastes valuable execution 
time moving data

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System 

Bus

I/O Bus
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Data Transfer w/ DMA

• Processor sets values in DMA control 
registers
– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt 
on Completion, etc.)

• DMA becomes “bus-master” 
(controls system bus to generate 
reads and writes) while processor is 
free to execute other code
– Small problem: Bus will be busy

– Hopefully, data & code needed by the 
CPU will reside in the processor’s cache

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System 

Bus

I/O Bus

DMA
DMA 

Control 

Registers
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DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the 
processor or by certain I/O peripherals 
– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus
– Usually winning requestor 

has control of the bus until it 
relinquishes it 
(turns off its request signal)
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