
1

EE 457 Unit 7b

Main Memory Organization

2

Motivation

• Organize main memory to

– Facilitate byte-addressability

while maintaining…

– Efficient fetching of the words in a cache block

• Low order interleaving (L.O.I) helps us achieve this

3

Interleaving Analogy

• Consider a journal consisting of 1000 pages (000-999) bound in
– 10 volumes (0-9) of

– 100 pages each (00-99)

Method I
(Consecutive pages

in a volume)

Method II
(Consecutive pages in

consecutive volumes)

000

001

…

099

100

101

…

199

…

900

901

…

999

000

010

…

990

001

011

…

991

…

009

019

…

999

Volume 0

Volume 1

Volume 9

Volume 0

Volume 1

Volume 9

4

Interleaving Analogy

• Example: Say article 73 runs from page 730-739
– In Method I: Article 73 is completely in volume 7

– In Method II: The 73rd page of each volume form article 73 as shown
below

• Which do you prefer?
– If reading the article you may say method I

– If you have to make a copy of the article and you have 10 photocopy
machines with 10 friends to help you might say method II
• Back to the scenario of reading the article, given those same 10 friends they could

open each volume to page 73 for you so that you can read in a continuous manner

Page 730 is page 73 of volume 0

Page 731 is page 73 of volume 1

…

Page 739 is page 73 of volume 9

Low Order

Interleaving

5

Byte Addressability

1. Intel 8085: 16-bit addr., 8-bit data,
byte addressable processor.

Memory space: 216 = 64KB, A15-A0, D7-D0

2. Intel 8086: 20-bit addr., 16-bit data, byte
addressable, little-endian proc.

Memory space: 220 = 1MB, A19-A0
[A19-A1, BHE (BE1), A0 (BE0)], D15-D0

3. Intel 80386: 32-bit addr., 32-bit data,
byte addressable, little-endian proc.

Memory space: 232 = 4GB, A31-A0
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

A15-A0

64K

8

A19-A1

½ MB

8

½ MB

8

D[15:8] D[7:0]

BHE=0 A0=0

A31-A2

8

1 GB

8

D[31:24] D[7:0]

BE3

88

BE2 BE1 BE0

Byte 43 Byte 42 Byte 41 Byte 40 = Word 40

Byte 41 Byte 40 = Word 40

6

Byte Addressability
4. Intel 80386: 32-bit addr., 32-bit data, byte

addressable, big-endian proc.

Memory space: 232 = 4GB, A31-A0
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

5. Little-Endian system, 2-way interleaved system:
32-bit addr., 32-bit data,
byte addressable
(Narrow, 32-bit data bus b/w mem. and cache)

Memory space: 232 = 4GB, A31-A0
[A31-A2, BE3, BE2, BE1, BE0], D31-D0

6. Same as 5 above,
but 4-way interleaved

A31-A2

8

1 GB

8

D[31:24] D[7:0]

BE0

88

BE1 BE2 BE3

Byte 40 Byte 41 Byte 42 Byte 43 = Word 40

A31-A3

8

½ GB

D[31:24]

8 8 8

BE3 BE2 BE1 BE0 BE3 BE2 BE1 BE0

8 8 8 8

D[7:0] D[31:24] D[7:0]

XCVR XCVR

D[31:0]

Narrow Bus

A31-A4

A2=1

A2=0

XCVR XCVR XCVR XCVR

D[31:0]

A3,A2 = 11 A3,A2 = 10 A3,A2 = 01 A3,A2 = 00

¼

GB

7

2-Way L.O.I.
• System address bus uses

– A1:A0 and size info to
generate /BE3../BE0
(Byte Enables)
• In a 32-bit data bus, we need 2

address bits to produce the 4
BE’s

• In a 64-bit data bus, we would
need 3 address bits to produce 8
BE’s

– Lower order bits to select a
“bank”
• Only 1 address bit, A2, to select

one of 2 banks

– Upper bits connect to each
memory chip
• Each memory chip is just a

collection of ½ GB requiring 29
address bits…we can connect
appropriate 29 bits

A31-A3

A
2

8
-A

0

8

½ GB

D[31:24]

A
2

8
-A

0

8 8 8

BE3 BE2 BE1 BE0 BE3 BE2 BE1 BE0

8 8 8 8

D[7:0] D[31:24] D[7:0]

XCVR XCVR

D[31:0]

Narrow Bus

A2=1 A2=0

A2=1 A2=0

Shift of 3-bits in
address

connections

Bank 1 Bank 0

8

4-Way L.O.I.

• System address bus
uses
– A1:A0 and size info to

generate /BEi (Byte
Enables)

– Lower order bits to
select a “bank”

– Upper bits connect to
each memory chip

Shift of 4-bits in address
connections

Bank 3

A31-A4

A
2

7
-0

A
2

7
-0

A
2

7
-0

A
2

7
-0

XCVR XCVR XCVR XCVR

D[31:0]

A3,A2 =

11

A3,A2 =

10

A3,A2 =

01

A3,A2 =

00

¼

GB

Bank 2 Bank 3 Bank 2

9

Organization Options

Bus

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Multiplexer

Mem.

Bank

0

Mem.

Bank

1

Mem.

Bank

2

Mem.

Bank

3

Bus

CPU

Cache

c.) EE 457 Interleaved
b.) Wide Memory

Organization

a.) One-word-wide

memory Organization

10

Organization Comparison

• Assume following latencies

• Find time to access a cache line of 4-words

Send address to MM 1 clock

MM (DRAM) Access Time 15 clocks

Transfer time for one word 1 clock

a. Narrow Memory 1 + 4*15 + 4*1 = 65 clocks
(assume mem. controller will

auto-increment address)

b. Wide Memory 1 + 15 + 1 = 17 clocks

c. Interleaved Memory 1 + 15 + 4*1 = 20 clocks

11

Example

• Consider a set-associative mapping and physical organization of main
memory, cache data RAMs, and cache tag RAMs.

• Specs:

– 32-bit physical address, byte-addressable system

– Cache Size = 64KB

– Block Size = 4 words (16 bytes)

– Set Size = 4 blocks (64 bytes)

TAG SET WORD BYTE

Member

A1 – A0A3 – A2A13-A4A31-A14

/BE3 - /BE0

of MM Blocks = 232 / 24 = 228

of Cache Blocks = 216 / 24 = 212

of Sets = 212 cache blocks / 22 blocks/set = 210

of Groups = 228 MM blocks / 210 sets = 218

12

Tag RAM Example

Set

Tag RAM

(Holding Tags & Valid

Bits for Way 0)

DI

DO
A13-A4

A31-A14

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid

Bits for Way 2)

DI

DO
A13-A4

A31-A14

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid

Bits for Way 1)

DI

DO
A13-A4

A31-A14

+ V-bit

A

= Hit/Miss

Tag RAM

(Holding Tags & Valid

Bits for Way 3)

DI

DO
A13-A4

A31-A14

+ V-bit

A

= Hit/Miss

Tag

13

MM & Data RAM Example
2

5
6

M
B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

2
5

6
M

B

A31-A4

32-bit Bidirectional XCVR 32-bit Bidirectional XCVR 32-bit Bidirectional XCVR 32-bit Bidirectional XCVR

80386

+
Buffers

A3,A2 = 11 A3,A2 = 10 A3,A2 = 01 A3,A2 = 00

4
 K

B

4
 K

B

4
 K

B

4
 K

B

A13-A2

D[31:24] D[23:16] D[15:8] D[7:0]

W
a

y
 0

4
 K

B

4
 K

B

4
 K

B

4
 K

B

A13-A2

D[31:24] D[23:16] D[15:8] D[7:0]

W
a

y
 2

4
 K

B

4
 K

B

4
 K

B

4
 K

B

4
 K

B

4
 K

B

4
 K

B

4
 K

B

D[31:24] D[23:16] D[15:8] D[7:0] D[31:24] D[23:16] D[15:8] D[7:0]

A13-A2 A13-A2

W
a

y
 3

W
a

y
 1

/BE3 - /BE0 /BE3 - /BE0

/BE3 - /BE0/BE3 - /BE0

Set + WordA31-A2,

/BE3-/BE0

14

DRAM TECHNOLOGIES
Main memory organization

15

Memory Module Organization
• Memory module is designed to

always access data in chunks the
size of the data bus (64-bit data
bus = 64-bit accesses)

• Parallelizes memory access by
accessing the byte at the same
location in all (8) memory chips
at once

• Only the desired portion will be
forwarded to the registers

• Note the difference between
system processor address and
local memory chip addresses

A4...

500x1

0x0 F8

22...

8A0x1

0x0 2C

6D...

570x1

0x0 E4

A
[3

1
:3

]

D[63:56] D[15:8] D[7:0]

DWord at address 0x000c: A[31:0] = 0000…1100

0000..01

578A

Processor with 64-bit Data Bus

fb 8A 57c6 13a79850

50

A[2:0] + SIZE
100 DWORD

Byte/ 7 6 5 4 3 2 1 0

Lane

Processor Core / Registers

• Each chip on the module reads 1 byte and
outputs it to form a collectively larger word
on the data bus (i.e. 8-bytes = 64-bits)

1

Control

0
0
0

0
..

0
1

0x5098a7fb
2

4

3

5

017

f e 8

101117

Byte address from

individual chip perspective

Byte address from

system/processor perspective

16

Memory Chip Organization

• Memory technologies share the
same layout but differ in their
cell implementation
– SRAM
– DRAM

• Memories require the row bits
be sent first and are used to
select one row (aka "word line")
– Uses a hardware component

known as a decoder

• All cells in the selected row
access their data bits and
output them on their respective
"bit line"

• The column address is sent next
and used to select the desired
8 bit lines (i.e. 1 byte)
– Uses a hardware component

known as a mux

A
d
d
r. D

e
c
o
d
e
r

Row

Addr

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[1024]

Amplifiers & Column Mux

1K Bit Lines

Data[7:0] in/out

X
X

X
R

o
w

C
o
l

0
0
0
0
0
0
0
0
0
1

0
0

0
0

0
1

0
0
0
0

0
x
0
0
0
4
1
0

Column

Addr

10-bits

Cell Cell
WL[1]

1 1

1 0

0 0

SRAM and DRAM differ

in how each cell is

made, but the

organization is roughly

the same

17

SRAM vs. DRAM

• Dynamic RAM (DRAM) Cells (store 1 bit)
– Will lose values if not refreshed periodically every few milliseconds

[i.e. dynamic]

– Extremely small (1 Transistor & a capacitor)

• Means we can have very high density (GB of RAM)

– Small circuits require more time to access the bit

• SLOW

– Used for main memory

• Static RAM (SRAM) Cells (store 1 bit)
– Will retain values as long as power is on [i.e. static]

– Larger (6 transistors)

– Larger circuitry can access bit faster

• FASTER

– Used for cache memory

This Photo by Unknown Author

is licensed under CC BY-NC

http://kellblog.com/2013/12/01/the-customer-acquisition-cost-cac-ratio-another-subtle-saas-metric/
https://creativecommons.org/licenses/by-nc/4.0/

18

Memory Controller

• DRAMs require non-trivial hardware
controller (aka memory controller)

– To split up the address and send the
row and column address as the right
time

– To periodically refresh the DRAM cells

– Plus more…

• Used to require a separate chip from
the processor

• But due to scaling (i.e. Moore's Law)
most processors integrate the
controller on-chip

– Helps reduce access time since fewer
hops

Legacy architectures used separate

chipsets for the memory and I/O controller

Current general-purpose processors usually

integrate the memory controller on chip.

19

Implications of Memory Technology

• Memory latency of a single access using
current DRAM technology will be slow

• We must improve bandwidth

– Idea 1: Access more than just a single word at a
time (to exploit spatial locality)

– Technology: Fast Page Mode, DDR SDRAM, etc.

– Idea 2: Increase number of accesses serviced in
parallel (in-flight accesses)

– Technology: Banking

20

Legacy DRAM Timing

• Can have only a single access “in-flight” at once

• Memory controller must send row and column address
portions for each access

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Row

Address

Column

Address

Data in / out

Memory Array

Legacy DRAM

(Must present new Row/Column address for each access)

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

Data

In / Out

Row

Address

Column

Address

Data

In / Out

Timing

Generator/CAS

/RAS

tRC

tRAC

tRC= Cycle Time (110ns) = Time before next access

can start

tRAC=Access Time (60ns) = Time until data is valid

21

Fast Page Mode DRAM Timing

• Can provide multiple column addresses with
only one row address

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Row

Address

Column

Address

Data in / out

Fast Page Mode

(Future address that fall in same row can

pull data from the latched row)

Memory Array

Timing

Generator/CAS

/RAS

R
e
g
.

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

Data

In / Out

Column

Address

Data

In / Out

22

Synchronous DRAM Timing

• Registers the column address and automatically increments it,
accessing n sequential data words in n successive clocks called
bursts… n=4 or 8 usually)

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Column Latch/Register
Column

Address

Data in / outSDRAM (Synchronous DRAM)

Addition of clock signal. Will get up to ‘n’ consecutive

words in the next ‘n’ clocks after column address is sent

R
e
g
/C

n
tr

Memory Array

Timing

Generator/CAS

/RAS

Row

Address

R
e
g
.

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

CLK

Data

i

Data

i+1

Data

i+2

Data

i+3

CLK

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

CLK

Data

i

Data

i+1

Data

i+2

Data

i+3

23

DDR SDRAM Timing

• Double data rate access data every half clock
cycle

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Column Latch/Register
Column

Address

Data in / outDDR SDRAM (Double-Data Rate SDRAM)

Addition of clock signal. Will get up to ‘2n’ consecutive

words in the next ‘n’ clocks after column address is sent

R
e
g
/C

n
tr

Memory Array

Timing

Generator/CAS

/RAS

Row

Address

R
e
g
.

CLK

24

Banking

• Divide memory into “banks” duplicating row/column decoder
and other peripheral logic to create independent memory arrays
that can access data in parallel
– uses a portion of the address to determine which bank to access

Row /

Column

Address

Data

Bank 0 Bank 1

Bank 2 Bank 3

Bank 0Bank 0Bank 0Bank 0Address

Data

25

Bank Access Timing

• Consecutive accesses to different banks can be overlapped
and hide the time to access the row and select the column

• Consecutive accesses within a bank (to different rows)
exposes the access latency

MC Address

Bus

Data

Bus

Row

1

CLK

Col

1

Row

2a

Col

2a

Row

2b

Col

2b

Data 2aData 1 Data 2b

Access 1 maps to bank 1 while access 2a maps to bank 2

allowing parallel access. However, access 2b immediately

follows and maps to bank 2 causing a delay.

Delay due to bank conflict

Bank 1
Access

Bank 2
Access A

Bank 2
Access b

26

Programming Considerations

• For memory configuration given earlier, accesses to the same bank but different row
occur on an 32KB boundary

• Now consider a matrix multiply of 8K x 8K integer matrices (i.e. 32KB x 32KB)

• In code below…m2[0][0] @ 0x10010000 while m2[1][0] @ 0x10018000

int m1[8192][8192], m2[8192][8192], result[8192][8192];

int i,j,k;

...

for(i=0; i < 8192; i++){

for(j=0; j < 8192; j++){

result[i][j]=0;

for(k=0; k < 8192; k++){

result[i][j] += matrix1[i][k] * matrix2[k][j] ;

} } }

Unused Row Bank Col. Unused

A31-A29 A28…A15 A14,A13 A12…A3 A2..A0

00 1 0000 0000 0001 0 00 0000000000 000

00 1 0000 0000 0001 1 00 0000000000 000

0x10010000

0x10018000

m1 m2

x

27

DMA
Direct Memory Access

28

Direct Memory Access (DMA)

• Large buffers of data often
need to be copied between:

– Memory and I/O (video data,
network traffic, etc.)

– Memory and Memory (OS space
to user app. space)

• DMA devices are small
hardware devices that copy
data from a source to
destination freeing the
processor to do “real” work

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA

29

Data Transfer w/o DMA

• Without DMA, processor would
have to move data using a loop

• Move 16Kwords pointed to by ($s1)
to ($s2)

li $t0,16384

AGAIN: lw $t1,0($s1)

sw $t1,0($s2)

addi $s1,$s1,4

addi $s2,$s2,4

subi $t0,$t0,1

bne $t0,$zero,AGAIN

• Processor wastes valuable execution
time moving data

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

30

Data Transfer w/ DMA

• Processor sets values in DMA control
registers
– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt
on Completion, etc.)

• DMA becomes “bus-master”
(controls system bus to generate
reads and writes) while processor is
free to execute other code
– Small problem: Bus will be busy

– Hopefully, data & code needed by the
CPU will reside in the processor’s cache

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA
DMA

Control

Registers

31

DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the
processor or by certain I/O peripherals
– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus
– Usually winning requestor

has control of the bus until it
relinquishes it
(turns off its request signal)

D
M

A

C
h

a
n

n
e
l

0

D
M

A

C
h

a
n

n
e
l

1

D
M

A

C
h

a
n

n
e
l

2

D
M

A

C
h

a
n

n
e
l

3

Bus Arbiter

Processor

Core

Memory Peripheral Peripheral

Internal

System Bus

Bus

Masters

Slave

devices

Requests /

Grants

