
1

EE 457 Unit 5

Single Cycle CPU

Datapath and Control

1

2

CPU Organization Scope

• We will build a CPU to implement our subset of the MIPS ISA

– Memory Reference Instructions:

• Load Word (LW)

• Store Word (SW)

– Arithmetic and Logic Instructions:

• ADD, SUB, AND, OR, SLT

– Branch and Jump Instructions:

• Branch if equal (BEQ)

• Jump unconditional (J)

• These basic instructions exercise a majority of the necessary

datapath and control logic for a more complete

implementation

2

3

CPU Implementations

• We will go through two implementations

– Single-cycle CPU (CPI = 1)

• All instructions execute in a single, long clock cycle

– Multi-cycle CPU (CPI = n)

• Instructions can take a different number of short clock cycles to execute

• Recall that a program execution time is:

(Instruction count) x (CPI) x (Clock cycle time)

– In single-cycle implementation cycle time must be set for longest

instruction thus requiring shorter instructions to wait

– Multi-cycle implementation breaks logic into sub-operations each

taking one short clock cycle; then each instruction takes only the

number of clocks (i.e. CPI) it needs

3

4

Single-Cycle Datapath

• To start, let us think about what operations need to be

performed for the basic instructions

• All instructions go through the following steps:

– Fetch: Use _____________ to fetch instruction

– Decode & Register/Operand Fetch: Determine instruction type and

fetch any register operands needed

• Once decoded, different instructions require different

operations

– ALU instructions: Perform Add, Sub, etc. and write result back to

register

– LW / SW: Calculate address (____) and perform memory access

– BEQ / J: Update PC (possible based on ___________________)

• Let us start with fetching an instruction and work our way

through the necessary components 4

5

Instruction Ordering

• Identify which components each instruction type would use

and in what order: ALU-Type, LW, SW, BEQ

ALU-Type
(ADD $5,$6,$7)

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral
Purpose

Registers

A
L

U Res.

Zero

LW
(LW $5,40($7) SW

(SW $5,40($7)
BEQ
(BEQ $2,$3,disp)

6

Fetch

• Address in PC is used to fetch instruction while it is also

incremented by 4 to point to the next instruction

• Remember, the PC doesn’t update until the end of the clock

cycle / beginning of next cycle

• Mux provides a path for branch target addresses

6

Fetch

0

1

0
x

0
0

4
0
0
0

1
8

+

I-Cache

Addr.

Instruc.

A

B

4 0x0040001c

PC

0x00400018

0x012a8020

PC+4

branch target

000000 01001 01010 0000010000 100000

opcode rs rt shamtrd func

ADD $16,$9,$10

7

Decode

• Opcode and func. field are decoded to produce other control signals

• Execution of an ALU instruction (ADD $3,$1,$2) requires reading 2 register

values and writing the result to a third

• REGWrite is an enable signal indicating the write data should be written to

the specified register

7

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
0

0
0

0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c

Result from add

Control

Logic Control Signals

Instruction Word

Register File is the collection of GPR’s. Our register

file has 3 “______” (ability to concurrently read or

write a register). To see why we need 3, consider

an “ADD $3,$1,$2”. We need 2 ___________ to

read two operands (i.e. $1 + $2) and 1 ______ for

the result ($3)

Register File

CLK REGWrite

ADD $3,$1,$2

Value of $1

Value of $2

8

Datapath for ALU instruction

• ALU takes inputs from register file and

performs the add, sub, and, or, slt, operations

• Result is written back to dest. register

8

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
L

U Res.

ZeroADD $3,$1,$2

$1 value

$2 value
Sum

1

2

3

Instruc. word

ALUop

9

Memory Access Datapath

• Operands are read from register file while offset is sign extended

• ALU calculates __________________

• Memory access is performed

• If LW, ____________________

9

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read
Data

Write
Data

32

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read
Data

Write
Data

32

LW $4,0xfff8($1)

$1 value

0xffff fff8

Sum
Read
Data

SW $3,0x1a($1)

0x0000001a

$1 value

Sum

$3 value

ADD

1

4

1

3

Write Data

10

Branch Datapath

• BEQ requires…

– ALU for comparison (examine ‘zero’ output)

– Sign extension unit for branch offset

– Adder to add PC and offset

• Need a separate adder since ALU is used to perform comparison

10

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
L

U Res.

ZeroBEQ $1,$2,offset

$1 value

$2 value
Sum

Instruc. word

ALUop

Sign

Extend

extended word offset

A
d

d
e
r

Sum

PC+4 (incremented PC)

Shift

Left 2

Branch Target
Address to PC

word offset

ZERO

byte offset

11

Fetch Datapath Question 1

• Can the adder used to increment the PC be an ALU and be

used/shared for ALU instructions like ADD/SUB/etc.

– In a single-cycle CPU, _______________________________

11

I-Cache / I-MEM

Addr. Data

Instruction Word
PC

+

A

B

CLK

Write

S

4

Current PC /
Read Address

“Next” PC = PC + 4

12

Fetch Datapath Question 2

• Do we need the “Write” enable signal on the PC register for

our single-cycle CPU?

– In the single-cycle CPU, ______________________________

12

I-Cache / I-MEM

Addr. Data

Instruction Word
PC

+

A

B

CLK

Write

S

4

Current PC /
Read Address

“Next” PC = PC + 4

13

RegFile Question 1

• Why do we need the write enable signal, REGWrite?

13

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

5

5

5

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c

Result from add

Control

Logic Control Signals

Instruction Word

ex. ALU instruc.

Register File

CLK REGWrite

Value of $1

Value of $2

0
0

0
0

1
0

0
0

1
0

0
0

0
1
1

14

RegFile Question 2

• Can write to registers be level sensitive or does it have to be

edge-sensitive?

14

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

5

5

5

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0
0

o
p

c
o

d
e

rs
rt

s
h

a
m

t
rd

fu
n

c
Result from add

Control

Logic Control Signals

Instruction Word

ex. ALU instruc.

Register File

CLK REGWrite

Value of $1

Value of $2

0
0

0
0

1
0

0
0

1
0

0
0

0
1
1

15

RegFile Question 3

• Since we need a write enable, do we need read enables (i.e.

RE1, RE2)

15

Read Reg. 1 #

Read Reg. 2 #

Write Reg. #

Write Data

Read data 1

Read data 2

5

5

5

Operand A
value

Result from add

Operand B
value

Register File

CLK REGWrite

RE1

RE2

16

Sign Extension Unit

• In a ‘LW’ or ‘SW’ instructions with

their base register + offset format,

the instruction only contains the

offset as a 16-bit value

– Example: LW $4,-8($1)

– Machine Code: 0x8c24fff8

• -8 = 0xfff8

• The 16-bit offset must be extended

to 32-bits before being added to base

register

16
100011 00001 00100 1111 1111 1111 1000

opcode rs rt offset

LW $4,0xfff8($1)

Sign

Extend16 32

offset =
0xfff8 0xfffffff8

17

Sign Extension Questions

• What logic is inside a sign-extension unit?

– How do we sign extend a number?

– Do you need a shift register?

17

b15 b14 b13 b0…b15b15 …

b15 b14 b13 b0… 16-bit offset

32-bit sign-extended
output

18

Data Memory Questions

• Do we need separate instruction and data

memory or can we just use one (i.e. most

personal computers only have one large set

of RAM)?

• Do we need separate read/write address

inputs or can we have just one address input

used for both operations?

• Can we do away with the “read” control

signal (similar to how we did away with read

enables for register file)?

18

Read Addr.

Read Data

Write Addr.

Read

Write Data

Write

MemRead

MemWrite

19

Branch Datapath Question

• Is it okay to start adding branch offset even before

determining whether the branch is taken or not?

19

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
L

U Res.

ZeroBEQ $1,$2,offset

$1 value

$2 value
Sum

1

2

Instruc. word

ALUop

Sign

Extend

extended word offset

A
d

d
e
r

Sum

PC+4 (incremented PC)

Shift

Left 2

Branch Target
Address to PC

word offset

ZERO (To control logic)

20

Combining Datapaths

• Now we will take the datapaths for each instruction

type and try to combine them into one

• Anywhere we have multiple options for a certain

input we can use a mux to select the appropriate

value for the given instruction

• Select bits must be generated to control the mux

20

21

ALUSrc Mux

• Mux controlling second input to ALU

– ALU instruction provides Read Register 2 data to the 2nd input of ALU

– LW/SW uses 2nd input of ALU as an offset to form effective address

21

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

D-Cache

Addr.

Read
Data

Write
Data

32

$1 value

0xffff fff8

Sum
Read
Data

ADD

1

4

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

A
L

U Res.

Zero

$1 value

$2 value
Sum

1

2

3

ALUop

Register File

Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

32

Mem. InstructionALU Instruction

ALUSrc

22

MemtoReg Mux

• Mux controlling writeback value to register file

– ALU instructions use the result of the ALU

– LW uses the read data from data memory

22

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

D-Cache

Addr.

Read
Data

Write
Data

0

1

16 32

5

5

5

MemtoReg

23

PCSrc Mux

• Next instruction can either be at the next sequential address (PC+4) or the

branch target address (PC+offset)

23

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend
A

L
U Res.

Zero

0

1

Sh.

Left

2

+
D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

PCSrc

Branch Target
Address

24

RegDst Mux

• Different destination register ID fields for ALU and LW instructions

24

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

rt

rs

rd

RegDst

35 or 43I-Type (LW) rs rt address offset
31-26 25-21 20-16 15-0

0R-Type (ALU) rs rt rd shamt func
31-26 25-21 20-16 15-11 10-6 5-0 Destination

Register Number

25

Single-Cycle CPU Datapath

25

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

26

Single-Cycle CPU Datapath

26

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc
Control

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

ALUOp[1:0]

27

Jump Instruc. Implementation

27

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.

Left 2

[2
5
:0

]

26 28

Jump
Jump

32

Jump Address = {NewPC[31:28], INST[25:0],00}

Branch Address

Next Instruc. Address

Control

28

Control Unit Design for Single-Cycle CPU

• Control Unit: Maps instruction to

control signals

• Traditional Control Unit

– FSM: Produces control signals asserted at

different times

– Design NSL, SM, OFL

• Single-Cycle Control Unit

– Every cycle we perform the same steps:

Fetch, Decode, Execute

– Signals are not necessarily time based but

instruction based => only combinational

logic

28

SMNSL
OFL

Inputs (Instruction/Opcode)

Outputs

Traditional Control Unit

of FF’s in tightly-encoded state assignment:

5-8 states: _____, 9-16 states: _____

Single-Cycle Control Unit

Only 1 state => _____ FF’s

State
0

SMNSL
OFL

Inputs (Instruction/Opcode)

Outputs

29

Control Unit

• Most control signals are a

function of the opcode

(i.e. LW/SW, R-Type,

Branch, Jump)

• ALU Control is a function

of opcode AND function

bits.

29

Control
Unit

Jump

MemRead

MemWrite

MemtoReg

ALUControl[2:0]

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

Func.

(Instruc.[5:0])

Control
Unit

Func. (Instruc.[5:0])

Jump

MemRead

MemWrite

MemtoReg

ALUOp[1:0]

ALUSrc

RegDst

RegWrite

Branch

ALU
Control

to ALU

OpCode

(Instruc.[31:26])

30

ALU Control

• ALU Control needs to know what

instruction type it is:

– R-Type (op. depends on func. code)

– LW/SW (op. = ADD)

– BEQ (op. = SUB)

• Let main control unit produce ALUOp[1:0]

to indicate ___________, then use

function bits if necessary to tell the ALU

what to do

Control
Unit

Func. (Instruc.[5:0])

ALUOp[1:0]

ALU
Control to

 A
L
U

OpCode

(Instruc.[31:26])

Instruction ALUOp[1:0]

LW/SW 00

Branch 01

R-Type 10

Control unit maps instruction opcode to
ALUOp[1:0] encoding

31

ALU Control Truth Table

• ALUControl[2:0] is a function of: ALUOp[1:0] and Func.[5:0]

31

Instruc. ALUOp[1:0] Instruction

Operation

Func.[5:0] Desired ALU

Action

LW 00 Load word X Add

SW 00 Store word X Add

Branch 01 BEQ X Subtract

R-Type 10 AND 100100 And

R-Type 10 OR 100101 Or

R-Type 10 Add 100000 Add

R-Type 10 Sub 100010 Subtract

R-Type 10 SLT 101010 Set on less

than

Produce each ALUControl[2:0] bit from the ALUOp and Func. inputs

32

Control Signal Generation

• Other control signals are a function of the opcode

• We could write a full truth table or (because we are only

implementing a small subset of instructions) simply

decode the opcodes of the specific instructions we are

implementing and use those intermediate signals to

generate the actual control signals

32

Control
Unit

Jump

MemRead

MemWrite

MemtoReg

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

ALUOp[1:0]

Control
Unit

Jump

MemRead

MemWrite

MemtoReg

ALUSrc

RegDst

RegWrite

Branch

OpCode

(Instruc.[31:26])

ALUOp[1:0]

Decoder

R-Type

LW

SW

BEQ

Jump

Could generate each control
signal by writing a full truth table

of the 6-bit opcode

Simpler for human to design if we decode the
opcode and then use individual “instruction”
signals to generate desired control signals

33

Control Signal Truth Table
R-

Type

LW SW BEQ J Jump Branch Reg

Dst

ALU

Src

Memto-

Reg

Reg

Write

Mem

Read

Mem

Write

ALU

Op[1]

ALU

Op[0]

1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 1 1 X 0 0 X X

33

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Lef t

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc

RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.

Lef t 2

[2
5
:0

]

26 28

Jump

Jump

32

Jump Address

Branch Address

Next Instruc. Address

Control

34

Control Signal Logic

34

Op[5]

Op[4]

Op[3]

Op[2]

Op[1]

Op[0]

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Jump

Branch

ALUOp1

ALUOp0

R-Type LW SW BEQ J

Decoder

35

Credits

• These slides were derived from Gandhi

Puvvada’s EE 457 Class Notes

