I (JSC Viterbi -,

School of Engincering

EE 457 Unit 5

Single Cycle CPU
Datapath and Control

I (JSC Viterbi -,

CPU Organization Scope

* We will build a CPU to implement our subset of the MIPS ISA
— Memory Reference Instructions:
* Load Word (LW)
* Store Word (SW)
— Arithmetic and Logic Instructions:
+ ADD, SUB, AND, OR, SLT
— Branch and Jump Instructions:
¢ Branch if equal (BEQ)
¢ Jump unconditional (J)
* These basic instructions exercise a majority of the necessary
datapath and control logic for a more complete
implementation

I (JSC Viterbi -,

CPU Implementations

* We will go through two implementations
— Single-cycle CPU (CPI = 1)
« Allinstructions execute in a single, long clock cycle
— Multi-cycle CPU (CPI = n)
 Instructions can take a different number of short clock cycles to execute
* Recall that a program execution time is:
(Instruction count) x (CPI) x (Clock cycle time)

— In single-cycle implementation cycle time must be set for longest
instruction thus requiring shorter instructions to wait
— Multi-cycle implementation breaks logic into sub-operations each

taking one short clock cycle; then each instruction takes only the
number of clocks (i.e. CPI) it needs

I (JSC Viterbi)

Single-Cycle Datapath

* To start, let us think about what operations need to be
performed for the basic instructions

* Allinstructions go through the following steps:
— Fetch: Use

— Decode & Register/Operand Fetch: Determine instruction type and
fetch any register operands needed

to fetch instruction

* Once decoded, different instructions require different
operations

— ALU instructions: Perform Add, Sub, etc. and write result back to
register

— LW /SW: Calculate address (____) and perform memory access
— BEQ/J: Update PC (possible based on)
* Let us start with fetching an instruction and work our way
through the necessary components 4

| USCEﬁfs:fbi @
Instruction Ordering

* Identify which components each instruction type would use
and in what order: ALU-Type, LW, SW, BEQ

V
PC Addr. Data General Addr. Data 3 260
Purpose I~ Res.
Registers c
I-Cache / I-MEM D-Cache / D-MEM
ALU-Type o sw BEQ
LW $5,40($7
(ADD $5,86,87) (LW $5,40(87) (SW$540(87) (BEQ $2,$3,disp)

] USC__/'iterbi @
Fetch

e Address in PCis used to fetch instruction while it is also
incremented by 4 to point to the next instruction

* Remember, the PC doesn’t update until the end of the clock
cycle / beginning of next cycle

* Mux provides a path for branch target addresses

time

\j

Fetch

branch target Clk | |

0x0040001c PC 400014} 0x400018 0x40001c
PC+4

Adder 400018) ox40001c | { 0x400020

0x00400018

@ opcode rs rt rd shamt func
8 Adar. | ——{oo0000 0100101010 1000000000 100000]
=]
< Instruc.
S 0x01228020
5 l-Cache | [~
ADD $16,59.$10
PC 6

USCViterbi 2

School of Engincering

Decode

* Opcode and func. field are decoded to produce other control signals

* Execution of an ALU instruction (ADD $3,$1,52) requires reading 2 register
values and writing the result to a third

e REGWrite is an enable signal indicating the write data should be written to

the specified register
Control Signals

Read Read » Value of $1
Reg.1# data1

apoaodo

Ssi
(000001 [00000 1+000] 01000 10000 [000000 |

Read
Read
Reg.2# oo —> Value of $2

Instruction Word

Write
Reg. # Register File is the collection of GPR’s. Our register
ADD $3.$1.$2 z Write file has 3 “ ” (ability to concurrently read or
Data)) write a register). To see why we need 3, consider
Register File an “ADD $3,51,52”. We need 2 to

read two operands (i.e. $1 + $2) and 1 for
the result (S3)

I I
CLK REGWrite

LT

ouny jweys

Result from add

I (JSC Viterbi

School of Engincering

Datapath for ALU instruction

» ALU takes inputs from register file and
performs the add, sub, and, or, slt, operations

* Result is written back to dest. register

1 Read
Reg. 1#
2 ALUop
Inst d Read
nstruc. wor Reg. 2 #
3 Read | $1 value
ADD $3.$1,$2 Write data 1 .
Reg. # ero
o Read| $2 value E Res. Sum
ite data 2
Data
Register File
8

| USCiﬁEEEbiQ
Memory Access Datapath

* Operands are read from register file while offset is sign extended

e ALU calculates

* Memory access is performed

e IfLW,
LW $4,0xfff8($1
—— SW $3.0x1a($1
1 Read 1
™ Reg.1# | Read
Reg.1#
Read 3 |Read
Reg. 2 # —» HeA
4 Read | $1 value (R 25 $1 value
—»| Write data 1) Read
Reg. # \é(vme data 1
Wi Read accr Read eg. # Addi
ite q Read "
Data Calais Read| Data Write data 2
. . Data Data ata Read L,
Register File Write Register Fil Data
ister Fi
i — e e
. ata
D-Cache Write Data
32 Oxffff fff8 -
00000019 D-Cache

USCViterbi

School of Eng g
* BEQrequires...
— ALU for comparison (examine ‘zero’ output)
— Sign extension unit for branch offset
— Adder to add PC and offset
* Need a separate adder since ALU is used to perform comparison
PC+4 (incremented PC) —p| >
& Sum Branch Target
(] Address to PC
Read
Reg. 1 # /A
byte offset Al Uop
Instruc. word picad
. Reg. 2 #
————— | . Read $1 value
BEQ $1.$2,offset \g/erg.e# data 1 > Zero ZERO
Wiite Read $2 value E Res. Sum
Data data 2
Register File

word offset Sign extended word offset 10
Extend

USC Viterbi (2

School of Engincering

Fetch Datapath Question 1

e Can the adder used to increment the PC be an ALU and be
used/shared for ALU instructions like ADD/SUB/etc.

— In asingle-cycle CPU,

“Next” PC =PC +4

4

CLK

\
Addr. Data |——
Current PC/ Instruction Word
Read Address
. I-Cache / I-MEM
Write

USCViterbi 2
Fetch Datapath Question 2

* Do we need the “Write” enable signal on the PC register for
our single-cycle CPU?
— Inthe single-cycle CPU,

“Next” PC =PC +4

4

CLK

Addr. Dataf——»
Current PC/ Instruction Word
Read Address
. I-Cache / I-MEM
Write

USC Viterbi (2

School of Engincering

RegFile Question 1

* Why do we need the write enable signal, REGWrite?

|
Control Signals

Read Read » Value of $1
Reg.1# datat

apoaodo

si
[000001] 00000 [1+000 [01000] 10000 [000000 |

Read Read

Reg.2# qoof— Value of $2

Instruction Word Write

Reg. #

55

ex. ALU instruc. .
Write

Data
Register File

pi

] I
— CLK REGWrite 13
Result from add

LT

ouny jweys

USCViterbi

School of Engincering

RegFile Question 2

» Can write to registers be level sensitive or does it have to be
edge-sensitive?

|
—> Control Signals

Read Read
Reg.1# data1

apoado

[000001 [00000 [1+000 01000] 10000 [000000 |

— Value of $1

s

Read
Reg. 2 # de:g — Value of $2

'l

Instruction Word Write

Reg. #

55

ex. ALU instruc. i
Write

Data
Register File

pi

I [
CLK REGWrite

LT

ouny jweys

Result from add

USC Viterbi (2

School of Engincering

RegFile Question 3

* Since we need a write enable, do we need read enables (i.e.
RE1, RE2)

——#—»|Read Reg. 1# Read data 1 — Operand A
5 value
——»RE1
Read data 2 — Operand B
——,5L> Read Reg.2# vale
—> RE2
——F> write Reg. #
5
Write Data
Register File
I I
CLK REGWrite 15

Result from add

USCViterbi

School of Engincering

Sign Extension Unit

* Ina ‘LW’ or ‘SW’ instructions with
their base register + offset format,
the instruction only contains the
offset as a 16-bit value

— Example: LW $4,-8(51) oftset= oxtrtie
Sign
— Machine Code: 0x8c24fff8
e -8 = Oxfff8

* The 16-bit offset must be extended
to 32-bits before being added to base
register

LW $4.0xffig(g1) |[100011]00001]00100] 11111111 1111 1000
opcode rs rt offset

S ()5 Viterbi
Sign Extension Questions

* What logic is inside a sign-extension unit?
— How do we sign extend a number?
— Do you need a shift register?

bigbidbsg] ... |by| 16-bit offset

C)

|b0| 32-bit sign-extended
output

b.d [b4g]b15balbs]

17

()5 Vitcrhi
Data Memory Questions

* Do we need separate instruction and data
memory or can we just use one (i.e. most
personal computers only have one large set MemRead
of RAM)? |

Read

> Read Addr.

* Do we need separate read/write address
inputs or can we have just one address input

Read Data —»

used for both operations? ——| Write Addr.

* Can we do away with the “read” control —|Write Data
signal (similar to how we did away with read e
enables for register file)? MemMWrite

I (JSC Viterbi C2

School of Engincering

Branch Datapath Question

* Is it okay to start adding branch offset even before
determining whether the branch is taken or not?

/

PC+4 (incremented PC) —p|

1 Read .

(— Branch Target
Address to PC

19ppy
o
3

Reg. 1# /
2 ALUop
Inst d Read
nstruc. wort Reg. 2 #
) Read $1 value
BEQ $1.$2,offset \g’erge# data 1 Zero|_» ZERO (To control logic)
Wi Read $2 value E Res. —» Sum
e data 2
Data
Register File
extended word offset 19

word offset Sign
Extend

()5 itcrhi
Combining Datapaths

* Now we will take the datapaths for each instruction
type and try to combine them into one

* Anywhere we have multiple options for a certain
input we can use a mux to select the appropriate
value for the given instruction

* Select bits must be generated to control the mux

20

I (JSC Viterbi o

School of Engineering
¢ Mux controlling second input to ALU
— ALU instruction provides Read Register 2 data to the 2" input of ALU
— LW/SW uses 2" input of ALU as an offset to form effective address
1 Read I_’ Read
— RZg‘ b Reg. 1# o0
2 ALUop Read 1
2::2# . Reg.2# | Stvalue
3 Read | $1value — \é‘Vrlte” data 1
Write data 1 leg.
Reg. # > Zero |—> wie Pe Addr. Read
$2value Res. 1 data2 Data
wite fead c Sum Data et
L ata Register File o
Register File Data
32 Oxffffif8 Dacache

ALU Instruction }

Mem. Instruction

Zero |—»

c

21

| USCX&terb;@
MemtoReg Mux
* Mux controlling writeback value to register file

— ALU instructions use the result of the ALU
— LW uses the read data from data memory

Read
7 Reg. 1#
5 MemtoReg
Read
7 Reg.2#
5 Read
’ Write data 1 Zero
5 Reg. # >
Wi Read E Res.
| Write data 2 0
Data Read
Data
Register Fill
egiStonTe Write
Data
Sign
16 \ Extend D-Cache

USC Viterbi (22

School of Engincering

PCSrc Mux

* Next instruction can either be at the next sequential address (PC+4) or the
branch target address (PC+offset)

4 —»| A
Read B hT t
+ ——*| ranch Targe
B 5 |Mes1# Address cs
PCSrc
Read
7 Reg.2#
Add 5 ead 0
Ir. / Write data 1
[&] | Reg. #
o nstruc. —— 5 Add
y Read I
| Write data 2
I-Cache Data ata Read 1
Data
Register File
9 Write
Data
Sign
16 \ Extend 32 D-Cache
23

USCViterbi

School of Engincering

RegDst Mux

« Different destination register ID fields for ALU and LW instructions

R-Type (ALU) [0 [rs [nt shamt| func |

31-26 25-21 20-16 15{11 10-6 5-0 Destination
Register Number

I-Type (LW) [s50r43 rs address offset |

31-26 25-21 20-16 15-0
s Read +

A Reg. 1# @
rt Read
Reg.2 #
Read 0

Addr. Write data 1 ’}'—»

8 Instruc. Reg. i ,E

W +>

rd Wi Read P Res. Addr.
ite
I-Cache | Data GERE Read 1
RegDpt Data
Register Fill
CEEErALD Write

m Data
Sign

USC Viterbi (22

School of Engincering

Single-Cycle CPU Datapath

+

RegWrite Branch
) —
[25:21] Read
A Reg. 1#
onsl - MemRead
Reg. 2 # |
Read 0
Addr. =0 Write data 1 Zero l
Instruo, - (1511 " > Reg. # =
5 . Read c Res. Adar
Write 0
I-Cache [lpata 9812 1 s 1
RegDpt N pata
o 92P' | Register File Write
B
b= T Data
16 /Sign 3
T o p— ALUSrc D-Cache MemtoRe|
— ALU control 4
ALUOp[1:0] ——— MemWrite
25

USCViterbi

School of Engincering

Single-Cycle CPU Datapath

MemRead & MemWrite +
ALUOp[1:0]
MemtoReg

RegDst
Control ALUSrC Branch
3 RegWrite
[25:21] Read
s Reg. 1#
[20:16] Read MemRead
Reg. 2 # |
o Read l 0
r. (1] Write data 1
Instruc. 1= Lvik 1 ul Reg.# = R
5 . Read f = es. Addr.
I-Cache | Data CEEZ : Read -
RegDpt Data
= Register File
3 9 Write
Lg Sign)2 ALLIJs pata MemtoR:
T (ot 7 s bcache | MeTORe
—— ALU control 7'y
ALUOp[1:0] MemWrite
S

USC Viterbi (22

School of Engincering

Jump Instruc. Implementation

Jump Address = {NewPC[31:28], INST[25:0],00}

Next Instruc. Address

,

Jump
MemRead & MemWrite
ALUOp[1:0]

Branch Address

MemtoReg
Control RegDst Posre
- g ALUSrc Branch
g o, RegWrite
[25:21] Read
A Reg. 1 #
[20:16] Read MemRead
Reg. 2 # I
a Read l 0
Ir. Write data 1
Instruc. I T|Res 'E
5 . Read c Res. Addr.
Write 0
I-Cache | Data a2 fead L
ReaDkt)) Data
s 92P' | Register File Write
&
= T Data
16] 3?2
Sign ALUSrc MemtoReg
I Extend o D-Cache
ALUORI1 0] - ALU control 4
p[1:0] —— MeziWrite

USCViterbi

School of Engincering

Control Unit Design for Single-Cycle CPU

Inputs (Instruction/Opcode)

* Control Unit: Maps instruction to ¥ o
utputs
control signals NSL oL 5P
* Traditional Control Unit

— FSM: Produces control signals asserted at
different times

— Design NSL, SM, OFL
* Single-Cycle Control Unit

— Every cycle we perform the same steps: Outputs
Fetch, Decode, Execute

Traditional Control Unit

of FF’s in tightly-encoded state assignment:
5-8 states: , 9-16 states:

Inputs (Instruction/Opcode)

— Signals are not necessarily time based but

instruction based => only combinational
o)

Single-Cycle Control Unit
Only 1 sta#8=> FF's

] USC\ﬁte;b;@
Control Unit

* Most control signals are a

. | OpC.ode —> Jump
function of the opcode (netruolS128) | > Branch
—> MemRegd
(i.e. LW/SW, R-Type, Control [MemWite
Func Unit | Alusrc
Branch, Jump) ne. > RegDst
(Instruc.[5:0]) > RegWiite
. . - —> ALUControl[2:0]
* ALU Control is a function
of opcode AND function OpCode s Jump
. (Instruc.[31:26]) I+ Branch
b|ts. —> MemRegd
Control - mzx’g&‘;
Unit L, alusrc
—> RegDst
—> RegWrite
ALUOpo] | ALU | ANV
Control
Func. (Instruc.[5:0])
29

I (JSC Viterbi

ALU Control

¢ ALU Control needs to know what

. . e OpCode
instruction type it is: (instruc.[31:26)) | Control |—
— Unit
— R-Type (op. depends on func. code)
— LW/SW (op. = ADD) ALUOp[1:0] 1
p}
- = ALU | 2
BEQ (op. = SUB) Control s
¢ Let main control unit produce ALUOp[1:0] Func. (Instruc.[5:0]) ———>)
to indicate , then use
function bits if necessary to tell the ALU
what to do
Instruction ALUOp[1:0]
LW/SW 00
Branch 01
R-Type 10

Control unit maps instruction opcode to
ALUOp[1:0] encoding

I (JSC Viterbi G

ALU Control Truth Table

e ALUControl[2:0] is a function of: ALUOp[1:0] and Func.[5:0]

Instruc. ALUOp[1:0] Instruction Func.[5:0] Desired ALU
Operation Action
Lw 00 Load word X Add
SW 00 Store word X Add
Branch 01 BEQ X Subtract
R-Type 10 AND 100100 And
R-Type 10 OR 100101 Or
R-Type 10 Add 100000 Add
R-Type 10 Sub 100010 Subtract
R-Type 10 SLT 101010 Set on less
than

Produce each ALUControl[2:0] bit from the ALUOp and Func. inputs
31

S (/5 Viterbi
Control Signal Generation

* Other control signals are a function of the opcode

* We could write a full truth table or (because we are only
implementing a small subset of instructions) simply
decode the opcodes of the specific instructions we are
implementing and use those intermediate signals to
generate the actual control signals

OpCode

OpCode R-Type

(Instruc.[31:26)) 5 e (Instruc.[31:26)) 5 e
—> MemRead Lw —> MemRead

—> MemWrite —> MemWrite
Cont_rol —> MemtoReg Decoder sw Cont_mI —> MemtoReg

Unit L, Alusic - Unit | ALUSrc

—> RegDst —> RegDst

—> RegWrite Jum —> RegWrite
—> ALUOp[1:0] ump —> ALUOp[1:0]

Could generate each control
signal by writing a full truth table
of the 6-bit opcode

Simpler for human to design if we decode the
opcode and then use individual “instruction”
signals to generate desired*¢ontrol signals

I (JSC Viterbi C USC Viterbi

School of Engincering School of Engincering

Control Signal Truth Table Control Signal Logic

R- w sw BEQ J Jump Branch Reg ALU Memto- Reg Mem Mem ALU ALU
Type Dst Src Reg Write Read Write Op[1] Op[0]
1 0| O 0 0 0 0 0 0 1 0
Opl5]
Decoder
0 1]0 0 0 0 0 1 0 0 0 ot
Opl3]
Opl2]
0 0|1 0 0 0 0 0 1 0 0 opl1]
oplo] I I [| |
0 0] 0 1 0 0 1 0 0 0 1 14
0 0| O 0 1 1 X 0 0 X X k Cx
, Jump Address R-Type Lw sw BEQ J
NGYETE Noxt Instruc. Address
Jump
i T— Branch
’,‘;:ﬁzﬂ ;;1 RegDst
RegDst
LUSrc ALUSrc
RegWri MemtoReg
RegWrite
. MemRead
gaat MemWrite
d:‘e:; ALUOp1
Register File ‘ ALUOpO
L Son) £ MemoReg | 33 34
T Enens S
ALUGP[10]——

I USC Viterbi
Credits

* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

