I (JSC Viterbi -,

School of Engincering

Verilog HDL

Mark Redekopp

| USCWC?F’? @
Purpose

* HDL's were originally used to model and
simulate hardware before building it

* In the past 20 years, synthesis tools were
developed that can essentially build the
hardware from the same description

I (JSC Viterbi -,

School of Engincering

Differences from Software

e Software programming languages are inherently sequential
— Operations executed in sequential order (next, next, next)
e Hardware blocks always run in parallel (at the same time)

— Uses event-driven paradigm (change in inputs causes expression to be
evaluated)

e HDLs provide constructs for both parallel & sequential operation

Software Hardware
Perform x+y and when that is This description models 2 gates
done assign d-c to tmp working at the same time

var = x+y; f = a & b;

tmp = d-c; g=alb;

Event Driven Paradigm:
If a or b changes, f and g
will be re-evaluated

I USC Viterbi
Modules

* Each Verilog designs starts as a block diagram (called
a “module” in Verilog)

* Start with input and output signals, then describe
how to produce outputs from inputs

X —* module ml(x,y,z,£f,9);

// circuit

y |
Module // description

z[2:0] ——

endmodule

Software analogy: Modules are like functions, but also like classes in
that they are objects that you can instantiate multiple times.

I (JSC Viterbi @

Ports

* Input and output signals of a module are called “ports”
(similar to parameters/arguments of a software function)

* Unlike software, ports need to be declared as “input” or
“output”

* Vectors declared using [MSB : LSB] notation

These are the ports

module ml(x,y,z,£,9);

input x,y;
y— Module :

s g[1:0] input [2:0] z;
2[2:0] output f£;
output [1:0] g;

endmodule

I (JSC Viterbi @

Signal Types

* Signals represent the inputs, outputs, and
internal values
¢ Signals need to be typed
— Similar to variables in software (e.g. int, char) input x,y;
* 2 basic types input [2:0] z
— Wire: Represents a node connecting two output £;

logic elements output reg [1:0] g;
¢ Only for modeling combinational logic

* Used in “assign” statements

module ml(x,y,z, £,9);

* Use for signals connecting outputs of iz nl, n2;
instantiated modules (structural modeling) reg n3, n4;
— Reg(ister): Used for signals that are 000
described behaviorally endmodule
¢ Used to model combinational & sequential
logic Inputs are always type

* Used for anything produced by an “always” or ‘wire’. Outputs are assumed
initial” block ‘wire’ but can be redefined
as ‘req’

I (JSC Viterbi -

Constants

¢ Multiple bit constants can be written in the form:
— [size] “base value
* size is number of bits in constant

* base is o or O for octal, b or B for binary, d or D for decimal, h or H for
hexadecimal

* value is sequence of digits valid for specified base
— Values a through f (for hexadecimal base) are case-insensitive
* Examples:
— 4'b0000 // 4-bits binary
— 6’b101101 // 6-bits binary
— 8&'hfC // 8-bits in hex
— Decimal is default
- 17 // 17 decimal converted to appropriate # of unsigned bits

I (JSC Viterbi

School of Engincering

Structural vs. Behavioral Modeling

Structural Behavioral

» Starting with primitive * Describe behavior and let
gates, build up a hierarchy synthesis tools select
of components and specify internal components and
how they should be connections
connected

USCViterbi "2

School of Engi

Structural Modeling

e Starting with primitive gates, build
up a hierarchy of components and
specify how they should be

connected
XY
1]
Co—
Structural
Half specification of
Adder a half adder
!
A3 A2 Al A0
IF“|""ceT_I'“'cz“T"'cT_ __1__:
1
: X Y X Y X Y X Y :
| {Co HA Co HA Co HA CoHA |1
| |
| S S S S |
[npp—— J—-- J—-— |
z3 22 z1 20

Use HA’s to structurally describe incrementer

module ha(x,y,s,co);
input X,Y;
output 8,C08

xor il(s,x,Vy);
and i2(co,x,y);
endmodule

module incrementer (a,z);

input [3:0] a;

output [3:0] z;

wire [33i] @p

ha ha0O(a[01,1,2z[0],c[1]);

ha hal(a[l]l,c[1],2z([1],c[2]);
ha ha2(al2],cl2],z[2],c[3]);
ha ha3(al[3],cl[3],zI[3],);

endmodule

I (JSC Viterbi

School of Eng g

Structural Modeling of Logic Gates

* Modules and primitive gates can be instantiated
using the following format:

module_name instance_name (output,

* Input and outputs must be wire types

inputl,

input2,..)

* Supported Gates: and, or, not, nand, nor, xor, xnor

wire

“n1”
net (wire)

. “i2” endmodule
instance name

input
output

Cc16 F
C8
C4 \ \ or

module ml(cl6,c8,c4,f);
el , B8, adp
£

nl;

il(nl,c8,c4);
nand i2(f,cl6,nl);

Verilog Description

I (JSC Viterbi o

School of Engincering

Instantiating User-Defined Modules

* Format: module_name instance_name(portl, port2, port3, ...)

* Positional mapping

— Signals of instantiation ports are associated using the order of module’s port

declaration (i.e. order is everything)

¢ Named mapping

— Signals of instantiation ports are explicitly associated with module’s ports (i.e.

order is unimportant)

— module_name instance_name(.module_port_name(signal_name),...);

module ha(x,y,s,co);

endmodule
module incrementer (a)z);

ha ha0O(a[0],1,2[0],c[1]);

endmodule

Positional mapping

module ha(x,y,s,co);

endmodule

module inc ter(a,z);

Named
ha haO(.x 01), .
M
' on, apping
YL,
.co(cl[l]));

endmodule

I (JSC Viterbi @,

Internal Signals

School of Engincering

» Define signals (wire or reg) for each internal

signal/wire

module m2(x,y,z, £);

input x,y,z;
output f£;

wire nl,n2,n3;
and ul(nl,x,z); //
and u2(n2,x,y); //
not u3(n3,z);

or u4(f,nl,n2,n3);

endmodule

instance names need
not be declared

<X NX

N

Sy
==
>O N3

I (/SC Vitcrbi
Behavioral Modeling

* Describe behavior and let synthesis tools select internal
components and connections

* Advantages:
— Easier to specify

— Synthesis tool can pick appropriate implementation (for
speed / area / etc.)

module incrementer (a,z);
input [3:0] a;
output [S8Q)] =g

Could instantiate a ripple-
carry adder, a fast carry-

/"’> lookahead adder, etc. as

assign z = a + 1'bl; needed

endmodule

Use higher level operations and let synthesis
tools infer the necessary logic

| USC_&teﬂ,??
Operators

* QOperator types
— Non-blocking / Blocking assighment (<=, =)

Arithmetic (+, -, *, /, %)

— Relational (<, <=, >, >=)

— Equality (==, 1=,===,1==)
— Logical (&&, |1, 1)

— Bitwise (¥, &, |, A, ~?)

— Reduction (&, ~&, |, ~[, », ~7)
— Shift (<<, >>)

— Conditional (?:)

— Concatenation and replication

S ()5 Viterbi
Assign Statement

* Used for combinational logic c16

. e, F
expressions (must output to a ‘wire
signal type) gi

¢ Can be used anywhere in the body of a
module’s code

module ml(cl6,c8,c4,f);

input clé,c8,c4;
e All ‘assign’ statements run in parallel output f;
wire nl;

¢ Change of any signal on RHS (right-
hand side) triggers re-evaluation of or il(nl,c8,c4);
LHS (output) nand i2(f,cl6,nl);
¢ Format:
— assign output = expr;
* ‘& means AND
* ‘|’ means OR

endmodule

module ml(cl6,c8,c4,f);
input cl6,c8,c4;
output 29

e “~“"means NOT

« ‘N means XOR assign £ = ~(cl6 & (c8 | c4));

endmodule

| USCV1terb1
Multi-bit (Vector) Signals

¢ Reference individual bits [module mi(x, £);
or groups of bits by

input [2:0] x;

placing the desired index | output £

in brackets o = e B

(e.g. x[3] orx[2:1]) assign £ = x[2] & ~x[1] & x[0];
* Form vector from endmodule

individual signals by
placing signals in
brackets

(i.e. { }) and separate
with commas

module incrementer(a,x,y,z);

input [2:0] a;
output x,y, z;

assign {x,y,z} = a + 1;

endmodule

I [JSC Viterbi @
More Assign Statement

* Can be used with other
operators besides simple
logic functions

— Arithmetic (+, -, *, /,
%=modulo/remainder)
— Shifting (<<, >>)
— Relational
(<, <=, >,>=, 1=, =)
* Produces a single bit output
(‘1" =true / ‘0’ false)

— Conditional operator (? :)
¢ Syntax:

School of Engi

module ml(x,y,sub,s,cout,d,z,£,q9);
input [3:0] x,y;
input sub;
output [3:0] s,d;
output [3:0] z;
output cout, £,g;
assign {cout,s} = {0,x} + {0,y};
assign d = x - y;
assign £ = (x == 4’'h5);
assign g = (y < 0);
assign z = (sub==1) ? x-y : x+y;
endmodule

Sample “Assign” statements

condition ? statement_if_true : statement_if_false;

I (JSC Viterbi

School of Eng

Always Block (Combinational)

e Primary unit of parallelism in code

— ‘always’ and ‘assign’ statements run in parallel
— Statements w/in always blocks are executed
sequentially

¢ Format

— always @(sensitivity list)
begin
statements
end

* Always blocks are “executed” when there is a change

in a signal in the sensitivity list

¢ When modeling combinational logic, sensitivity lists

should include ALL inputs (i.e. all signals in the RHS’s)

¢ Generation of a signal must be done within a single

always block (not spread across multiple always
blocks)
— Signals generated in an always block must be declared
type ‘reg’

module addsub(a,b, sub, s);

input [3:0] a,b;
input sub;

output reg [3:0] s;
reg [3:0] newb;

always @ (b, sub)

begin
if(sub == 1)
newb = ~b;
else
newb = b;
end

always @*
begin
s = a + newb + sub;
end
endmodule

| USCViterbi@
Always Block (Sequential)

* Flip-flops (sequential logic)
are modeled using an
always block sensitive to the
edge (posedge or negedge)
of the clock

— block will only be executed on
the positive edge of the clock

* Use the non-blocking
assignment operator (<=) in
clocked “always” blocks

School of Engincering

module accumulator (x,z,clk, rst);

input [3:0] x;
input clk, rst;
output [3:0] z;
reg [3:0] z;

always @ (posedge clk)

begin
if (rst == 1)
z <= 4'b0000;
else
z <= z + x;
end
endmodule

I (JSC Viterbi

School of Engincering

Procedural Statements

* Must appear inside an always or initial block

* Procedural statements include

—if...else if...else...

— case statement

— for Ioop (usually unnecessary for describing logic)

— while Ioop (usually unnecessary for describing logic)

] USCViterbi@
If...Else If...Else Statements

Syntax

if (expr)

begin
statements;

end

else if (expr)
statement;

else

statement;

School of Engincering

// 4-to-1 mux description
always @(i0,il1,i2,i3,sel)
begin
if (sel == 2’b00)
y <= i0;
else if(sel == 2'Db01)
y <= il;
else if (sel == 2’bl0)
y <= i2;
else
y <= i3;
end

If multiple statements as the body of if...else if...else then

enclose in begin...end construct

] USC\/iterbl@
Case Statements

. Syntax // 4-to-1 mux description
case(expr) la):;viis @(i0,i1,i2,i3,sel)
case (sel)
2'b00: y <= i0;
2'b01: y <= il;

option 1: begin
statements;

end 2/b10: y <= i2;
option 2: statement; default: y <= i3;
endcase
[default: statement;] end
endcase

* Default statement is optional

* If multiple statements as the body of an option then enclose
in begin...end construct

| USCViterbi@
Traffic Light State Machine

School of Engincering

module trafficlight(sl, s2, clk, rst, msg, ssg, mtg,

msr, ssr, mtr);
input sl, s2, clk, rst;
output msg, ssg, mtg, msr, Ssr, mtr;

reg msg, ssg, mtg, msr, Ssr, mtr;

reg [1:0] state;

reg [1:0] state_d;
wire s;
parameter MT = 2'bll;
parameter MS = 2'b10;
parameter SS = 2'b00;

assign s = sl | s2;
always @(state, s)
begin
if (state == MS)
state_d <= SS;
else if (state == SS)
if(s == 1)
state_d <= MT;
else
state_d <= Ms;
else // state == MT
state_d <= MS;

always @(posedge clk)
begin

always @(state)
begin

end
endmodule

if(rst == 1)
state <= 8§;
else
state <= state_d;

mtg <= 0; msg <= 0; ssg <= 0;
mtr <= 0; msr <= 0; ssr <= 0;
case (state)
MT:
begin
mtg <= 1; ssr <= 1; msr <= 1;
end
MS:
begin
msg <= 1; ssr <= 1; mtr <= 1;
end
ss:
begin
ssg <= 1; msr <= 1; mtr <= 1;
end

endcase

I (JSC Viterbi

School of Engincering

Understanding Simulation Timing

* When expressing parallelism, an understanding of
how time works is crucial

* Even though ‘always’ and ‘assign’ statements specify
operations to be run in parallel, simulator tools run
on traditional computers that can only execute
sequential operations

* To maintain the appearance of parallelism, the
simulator keeps track of events in a sorted event
gueue and updates signal values at appropriate
times, triggering more statements to be executed

I (/S Viterbi (2 N (/S Viterbi

School of Engincering School of Engincering

Explicit Time Delays Explicit Time Delays

* |In testbenches, explicit Y * Assignments to the same T T
delays can be specified s signal without an o o
using ‘# delay’ S & = & intervening delay will cause | @sston ==t
#5 // delay 5 ns (ns = default) . #5 // delay 5 ns (ns = default)
— When this is done, the RHS of | ... - _ o, only the last assignment to ssiem B —
the expression is evaluated at| assign b = o; be seen posign & = i
time t but the LHS is not #2 // delay 2 more ns endmodule
updated until t+delay EeSigm @ = 1
endmodule
Ons a=1 Ons a=1
Simulator Event Queue 5ns a=0 Simulator Event Queue 5ns a =%91
5ns b=0 5ns b=0
7ns a=1 7ns a=1
| USCYiFelrbi C | USCYiFelrbi

Explicit Propagation Delay Implicit Time Delays

* Wh deling logi lici i module ml(a,b,c,w, x,y,2); ; F ’ TSR Qerity Cooto T
en modeling logic, explicit propagation | "8 & 2. 2 * Normal behavioral descriptions don’t | resin)
. O, Cy w <= a "~ b; .
deIa'\yllcs,rtr:nz::ybbeerl]:;irr:ad(:iscriptions o output w,x,y,z; model propagation delay until the b e Implementations
- always €@(a,b,c) ; ; v ey
this since the delays will be determined by the begin code is synthe5|zed - = assign w = }i N b
. . assign x = | @p
synthesis tools W <= #4 a " b; + To operate correctly the simulators assign y = w & x;
. . H . = #5 b | ; . assign z = ~y;
Verilog supports different propagation enz < c event queue must have some notion
delay paradigms . .
oo)) endmodule of what happens first, second, third, Time Event Triggers
¢ One paradigm is to specify the delay with t
the RHS of an assighment in an always etc. Ons ab,c=001 wandxassigns
block. * Delta (6) time is used
* When this is done, the RHS of the — Delta times are purely for ordering 0r6 w0l y assign
expression is evaluated at time t but the Ons a,b,c=0,0,1 events and all occur in “0 time” 0+26 y=0 z assign
LH'S |'s not upcjated unt|I”t+de/ay’ 4ns w=0 — The first event(s) occur at time 0 ns 0+36 -1 Anything
* This is called “transport” delay since we are 5 s x=1 — Next event(s) occur at time 0 + & sensitive to z

specifying the time to transport the value

X Simulator Event Queue
from inputs to output

Next event(s) occur at time 0 + 26
Simulator Event Queue

I (JSC Viterbi 2

School of Engincering

Synthesized Logic & Timing

Synthesis tools have to determine
whether you are describing
combinational or sequential logic in an
always block
If we reach the end of a block
attempting to model combinational
logic without assigning a signal then it
infers that the signal should be
remembered (i.e. sequential logic) and
a latch results (usually undesired)
When modeling combinational logic
ALWAYS:

— Provide a default assignment or

— Provide an else/default case

// 2-to-1 mux description

always @(i0,il, sel)
begin
y = il;
if (sel == 0)
y = i0;
end

Default assignment of y
overwritten if necessary

// 2-to-1 mux description

always @(i0,il, sel)
begin
if (sel == 0)
y = i0;
else
y = il1;
endcase
end

Else case acts as a catch-all /
default case.

I (JSC Viterbi

School of Engincering

TESTBENCHES

N (/5. Viterbi
Testbenches

I (JSC Viterbi ©)

Testbench Modules

Generate input stimulus (values) to
your design over time

Simulator will run the inputs through
the circuit you described and find
what the output from your circuit
would be

Designer checks whether the output
is as expected, given the input
sequence

Testbenches consist of code to
generate the inputs as well as
instantiating the design/unit under
test and possibly automatically
checking the results

Testbench Module

Code to generate
input stimulus

]

Inputs Outputs

Unit Under Test (UUT)
(Your design module)

e Declared as a module
just like the design
circuit

* No inputs or outputs

module my_ tb;
// testbench code
endmodule

()5 Viterbi
Testbench Signals

* Declare signals in the module ml(x,y,z, £,9);
testbench for the inputs and input x,y,z;
outputs of the design under output f,g;
test

— inputs to your design should Unit Under Test

be declared type ‘reg’ in the
testbench (since you are
driving them and their value

module my_tb;

should be retained until you reg X,Y,Z;
change them) wire f£,g;
— outputs from your design endmodule

should be declared type ‘wire’
since your design is driving
them

Testbench

| USCV1terb1
UUT Instantiation

* Instantiate your design module module ml (x,y,z, £,9);
as a component (just like you input x,y,z;
instantiate a gate in you design) output £,g;

* Pass the input and output endmodule
signals to the ports of the Unit Under Test
design

. . module my_tb;
* For designs with more than 4 or

reg X, ¥,2;

5 ports, use named mapping wire £,g;
rather than positional mapping ml uwut(x,y,z, £,9);
/* ml uut (.x(x), .y(y),
.z(z), .£(f),
-g(9));
*/
endmodule
Testbench

I (JSC Viterbi G2

School of Engincering

Generating Input Stimulus (Values)

* Now use Verilog code module ml(x,y,z,£,9);

input x,y,z;

to generate the input output £,g;
values over a period of endmodule
t| me Unit Under Test

module my_ tb;

reg X, ¥,2;
wire f£f,g;

ml uut(x,y,z,£,9);
/* ml uut (.x(x), .y(y),
.z(z), .£(f),
-g(9));
2
endmodule

Testbench

] USCV1terb1
Initial Block Statement

* Tells the simulator to run this module my_tb;
code just once (vs. alvyays block o s, o
that runs on ch_anges in wire £,g;
sensitivity list signals) L (e
: P ml uut(x,y,z, £, g
* Inside the “initial” block we can Y g
write code to generate values bkl
on the inputs to our design begin
* Use “begin...end” to bracket the // input stimulus
code (similarto{..}in Cor // code
Java) end
endmodule
Testbench

I (JSC Viterbi 2

Assignment Statement

School of Engincering

e Use ‘='to assign a module my_tb;
signal a value reg x,¥,Z;

wire f£,g;

— Can assign constants ml uut (x,y,z,£,9) ;
"x=0; y=1 initial
— Can assign logical begin
relationships x = 0;
*x="x [/x=notx end
*x=y&z //x=yandz endmodule

Testbench

I (JSC Viterbi

School of Engincering

Aggregate Assighment Statement

* Can assign multiple signals at module my_tb;
once reg x,Y,z;
* Place signals in brackets wire f£,g;
(i.e.{ }) and separate with ml wut (x,y,z,£,q) ;
commas
+ Multiple bit constants can be initial
begin

written in the form:
® num_bits ’{b,0,d,h} value {x,y,z} = 37b000;
— 4’b0000 // 4-bits binary end
— 6’b101101 // 6-bits binary
— 8'hFF // 8-bits in hex
— Decimal is default
- 17 // 17 decimal

endmodule

Testbench

I (JSC Viterbi 2

School of Engincering

Time
* We must explicitly module my_tb;
indicate when and how zeg x,¥.z;
much time should pass weEe 29
1 1 dut ¥, z, £, 7
between assignments R
(w . . initial
» Statement (‘# indicates a begin
time delay): {x,y,z} = 3'b000;
— . : . #10;
#10; // wa!t 10 ns; (%,y,2) = 3'D001;
—#50; //wait50ns; #25;
 Default timescale is end
nanoseconds (ns) endmodule

Testbench

I (JSC Viterbi

Integer Signal Type

* To model a collection of bits module my_tb;
representing a number, declare reg W, X, Y, 2Z;
signals as type ‘integer’ integer num;

* Assigning an integer to a bit or initial
group of bits will cause them to begin
get the binary equivalent e

{w,x,y,z} = num;

* Assigning an integer value too // assigns
large for the number of bits will // w,x,y,z = 1111
cause just the LSB’s of the #10; ”
number to be assigned '/“/‘mnum“:‘“16'

— Assigning 8,,=1000, to a 3-bit value {w,%,y,2z} = num;
will cause the 3-bit value to be 000 // w,x,y,z = 0000
(i.e. the 3 LSB’s of 1000) end

endmodule

Testbench

I (JSC Viterbi o

For loop

* Integers can also be usec

as program control
variables

* Verilog supports ‘for’
loops to repeatedly
execute a statement

* Format:

— for(initial_condition;

end_condition; incremen

statement)

School of Engincering

module my_tb;
reg a, b ’
integer i; You can’t do
oL “i++” asin
initial C/C++ or Java
begin
for(i=0;i<4;i=i+1)
begin a,b = 00,
{a,b} = i; thenot,
then 10,
n ;
end then 11
end
endmodule

Here, ‘i’ acts as a counter for a loop.
Each time through the loop, i is
incremented and then the decimal value
is converted to binary and assigned to a
and b

I (JSC Viterbi

School of Engincering

For loop

* Question: How much time
passes between
assignments to {a,b}

* Answer: O time...in fact if
you look at a waveform,
{a,b} will just be equal to
1,1...you’ll never see any
other combinations

* We must explicitly insert
time delays!

module my_tb;

reg a,b;
integer i;
initial
begin
for (i=0;i<4;i=i+1)
begin
{a,b} = i;
#10;
end
end
endmodule

Now, 10 nanoseconds will pass before
we start the next iteration of the loop

I (JSC Viterbi C

School of Engincering

Generating Sequential Stimulus

* Clock Generation
— Initialize in an initial block
— Continue toggling via an always
process
* Reset generation
— Activate in initial block
— Deactivate after some period of
time
— Can wait for each clock edge via
@(posedge clk)

RST

module my_tb;
reg clk, rst, s;

always #5 clk = ~clk;

initial begin
clk = 1; rst = 1; s=0;
// wait 2 clocks
@ (posedge clk);
Q (posedge clk);
rst = 0;
s=1;
Q@ (posedge clk);
s=0;

end

endmodule

s

Generated stimulus

