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Purpose

• HDL’s were originally used to model and 

simulate hardware before building it

• In the past 20 years, synthesis tools were 

developed that can essentially build the 

hardware from the same description
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Differences from Software

• Software programming languages are inherently sequential 

– Operations executed in sequential order (next, next, next)

• Hardware blocks always run in parallel (at the same time)

– Uses event-driven paradigm (change in inputs causes expression to be 
evaluated)

• HDL’s provide constructs for both parallel & sequential operation

f = a & b;

g = a | b;

var = x+y;

tmp = d-c;

Software
Perform x+y and when that is 

done assign d-c to tmp

Hardware
This description models 2 gates 

working at the same time

Event Driven Paradigm:  
If a or b changes, f and g 

will be re-evaluated
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Modules

• Each Verilog designs starts as a block diagram (called 
a “module” in Verilog)

• Start with input and output signals, then describe 
how to produce outputs from inputs

module m1(x,y,z,f,g);

// circuit 

// description

endmodule

Software analogy:  Modules are like functions, but also like classes in 
that they are objects that you can instantiate multiple times.

Module

x

y

z[2:0]

f

g



5

Ports

• Input and output signals of a module are called “ports” 
(similar to parameters/arguments of a software function)

• Unlike software, ports need to be declared as “input” or 
“output”

• Vectors declared using [MSB : LSB] notation

Module

module m1(x,y,z,f,g);

input  x,y;

input  [2:0] z;

output f;

output [1:0] g;

endmodule

x

y

z[2:0]

f

g[1:0]

These are the ports
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Signal Types

• Signals represent the inputs, outputs, and 
internal values

• Signals need to be typed 
– Similar  to variables in software (e.g. int, char)

• 2 basic types 
– Wire:  Represents a node connecting two 

logic elements 
• Only for modeling combinational logic

• Used in “assign” statements 

• Use for signals connecting outputs of 
instantiated modules (structural modeling)

– Reg(ister): Used for signals that are 
described behaviorally 

• Used to model combinational & sequential 
logic

• Used for anything produced by an “always” or 
“initial” block

module m1(x,y,z,f,g);

input  x,y;

input  [2:0] z

output f;

output reg [1:0] g;

wire   n1, n2;

reg    n3, n4;

...

endmodule

Inputs are always type 
‘wire’. Outputs are assumed 

‘wire’ but can be redefined 

as ‘reg’
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Constants

• Multiple bit constants can be written in the form:

– [size] `base value

• size is number of bits in constant 

• base is o or O for octal, b or B for binary, d or D for decimal, h or H for 

hexadecimal

• value is sequence of digits valid for specified base

– Values a through f (for hexadecimal base) are case-insensitive

• Examples:

– 4’b0000     // 4-bits binary

– 6’b101101 // 6-bits binary

– 8’hfC         // 8-bits in hex 

– Decimal is default

– 17              // 17 decimal converted to appropriate # of unsigned bits
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Structural vs. Behavioral Modeling

Structural

• Starting with primitive 

gates, build up a hierarchy 

of components and specify 

how they should be 

connected 

Behavioral

• Describe behavior and let 

synthesis tools select 

internal components and 

connections
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Structural Modeling

• Starting with primitive gates, build 

up a hierarchy of components and 

specify how they should be 

connected 

X Y

S

Co

Half 

Adder

Structural 
specification of 

a half adder

Use HA’s to structurally describe incrementer

module ha(x,y,s,co);

input    x,y;

output   s,co;

xor i1(s,x,y);

and i2(co,x,y);

endmodule

module incrementer(a,z);

input    [3:0] a;

output   [3:0] z;

wire     [3:1] c;

ha ha0(a[0],1,z[0],c[1]);

ha ha1(a[1],c[1],z[1],c[2]); 

ha ha2(a[2],c[2],z[2],c[3]); 

ha ha3(a[3],c[3],z[3], ); 

endmodule
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Structural Modeling of Logic Gates

• Modules and primitive gates can be instantiated 
using the following format:

module_name instance_name(output, input1, input2,…)

• Input and outputs must be wire types

• Supported Gates: and, or, not, nand, nor, xor, xnor

module m1(c16,c8,c4,f);

input    c16,c8,c4;

output   f;

wire     n1;

or   i1(n1,c8,c4);

nand i2(f,c16,n1);

endmodule
“n1”

net (wire)

Verilog Description

“i2”
instance name
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Instantiating User-Defined Modules
• Format:  module_name instance_name(port1, port2, port3, …)

• Positional mapping

– Signals of instantiation ports are associated using the order of module’s port 

declaration (i.e. order is everything)

• Named mapping

– Signals of instantiation ports are explicitly associated with module’s ports (i.e. 

order is unimportant)

– module_name instance_name(.module_port_name(signal_name),…);

module ha(x,y,s,co);

...

endmodule

module incrementer(a,z);

ha ha0(a[0],1,z[0],c[1]);

...

endmodule

module ha(x,y,s,co);

...

endmodule

module incrementer(a,z);

ha ha0(.x(a[0]),

.s(z[0]),

.y(1),

.co(c[1]) );

...

endmodule

Positional mapping

Named 
Mapping
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Internal Signals

• Define signals (wire or reg) for each internal 

signal/wire

module m2(x,y,z,f);

input  x,y,z;

output f;

wire   n1,n2,n3;

and u1(n1,x,z);  // instance names need 

and u2(n2,x,y);  // not be declared

not u3(n3,z);

or  u4(f,n1,n2,n3);

endmodule
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Behavioral Modeling

• Describe behavior and let synthesis tools select internal 

components and connections

• Advantages:  

– Easier to specify

– Synthesis tool can pick appropriate implementation (for 

speed / area / etc.)

Use higher level operations and let synthesis 
tools infer the necessary logic

module incrementer(a,z);

input    [3:0] a;

output   [3:0] z;

assign z = a + 1'b1;

endmodule

Could instantiate a ripple-

carry adder, a fast carry-

lookahead adder, etc. as 

needed
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Operators

• Operator types

– Non-blocking / Blocking assignment ( <=, = )

– Arithmetic (+, -, *, /, %)

– Relational (<, <=, >, >=)

– Equality (= =, !=, = = = , ! = =)

– Logical (&&, ||, !)

– Bitwise (~, &, |, ^, ~^)

– Reduction (&, ~&, |, ~|, ^, ~^)

– Shift (<<, >>)

– Conditional ( ? : )

– Concatenation and replication 
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Assign Statement
• Used for combinational logic 

expressions (must output to a ‘wire’ 

signal type)

• Can be used anywhere in the body of a 

module’s code

• All ‘assign’ statements run in parallel

• Change of any signal on RHS (right-

hand side) triggers re-evaluation of 

LHS (output)

• Format:  

– assign output = expr;

• ‘&’ means AND

• ‘|’ means OR

• ‘~’ means NOT

• ‘^’ means XOR

module m1(c16,c8,c4,f);

input    c16,c8,c4;

output   f;

assign f = ~(c16 & (c8 | c4));

endmodule

module m1(c16,c8,c4,f);

input    c16,c8,c4;

output   f;

wire     n1;

or   i1(n1,c8,c4);

nand i2(f,c16,n1);

endmodule
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Multi-bit (Vector) Signals

• Reference individual bits 
or groups of bits by 
placing the desired index 
in brackets 
(e.g. x[3] or x[2:1])

• Form vector from 
individual signals by 
placing signals in 
brackets 
(i.e. {  }) and separate 
with commas

module m1(x,f);

input [2:0] x;

output      f;

// f = minterm 5

assign f = x[2] & ~x[1] & x[0];

endmodule

module incrementer(a,x,y,z);

input [2:0] a;

output x,y,z;

assign {x,y,z} = a + 1;

endmodule
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More Assign Statement

• Can be used with other 

operators besides simple 

logic functions

– Arithmetic (+, -, *, /, 

%=modulo/remainder) 

– Shifting (<<, >>)

– Relational 

(<, <=, >, >=, !=, ==)

• Produces a single bit output 

(‘1’ = true / ‘0’ false)

– Conditional operator ( ? : )

• Syntax:  

condition ? statement_if_true : statement_if_false;

module m1(x,y,sub,s,cout,d,z,f,g);

input    [3:0] x,y;

input          sub;

output   [3:0] s,d;

output   [3:0] z;

output         cout,f,g;

assign {cout,s} = {0,x} + {0,y};

assign d = x – y;

assign f = (x == 4’h5);

assign g = (y < 0);

assign z = (sub==1) ? x-y : x+y;

endmodule

Sample “Assign” statements
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Always Block (Combinational)

• Primary unit of parallelism in code

– ‘always’ and ‘assign’ statements run in parallel

– Statements w/in always blocks are executed 

sequentially

• Format

– always @(sensitivity list)

begin

statements

end

• Always blocks are “executed” when there is a change 

in a signal in the sensitivity list

• When modeling combinational logic, sensitivity lists 

should include ALL inputs (i.e. all signals in the RHS’s)

• Generation of a signal must be done within a single 

always block (not spread across multiple always 

blocks)

– Signals generated in an always block must be declared 

type ‘reg’

module addsub(a,b,sub,s);

input [3:0] a,b;

input sub;

output reg [3:0] s;

reg [3:0] newb;

always @(b,sub)

begin

if(sub == 1)

newb = ~b;

else

newb = b;

end

always @*

begin

s = a + newb + sub;

end

endmodule
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Always Block (Sequential)

• Flip-flops (sequential logic) 

are modeled using an 

always block sensitive to the 

edge (posedge or negedge) 

of the clock

– block will only be executed on 

the positive edge of the clock

• Use the non-blocking 

assignment operator (<=) in 

clocked “always” blocks

module accumulator(x,z,clk,rst);

input [3:0] x;

input clk,rst;

output [3:0] z;

reg [3:0] z;

always @(posedge clk)

begin

if(rst == 1)

z <= 4’b0000;

else

z <= z + x;

end

endmodule
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Procedural Statements

• Must appear inside an always or initial block

• Procedural statements include

– if…else if…else…

– case statement

– for loop  (usually unnecessary for describing logic)

– while loop (usually unnecessary for describing logic)



21

If…Else If…Else Statements

• Syntax

if(expr)

begin

statements;

end

else if(expr)

statement;

else

statement;

• If multiple statements as the body of if…else if…else then 

enclose in begin…end construct

// 4-to-1 mux description

always @(i0,i1,i2,i3,sel)

begin

if(sel == 2’b00)

y <= i0;

else if(sel == 2’b01)

y <= i1;

else if(sel == 2’b10)

y <= i2;

else

y <= i3;

end

...
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Case Statements

• Syntax

case(expr)

option 1: begin

statements;

end

option 2: statement;

[default: statement;]

endcase 

• Default statement is optional

• If multiple statements as the body of an option then enclose 

in begin…end construct

// 4-to-1 mux description

always @(i0,i1,i2,i3,sel)

begin

case(sel)

2’b00: y <= i0;

2’b01: y <= i1;

2’b10: y <= i2;

default: y <= i3;

endcase

end
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Traffic Light State Machine
module trafficlight(s1, s2, clk, rst, msg, ssg, mtg, 

msr, ssr, mtr);

input s1, s2, clk, rst;

output msg, ssg, mtg, msr, ssr, mtr;

reg   msg, ssg, mtg, msr, ssr, mtr;

reg [1:0] state;

reg [1:0] state_d;

wire      s;

parameter MT = 2'b11;

parameter MS = 2'b10;

parameter SS = 2'b00;

assign s = s1 | s2;

always @(state, s)

begin

if(state == MS)

state_d <= SS;

else if(state == SS)

if(s == 1)

state_d <= MT;

else

state_d <= MS;

else  // state == MT

state_d <= MS;

end

always @(posedge clk)

begin

if(rst == 1)

state <= SS;

else

state <= state_d;

end

always @(state)

begin

mtg <= 0; msg <= 0; ssg <= 0;

mtr <= 0; msr <= 0; ssr <= 0;

case(state)

MT:

begin

mtg <= 1; ssr <= 1; msr <= 1;

end

MS:

begin

msg <= 1; ssr <= 1; mtr <= 1;

end

SS:

begin

ssg <= 1; msr <= 1; mtr <= 1;

end

endcase

end

endmodule
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Understanding Simulation Timing

• When expressing parallelism, an understanding of 

how time works is crucial

• Even though ‘always’ and ‘assign’ statements specify 

operations to be run in parallel, simulator tools run 

on traditional computers that can only execute 

sequential operations

• To maintain the appearance of parallelism, the 

simulator keeps track of events in a sorted event 

queue and updates signal values at appropriate 

times, triggering more statements to be executed
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Explicit Time Delays

• In testbenches, explicit 

delays can be specified 

using ‘# delay’

– When this is done, the RHS of 

the expression is evaluated at 

time t but the LHS is not 

updated until t+delay

module m1_tb;

reg  a,b,c;

wire  w,x,y,z;

assign a = 1;

#5  // delay 5 ns (ns = default)

assign a = 0;

assign b = 0;

#2  // delay 2 more ns

assign a = 1;

endmodule

Time Event

0 ns a = 1

5 ns a = 0

5 ns b = 0

7 ns a = 1

Simulator Event Queue
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Explicit Time Delays

• Assignments to the same 

signal without an 

intervening delay will cause 

only the last assignment to 

be seen

module m1_tb;

reg  a,b,c;

wire  w,x,y,z;

assign a = 1;

#5  // delay 5 ns (ns = default)

assign a = 0;

assign a = 1;

endmodule

Time Event

0 ns a = 1

5 ns a = 0→1

5 ns b = 0

7 ns a = 1

Simulator Event Queue
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Explicit Propagation Delay

• When modeling logic, explicit propagation 

delays can be inserted 

– Normally behavioral descriptions should avoid 

this since the delays will be determined by the 

synthesis tools

• Verilog supports different propagation 

delay paradigms

• One paradigm is to specify the delay with 

the RHS of an assignment in an always 

block.

• When this is done, the RHS of the 

expression is evaluated at time t but the 

LHS is not updated until t+delay

• This is called “transport” delay since we are 

specifying the time to transport the value 

from inputs to output

module m1(a,b,c,w,x,y,z);

input    a,b,c;

output   w,x,y,z;

always @(a,b,c)

begin

w <= #4 a ^ b;

x <= #5 b | c;

end

endmodule

Time Event

0 ns a,b,c = 0,0,1

4 ns w = 0

5 ns x = 1

Simulator Event Queue
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Implicit Time Delays

• Normal behavioral descriptions don’t 

model propagation delay until the 

code is synthesized

• To operate correctly the simulators 

event queue must have some notion 

of what happens first, second, third, 

etc.

• Delta (δ) time is used

– Delta times are purely for ordering 

events and all occur in “0 time”

– The first event(s) occur at time 0 ns

– Next event(s) occur at time 0 + δ

– Next event(s) occur at time 0 + 2δ

always @(a,b,c,w,x,y) 

begin

w <= a ^ b;

x <= b | c;

y <= w & x;

z <= ~y;  

end

Time Event Triggers

0 ns a,b,c = 0,0,1 w and x assigns

0 + δ w=0, x=1 y assign

0 + 2δ y = 0 z assign

0 + 3δ z = 1 Anything 

sensitive to z

Simulator Event Queue

assign w = a ^ b;

assign x = b | c;

assign y = w & x;

assign z = ~y;

Equivalent 
Implementations
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Synthesized Logic & Timing

• Synthesis tools have to determine 

whether you are describing 

combinational or sequential logic in an 

always block

• If we reach the end of a block 

attempting to model combinational 

logic without assigning a signal then it 

infers that the signal should be 

remembered (i.e. sequential logic) and 

a latch results (usually undesired)

• When modeling combinational logic 

ALWAYS:

– Provide a default assignment or

– Provide an else/default case

// 2-to-1 mux description

always @(i0,i1,sel)

begin

if(sel == 0) 

y = i0;

else

y = i1;

endcase

end

// 2-to-1 mux description

always @(i0,i1,sel)

begin

y = i1;

if(sel == 0) 

y = i0;

end

Default assignment of y 
overwritten if necessary

Else case acts as a catch-all / 
default case.
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TESTBENCHES
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Testbenches

• Generate input stimulus (values) to 
your design over time

• Simulator will run the inputs through 
the circuit you described and find 
what the output from your circuit 
would be

• Designer checks whether the output 
is as expected, given the input 
sequence

• Testbenches consist of code to 
generate the inputs as well as 
instantiating the design/unit under 
test and possibly automatically 
checking the results

Testbench Module

Unit Under Test (UUT)

(Your design module)

Code to generate 

input stimulus

Inputs Outputs
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Testbench Modules

• Declared as a module 

just like the design 

circuit

• No inputs or outputs

module my_tb;

// testbench code

endmodule
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Testbench Signals

• Declare signals in the 
testbench for the inputs and 
outputs of the design under 
test

– inputs to your design should 
be declared type ‘reg’ in the 
testbench (since you are 
driving them and their value 
should be retained until you 
change them)

– outputs from your design 
should be declared type ‘wire’ 
since your design is driving 
them

module my_tb;

reg   x,y,z;

wire  f,g;

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

Unit Under Test

Testbench
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UUT Instantiation

• Instantiate your design module 

as a component (just like you 

instantiate a gate in you design)

• Pass the input and output 

signals to the ports of the 

design

• For designs with more than 4 or 

5 ports, use named mapping 

rather than positional mapping

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g);

/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));

*/

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

endmodule

Unit Under Test

Testbench
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Generating Input Stimulus (Values)

• Now use Verilog code 

to generate the input 

values over a period of 

time

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g);

/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));

*/

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

endmodule

Unit Under Test

Testbench
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Initial Block Statement

• Tells the simulator to run this 
code just once (vs. always block 
that runs on changes in 
sensitivity list signals)

• Inside the “initial” block we can 
write code to generate values 
on the inputs to our design

• Use “begin…end” to bracket the 
code (similar to { .. } in C or 
Java)

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

// input stimulus

// code

end

endmodule

Testbench
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Assignment Statement

• Use ‘=‘ to assign a 

signal a value

– Can assign constants

• x = 0;   y = 1;

– Can assign logical 

relationships

• x = ~x      // x = not x

• x = y & z  // x = y and z

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

x = 0;

end

endmodule

Testbench
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Aggregate Assignment Statement

• Can assign multiple signals at 
once

• Place signals in brackets 
(i.e. {  }) and separate with 
commas

• Multiple bit constants can be 
written in the form:

• num_bits ’{b,o,d,h} value

– 4’b0000     // 4-bits binary

– 6’b101101 // 6-bits binary

– 8’hFF         // 8-bits in hex 

– Decimal is default

– 17              // 17 decimal

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

{x,y,z} = 3’b000;

end

endmodule

Testbench
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Time

• We must explicitly 
indicate when and how 
much time should pass 
between assignments

• Statement (‘#’ indicates a 
time delay):

– # 10;     // wait 10 ns;

– # 50;     // wait 50 ns;

• Default timescale is 
nanoseconds (ns)

module my_tb;

reg   x,y,z;

wire  f,g;

m1 dut(x,y,z,f,g); 

initial

begin

{x,y,z} = 3’b000;

#10;

{x,y,z} = 3’b001;

#25;

end

endmodule

Testbench
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Integer Signal Type

• To model a collection of bits 
representing a number, declare 
signals as type ‘integer’

• Assigning an integer to a bit or 
group of bits will cause them to 
get the binary equivalent 

• Assigning an integer value too 
large for the number of bits will 
cause just the LSB’s of the 
number to be assigned

– Assigning 810=10002 to a 3-bit value 
will cause the 3-bit value to be 000 
(i.e. the 3 LSB’s of 1000)

module my_tb;

reg     w,x,y,z;

integer num;

initial 

begin

num = 15;    

{w,x,y,z} = num;

// assigns

// w,x,y,z = 1111

#10;

num = num+1;

// num = 16

{w,x,y,z} = num;

// w,x,y,z = 0000

end

endmodule

Testbench
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For loop

• Integers can also be used 
as program control 
variables

• Verilog supports ‘for’ 
loops to repeatedly 
execute a statement

• Format:

– for(initial_condition; 
end_condition; increment 
statement)

module my_tb;

reg     a,b;

integer i;

initial 

begin

for(i=0;i<4;i=i+1)

begin

{a,b} = i;        

end   

end

endmodule

Here, ‘i’ acts as a counter for a loop.  
Each time through the loop, i is 

incremented and then the decimal value 
is converted to binary and assigned to a 

and b

You can’t do 
“i++” as in 

C/C++ or Java

a,b = 00, 
then 01, 
then 10, 
then 11
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For loop

• Question:  How much time 
passes between 
assignments to {a,b}

• Answer:  0 time…in fact if 
you look at a waveform, 
{a,b} will just be equal to 
1,1…you’ll never see any 
other combinations

• We must explicitly insert 
time delays!

module my_tb;

reg     a,b;

integer i;

initial 

begin

for(i=0;i<4;i=i+1)

begin

{a,b} = i;

#10;

end

end

endmodule

Now, 10 nanoseconds will pass before 
we start the next iteration of the loop
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Generating Sequential Stimulus

• Clock Generation

– Initialize in an initial block

– Continue toggling via an always 
process

• Reset generation

– Activate in initial block

– Deactivate after some period of 
time

– Can wait for each clock edge via 
@(posedge clk)

module my_tb;

reg     clk, rst, s;

always #5 clk = ~clk;

initial begin

clk = 1; rst = 1; s=0;

// wait 2 clocks

@(posedge clk);

@(posedge clk);

rst = 0;

s=1;

@(posedge clk);

s=0;

end

endmodule

Generated stimulus

CLK

RST

S


