EE 457 Unit 10

Parallel Processing
Cache Coherency
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Parallel Processing Paradlgms

A SISD = Single Instruction, Single Data

I Uniprocessor
A SIMD = Single Instruction, Multiple Data

i adzf GAYSRAIk+SOG2NI LyaidiNHzOiA2y 9EGSY.
A MIMD = Multiple Instruction, Multiple Data

I CMP, CMT, Parallel Programming
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SIMD Execution

School of Engineering

A Given 4 processing elements

can use the same code to

for(i=0; i < 10,000; i++)
Ali] = B[] + C[i;

perform only 10,000/4=2,500
iterations

Sequential Execution
(10,000 iterations)

I Addressing iIs managed separatel

for each processing element so

for(i=0; i < 2,500; i++)
for(j=0; ) < 4; j++)
A[4*i+]] = B[4*i+]] + C[4*i+]];

that it receives different data
elements to operate on

Equivalent Execution i Still 10,000 iterations
(j Processing Elements)

#pragma vectorize v=[0..3]
for(i=0; i < 2,500; i=i++)
A[4*i+v] = B[4*i+Vv] + C[4*i+V];

Vectorized Execution
(Each PE operates in parallel
requiring only 2,500 iterations)
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SIMT Execution

A Each thread uses its unique ID
to execute the same code but
on different data

I Each thread has its own register
set / addressing scheme

A Partial sums can be generated
Independently

A When all threads are done
(synchronization!) we can
combine results

I Requires communication between
units

School of Engineering

for(i=0; i < 10,000; i++)
sum = sum + A[i];

Sequential Execution
(10000 iterations)

for(t=0; t < 10; t++)
for(i=0; i < 1,000; i++)
sum = sum + A[1000*t + iJ;

Equivalent Execution
(10 * 1000 iterations)

#pragma parallel t=[0..9]
for(i=0; i < 1,000; i++)
sum([t] = sum[t] + A[1000*t + i;

/I combine each threads results
/I requires communication between threads

for(t=0; t < 10; t++)
sum += sumt];

Parallel Execution in 10 Threads
each with its own value of t
(1000 iterations per thread)
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SIMT Example: NVIDIA Tesla GPU
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A An MIMD machine consisting of several SISDs yields higher
performance when different tasks require execution

Al2¢g R2 LI NXffSf LINRPOS&&2NAX
I Share data?

I Coordinate and synchronize?

A In MIMD, we no longer run in logltep but execute different tasks at their own rate
requiring coordination through synchronization

A Two communication paradigms
I Shared memory (can each access the same address space)

I Message passing (private address spaces per process/thread with
explicit messages passed between them)



USCViterbi @

School of Engine

Typical CMP Organization

For EE 457 this is just a shared

Chip Multi-
Processor @ @ @ @
L1 L1 L1 L1

bus
_Priv_a;e L1's require . /
mainiaining conerency via Interconnect (On-Chip Network) rd
L2 L2 L2 L2
Bank Bank/ Bank Bank/ \\

_________________________________________________________

Main Memory

| For EE457, just one bank. ‘




Definitions

A Multiprogramming

I Running multiple independent programs using tistering on the
same processor

A Multiprocessing
I Running multiple independent programs on a multiprocessor

A Multitasking

I Splitting a single application into multiple tasks which can be run on a
time-shared uniprocessor or on a multiprocessor

A Multithreading
i {FYS & YdzZ GAOGF &1 AY3IT K286SOASNJI {
processes of (I K NJwithiR asingleprocess

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl
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Programming Model

A Applications are partitioned into a set of cooperating processes
AtNrOSaasSa OlFly o0S &aSSy | a d&a@ANIdz f
I Usually there are many more processes than processors andstaeng is
required
A Processes may communicate by passing messages

I Usually done by shared mailboxes (shared memory variables) or shared
regions of memory in a shared memory system

I Interprocessor interrupts or network I/O in a message passing system

A For shared memory systems, synchronization protocols must be careful
followed to avoid reaemodify-write race conditions

A Scheduling: Binding processes to processors

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl
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Difficulties in Exploiting MIMD

A Correctness
I Synchronization, locks, race conditions, etc

A In many cases, parallel programming requires a fair amount o
knowledge of the underlying MIMD hardware to achieve good
performance

A[TAYAOGFrOA2Y 2F &LISSRdzZL) RdzS @
code that is NOT parallelized)

I Sequential job take 100 Time Units

i 80 Time units are parallelized to 10 processors

I New Exec. Time = 20 (seq.) + 8 (parallelized)

I

- Speedup =100/ 28 = 3.57
A Compared to linear speedup expectation of 10 proc. => 10x speedup)



- 01 USCViterbl@
Synchronization

A Example: Suppose we need to sum 10,000 numbers on
10 processors. Each processor sums 1,000 at its own
pace and then need to combine results ReadModify-Write must be

erformed atomically.
A We need to wait until the 10 threads have completed i e
to combine results

A This is an example of a barrier synchronization whe N
Lttt GKNBFRa yvdad oksol |0 |

point beforeany thread may continue count = count+1;
y : : if(count == N)
i No one shall execute beyond the barrier until all othe| . asume all
reach that point processes
: . . : - count=0
A To implement this we keep a count and increment il e,
atomically - block task and
place in

barrier queue
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Problem of Atomicity

A Sum an array, A, of numbers {5,4,6,7,1,2,8,5}
A Sequential method
for(i=0; 1 < 7; 1++) { sum = sum + AJi]; }

A Parallel method (2 threads with ID=0 or 1) Sequential
for(i=ID*4; i < (ID+1)*4; i++) {

>

Sum

(Gl (e ISR i EN] [e)R FoN) (4]

5
—_ i1- 4 local_sum
local_sum = local _sum + A[i]; } 2 e
sum = sum + local_sum; g
2 local_sum
A Problem s | [ 5
I Updating a shared variable (e.g. sum) sum
i Both threads read sum=0, perform sum=sum+local_sum, and
write their respective values back to sum Parallel

I Sum ends up with only a partial sum
I Any read/modify/write of a shared variable is susceptible

A Solution
I Atomicupdates accomplished via some forml@tking
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Atomic Operations

A Read/modify/write sequences are usually done
with separate instructions P P
A Possible Sequence: $ $
i P1 Reads sum (Ilw) Shared Bus
i P1 Modifies sum (add)
I P2 Reads sum (Iw) M
T P1 Writes sum (sw)
i tH dzaSa 2f R O f dzS X
AtIFNIAFE {2fdziAaz2yy | @S | &S LI NI i
variable (O=Lock is free/unlocked, 1 = Locked)  thread 1: Thread 2:
A Lock variable is susceptible to same problem as ¢t LockL
sum (read/modify/write) Jpdatesum - Update sum
Unlock L Unlock L

A Hardware has to support some kind of instruction
to implement atomic operations usually by not
releasing bus between read and write
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Locking/Atomic Instructions

A TSL (Test and Set Lock) LOCK:  TSL $4lock_addr
i tslreg, addr_of lock var TR
i Ta2YAOLFfteée aiuz2NbBa (
value & returns lock_var in reg UNLOCK: sw  $zero,lock_addr

return;

A Atomicity is ensured by HW not releasing

the bus during the RMW cycle LA $8lock_addr

A LL and SC (MIPS & others) LOCK:  ADDI $9,0.1
I Lockfree atomic RMW LS
: SC  $9,0($8)

I LL = Load Linked BEQ $9,%$zero,LOCK

A Normal Iw operation but tells HW to track any BNE $4,zero,LOCK

external accesses to addr.
LA $tl,sum

I SC = Store Conditional UPDATE: LL  $50(5t1)
A Like sw but only stores if no other writes since L ADD $5,$5,local_sum
& returns O in req. if failed, 1 if successful SC  $5,0(5t1)

BEQ $5,%zero,UPDATE
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Solving Problem of Atomicity

A Sum an array, A, of numbers {5,4,6,7,1,2,8,5}
A Sequential method

for(i=0; 1 < 7; i++) { sum = sum + AJl]; }
A Parallel method (2 threads with ID=0 or 1)

lock L; Sequential
for(i=ID*4; i < (ID+1)*4; i++) {

Sum

CﬂCOI\)H\l(D-bU‘I}

. 5
local_sum = local_sum + A[i]; } 2 local_sum
6 L 22 |
7
tlock(L o
etloc . 2 ocal_sum
g (L); 2 o
sum = sum + local_sum,; 5
. Sum
unlock(L);

Parallel



Cache Coherency

A Most multi-core processors are shared memory systems wher
each processor has its own cache

A Problem: Multiple cached copies of same memory block

I Each processor can get their own copy, change it, and perform
OF t Odzf F A2y a 2y UKSANI 26y RATTS

A{2tdziA2yY {y22LF Ol OKSaX

Example of incoherence
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Snoopy or Snoopy
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I D2

2 dzii

Aa{y22LAy3E

I Caches monitor activity on the bus looking for invalidation messages
I If another cache needs a block you have the latest version of, forward it to mem & other:

Ol

Coherency

OKS a

using

Asnoop

P1 wants to writes X,

so it first sends
eﬁi nvalidatio

Now P1 can safely

if P2 attempts to
read/write x, it will

e miss, & request the

0 Tha T Reade the bus for all sharers Wit block over the bus
P1 P2 P1 P2 P1 P2 P1 P2
T »T I,—T T T $ ’ § $

4

|
I
|
\

L:me

Invahdate—
block X if
you have

X

Solving Cache Coherency

A If no writes, multiple copies are fine

A Two options: When a block is modified

' YR dzZLJRI 0S S@OSNE2YyS SfasSQa
I Invalidate all other sharers and make them come back to you to get a fresh copy

dza Ay 3 Ay gl tARIE{

02 Lk

V4

P1 forwards data to

e to P2 and memory

at same time

P2




Coherence Definition

A A memory system is coherent if the value returned on a Load
Instruction is always the value given by the latest Store
Instruction with the same address

A This simple definition allows to understand the basic
problems of private caches in MP systems

SRR

X X X 6 X X 6 X
| i | i |

I | I
X X 0 X

I Original State I I Write-Through Cache I I Write-Back Cache I

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl
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the bus address lines and invalidates the cache whel
the cache contains a copy of the block with modified
word

A The state of a memory block b in cache i can be
described by the following state diagram

I State INV: there is no copy of block b in cache i or if there
IS, It Is invalidated

I State VAL: there is a valid copy of block b in cache |

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl
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Write Through Snoopy Protocol

A R(k): Read of block b by processor k
A W(K): Write into block b by processor k
A Solid lines: action taken by the local processor

A Dotted lines: action taken by a remote processor
(ncoming bus request)

R(i), W(i)

R() i = Local cache
4 wW(i) j = Remote cache

-
s-——-u——
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Bus vs. Processor Actions

A Cache block state (state and transitions maintained for each
cache block)
I Format of transitions:input Action/ Output Action
I Pr = Processor Initiated Action
I Bus = Consequent action on the bus

Bus = Action (initiated by another
BusWrite / -- processor) appearing on the bus and
BusReadX / -- noticed by our snoopy cache control unit

PrWr / BusWrite
PrRd / --

BusWrite / --
BusReadX / --

f’
- o w-— ™

PrRkd / BusRd RdX = Since | do not have the block, |

Prwr / BusRdX need to read the block. But since my
intent is to write, | ask that others invalid
their copies

Michel Dubois, Murali Annavaram and Per Stenstrom © 2011.
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Action Definitions

Acronyms Description
PrRd ProcessoRead
Prwr Processor Write
BusRd Read request for a block
BusWrite Write a wordto memory and invalidate other copies
BusUpgr Invalid other copies
BusUpdate Update other copies
BusRdX Read block and invalidate other copies
Flush Supply a block to a requesting cache
S Shared line is activated
~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenstrom © 2011.
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Cache Block State Notes

ANote that these state diagrams

are highlevel

I A state transition may take multiple clock
cycles

I The state transition conditions may violate
all-inclusive or mutualhexclusive @
requirements

I There may be several other intermediate
states

I Events such as replacements may not have
been covered
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Coherence Implementation

) ()

El L1 Data H L1 Data
Tags Tags
e
Snoop Snoop
Tag Tag
Replica Replica \
Shared Bus L1

Dual directory of
tags is maintained

L2 L2 L2 L2 E to facili'gate
Bank Bank/ Bank Bank/ i shooping

__________________________________________________________________________________________________________________




Write Back Caches

A2 NARGS AYOIFEARFOS LINRO2Oz

A Basic 3state (VIS) Protocol

I I =INVALID: Replaced (not in cache) or invalidated

I I?O(Readg)nly) :§hared: Processors can read thgir copy. MultivaAe
O2LIASa OlFlyYy SEAAUGO® OF OK LINROSaa

I RW(I?ead}Nrite) :Moglifjed: Processors can readv/varite its copy. Only
2yS O2LJk SEAalGadd t N2OSaaz2zNJ Aa
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Write Invalidate Snoopy Protocol

R(i)

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl



Local View

W(i)
R(i)

Remote View

W(i)
R(i)

Remote Read

R(i)

W(i) R(i)

R(i)
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If you have the
only couple and
another processor
wants to read the
data

The other
processor goes
from invalid to

read-only




Local View

W(i)
R(i)

Remote View

W(i)
R(i)

Local Write

R(i)

R(i)
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Upgrade your
access

Ly@lftARIF @S
COpy SO no one
else has the block







