EE 457 Unit 10

Parallel Processing
Cache Coherency

i, TS(“Viterbi @

School of Engine

Parallel Processing Paradlgms

A SISD = Single Instruction, Single Data

I Uniprocessor
A SIMD = Single Instruction, Multiple Data

i adzf GAYSRAIk+SOG2NI LyaidiNHzOiA2y 9EGSY.
A MIMD = Multiple Instruction, Multiple Data

I CMP, CMT, Parallel Programming

| sisp | | swvp | | mivD |
Instruc. Stream Data Stream - PE <« MU » CU » PE |«
\‘ - L _ P L R _ | Shared
» CU PE [« MU CU —* PE [« MU CU — PE * U

> PE [+ MU » CU — PE [«

i, TS(“Viterbi -

SIMD Execution

School of Engineering

A Given 4 processing elements

can use the same code to

for(i=0; i < 10,000; i++)
Ali] = B[] + C[i;

perform only 10,000/4=2,500
iterations

Sequential Execution
(10,000 iterations)

I Addressing iIs managed separatel

for each processing element so

for(i=0; i < 2,500; i++)
for(j=0;) < 4; j++)
A[4*i+]] = B[4*i+]] + C[4*i+]];

that it receives different data
elements to operate on

Equivalent Execution i Still 10,000 iterations
(j Processing Elements)

#pragma vectorize v=[0..3]
for(i=0; i < 2,500; i=i++)
A[4*i+v] = B[4*i+Vv] + C[4*i+V];

Vectorized Execution
(Each PE operates in parallel
requiring only 2,500 iterations)

i, TS(“Viterbi -

SIMT Execution

A Each thread uses its unique ID
to execute the same code but
on different data

I Each thread has its own register
set / addressing scheme

A Partial sums can be generated
Independently

A When all threads are done
(synchronization!) we can
combine results

I Requires communication between
units

School of Engineering

for(i=0; i < 10,000; i++)
sum = sum + A[i];

Sequential Execution
(10000 iterations)

for(t=0; t < 10; t++)
for(i=0; i < 1,000; i++)
sum = sum + A[1000*t + iJ;

Equivalent Execution
(10 * 1000 iterations)

#pragma parallel t=[0..9]
for(i=0; i < 1,000; i++)
sum([t] = sum[t] + A[1000*t + i;

/I combine each threads results
/I requires communication between threads

for(t=0; t < 10; t++)
sum += sumt];

Parallel Execution in 10 Threads
each with its own value of t
(1000 iterations per thread)

USC Viterbi 2

School of Engineering

SIMT Example: NVIDIA Tesla GPU

Streaming
[Hestopu |- eidge || SystemMemory multiprocessor
s— GPU
Host Interface [T T
’—I—‘ \éftﬁgf;a{;!'ﬁ High-Definition /, SM
Input Assembler ZCull Video Processors / 3
Distibation Disriouton © Diibaton) :
I l I ’ 8 processing
| | | | | | | 2
TPC TPC__ [TPC —_TrC TPC TPC TPC 7 y elements
Vi P4
| il il | [7 1 execute the
SM SM SM SM SM SM SM
I I [i | same
— instruction
5 S5 5 S5 = 5 e = == =) [s7][sP] :
R operae on
1 o o e separate data
ey B e ey ||| partitions
[Texture Unit [Texture Unit [Texture Unit [~ Texture Unit Texture Unit Texture Unit__ | =
Tex L1 Tex L1 Tex L1 [Texti] Texli | Tex L1 ‘-.,\ SFU | [SFU
o s
C : Interconnection Network 5\ Shared
N
[Rop || 12 | [Rop|| 2 | [Rop][2 | [Rop|| L2 | | Displaymntertace | s Memory
i i i i [i i —— | P
DRAM DRAM DRAM DRAM . Display ' 8T Stream|ng

processors

H&P, CO&D 4™ Ed. Chapter 7 & Multicores, Multiprocessors, and Clusters 8 5

A An MIMD machine consisting of several SISDs yields higher
performance when different tasks require execution

Al2¢g R2 LI NXffSf LINRPOS&&2NAX
I Share data?

I Coordinate and synchronize?

A In MIMD, we no longer run in logltep but execute different tasks at their own rate
requiring coordination through synchronization

A Two communication paradigms
I Shared memory (can each access the same address space)

I Message passing (private address spaces per process/thread with
explicit messages passed between them)

USCViterbi @

School of Engine

Typical CMP Organization

For EE 457 this is just a shared

Chip Multi-
Processor @ @ @ @
L1 L1 L1 L1

bus
_Priv_a;e L1's require . /
mainiaining conerency via Interconnect (On-Chip Network) rd
L2 L2 L2 L2
Bank Bank/ Bank Bank/ \\

Main Memory

| For EE457, just one bank. ‘

Definitions

A Multiprogramming

I Running multiple independent programs using tistering on the
same processor

A Multiprocessing
I Running multiple independent programs on a multiprocessor

A Multitasking

I Splitting a single application into multiple tasks which can be run on a
time-shared uniprocessor or on a multiprocessor

A Multithreading
i {FYS & YdzZ GAOGF &1 AY3IT K286SOASNJI {
processes of (I K NJwithiR asingleprocess

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

- _________0_000__] USCVlterb1®
Programming Model

A Applications are partitioned into a set of cooperating processes
AtNrOSaasSa OlFly o0S &aSSy | a d&a@ANIdz f
I Usually there are many more processes than processors andstaeng is
required
A Processes may communicate by passing messages

I Usually done by shared mailboxes (shared memory variables) or shared
regions of memory in a shared memory system

I Interprocessor interrupts or network I/O in a message passing system

A For shared memory systems, synchronization protocols must be careful
followed to avoid reaemodify-write race conditions

A Scheduling: Binding processes to processors

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

e USCViterbi

School of Engine

Difficulties in Exploiting MIMD

A Correctness
I Synchronization, locks, race conditions, etc

A In many cases, parallel programming requires a fair amount o
knowledge of the underlying MIMD hardware to achieve good
performance

A[TAYAOGFrOA2Y 2F &LISSRdzZL) RdzS @
code that is NOT parallelized)

I Sequential job take 100 Time Units

i 80 Time units are parallelized to 10 processors

I New Exec. Time = 20 (seq.) + 8 (parallelized)

I

- Speedup =100/ 28 = 3.57
A Compared to linear speedup expectation of 10 proc. => 10x speedup)

- 01 USCViterbl@
Synchronization

A Example: Suppose we need to sum 10,000 numbers on
10 processors. Each processor sums 1,000 at its own
pace and then need to combine results ReadModify-Write must be

erformed atomically.
A We need to wait until the 10 threads have completed i e
to combine results

A This is an example of a barrier synchronization whe N
Lttt GKNBFRa yvdad oksol |0 |

point beforeany thread may continue count = count+1;
y : : if(count == N)
i No one shall execute beyond the barrier until all othe| . asume all
reach that point processes
: . . : - count=0
A To implement this we keep a count and increment il e,
atomically - block task and
place in

barrier queue

- 01 USCVlterb1@
Problem of Atomicity

A Sum an array, A, of numbers {5,4,6,7,1,2,8,5}
A Sequential method
for(i=0; 1 < 7; 1++) { sum = sum + AJi]; }

A Parallel method (2 threads with ID=0 or 1) Sequential
for(i=ID*4; i < (ID+1)*4; i++) {

>

Sum

(Gl (e ISR i EN] [e)R FoN) (4]

5
—_ i1- 4 local_sum
local_sum = local _sum + A[i]; } 2 e
sum = sum + local_sum; g
2 local_sum
A Problem s | [5
I Updating a shared variable (e.g. sum) sum
i Both threads read sum=0, perform sum=sum+local_sum, and
write their respective values back to sum Parallel

I Sum ends up with only a partial sum
I Any read/modify/write of a shared variable is susceptible

A Solution
I Atomicupdates accomplished via some forml@tking

- 01 USCVlterb1®
Atomic Operations

A Read/modify/write sequences are usually done
with separate instructions P P
A Possible Sequence: $ $
i P1 Reads sum (Ilw) Shared Bus
i P1 Modifies sum (add)
I P2 Reads sum (Iw) M
T P1 Writes sum (sw)
i tH dzaSa 2f R O f dzS X
AtIFNIAFE {2fdziAaz2yy | @S | &S LI NI i
variable (O=Lock is free/unlocked, 1 = Locked) thread 1: Thread 2:
A Lock variable is susceptible to same problem as ¢t LockL
sum (read/modify/write) Jpdatesum - Update sum
Unlock L Unlock L

A Hardware has to support some kind of instruction
to implement atomic operations usually by not
releasing bus between read and write

i, TS(“Viterbi

School of Engineering

Locking/Atomic Instructions

A TSL (Test and Set Lock) LOCK: TSL $4lock_addr
i tslreg, addr_of lock var TR
i Ta2YAOLFfteée aiuz2NbBa (
value & returns lock_var in reg UNLOCK: sw $zero,lock_addr

return;

A Atomicity is ensured by HW not releasing

the bus during the RMW cycle LA $8lock_addr

A LL and SC (MIPS & others) LOCK: ADDI $9,0.1
I Lockfree atomic RMW LS
: SC $9,0($8)

I LL = Load Linked BEQ $9,%$zero,LOCK

A Normal Iw operation but tells HW to track any BNE $4,zero,LOCK

external accesses to addr.
LA $tl,sum

I SC = Store Conditional UPDATE: LL $50(5t1)
A Like sw but only stores if no other writes since L ADD $5,$5,local_sum
& returns O in req. if failed, 1 if successful SC $5,0(5t1)

BEQ $5,%zero,UPDATE

e USCVlterbl @

School of Engine

Solving Problem of Atomicity

A Sum an array, A, of numbers {5,4,6,7,1,2,8,5}
A Sequential method

for(i=0; 1 < 7; i++) { sum = sum + AJl]; }
A Parallel method (2 threads with ID=0 or 1)

lock L; Sequential
for(i=ID*4; i < (ID+1)*4; i++) {

Sum

CﬂCOI\)H\l(D-bU‘I}

. 5
local_sum = local_sum + A[i]; } 2 local_sum
6 L 22 |
7
tlock(L o
etloc . 2 ocal_sum
g (L); 2 o
sum = sum + local_sum,; 5
. Sum
unlock(L);

Parallel

Cache Coherency

A Most multi-core processors are shared memory systems wher
each processor has its own cache

A Problem: Multiple cached copies of same memory block

I Each processor can get their own copy, change it, and perform
OF t Odzf F A2y a 2y UKSANI 26y RATTS

A{2tdziA2yY {y22LF Ol OKSaX

Example of incoherence

if P2 Writes X we
if P2 Reads X it now have two

@ oo 2 R © ruwies x fsiares var o@ oo themy
P1 P2 P1 P2 P1 P2 || PL | A P2 P1 P2
|
s N s | S TS | S| [| s 1/ Ts\T>s

/ \
,\\ M \\ M M M \\\ M
‘g Block X g g = ‘Pl:

e USCViterbi -

Snoopy or Snoopy

i, TS(“Viterbi

School of Engineering

I D2

2 dzii

Aa{y22LAy3E

I Caches monitor activity on the bus looking for invalidation messages
I If another cache needs a block you have the latest version of, forward it to mem & other:

Ol

Coherency

OKS a

using

Asnoop

P1 wants to writes X,

so it first sends
eﬁi nvalidatio

Now P1 can safely

if P2 attempts to
read/write x, it will

e miss, & request the

0 Tha T Reade the bus for all sharers Wit block over the bus
P1 P2 P1 P2 P1 P2 P1 P2
T »T I,—T T T $ ’ § $

4

|
I
|
\

L:me

Invahdate—
block X if
you have

X

Solving Cache Coherency

A If no writes, multiple copies are fine

A Two options: When a block is modified

' YR dzZLJRI 0S S@OSNE2YyS SfasSQa
I Invalidate all other sharers and make them come back to you to get a fresh copy

dza Ay 3 Ay gl tARIE{

02 Lk

V4

P1 forwards data to

e to P2 and memory

at same time

P2

Coherence Definition

A A memory system is coherent if the value returned on a Load
Instruction is always the value given by the latest Store
Instruction with the same address

A This simple definition allows to understand the basic
problems of private caches in MP systems

SRR

X X X 6 X X 6 X
| i | i |

I | I
X X 0 X

I Original State I I Write-Through Cache I I Write-Back Cache I

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

ACKS 0dza AYUSNFIF OS dzy Al i
the bus address lines and invalidates the cache whel
the cache contains a copy of the block with modified
word

A The state of a memory block b in cache i can be
described by the following state diagram

I State INV: there is no copy of block b in cache i or if there
IS, It Is invalidated

I State VAL: there is a valid copy of block b in cache |

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

e USCViterbi @

School of Eng

Write Through Snoopy Protocol

A R(k): Read of block b by processor k
A W(K): Write into block b by processor k
A Solid lines: action taken by the local processor

A Dotted lines: action taken by a remote processor
(ncoming bus request)

R(i), W(i)

R() i = Local cache
4 wW(i) j = Remote cache

-
s-——-u——

i, TS(“Viterbi -«

School of Engineering

Bus vs. Processor Actions

A Cache block state (state and transitions maintained for each
cache block)
I Format of transitions:input Action/ Output Action
I Pr = Processor Initiated Action
I Bus = Consequent action on the bus

Bus = Action (initiated by another
BusWrite / -- processor) appearing on the bus and
BusReadX / -- noticed by our snoopy cache control unit

PrWr / BusWrite
PrRd / --

BusWrite / --
BusReadX / --

f’
- o w-— ™

PrRkd / BusRd RdX = Since | do not have the block, |

Prwr / BusRdX need to read the block. But since my
intent is to write, | ask that others invalid
their copies

Michel Dubois, Murali Annavaram and Per Stenstrom © 2011.

] USCViterbl@
Action Definitions

Acronyms Description
PrRd ProcessoRead
Prwr Processor Write
BusRd Read request for a block
BusWrite Write a wordto memory and invalidate other copies
BusUpgr Invalid other copies
BusUpdate Update other copies
BusRdX Read block and invalidate other copies
Flush Supply a block to a requesting cache
S Shared line is activated
~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenstrom © 2011.

i, TS(“Viterbi

School of Engineering

Cache Block State Notes

ANote that these state diagrams

are highlevel

I A state transition may take multiple clock
cycles

I The state transition conditions may violate
all-inclusive or mutualhexclusive @
requirements

I There may be several other intermediate
states

I Events such as replacements may not have
been covered

USCViterbi @

School of Engine

Coherence Implementation

) ()

El L1 Data H L1 Data
Tags Tags
e
Snoop Snoop
Tag Tag
Replica Replica \
Shared Bus L1

Dual directory of
tags is maintained

L2 L2 L2 L2 E to facili'gate
Bank Bank/ Bank Bank/ i shooping

__

Write Back Caches

A2 NARGS AYOIFEARFOS LINRO2Oz

A Basic 3state (VIS) Protocol

I I =INVALID: Replaced (not in cache) or invalidated

I I?O(Readg)nly) :§hared: Processors can read thgir copy. MultivaAe
O2LIASa OlFlyYy SEAAUGO® OF OK LINROSaa

I RW(I?ead}Nrite) :Moglifjed: Processors can readv/varite its copy. Only
2yS O2LJk SEAalGadd t N2OSaaz2zNJ Aa

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

USCViterbi @

School of Engine

Write Invalidate Snoopy Protocol

R(i)

| SCA 690 Tutori al AMemory Syosutpd ne dA rMeuhl itti epertoucreesss ofrosro , T i My hethl eyl

Local View

W(i)
R(i)

Remote View

W(i)
R(i)

Remote Read

R(i)

W(i) R(i)

R(i)

USC Viterbi

School of Engineering

If you have the
only couple and
another processor
wants to read the
data

The other
processor goes
from invalid to

read-only

Local View

W(i)
R(i)

Remote View

W(i)
R(i)

Local Write

R(i)

R(i)

USC Viterbi

School of Engineering

Upgrade your
access

Ly@lftARIF @S
COpy SO no one
else has the block

