
1

EE 457 Unit 10

Parallel Processing

Cache Coherency

2

Parallel Processing Paradigms

Å SISD = Single Instruction, Single Data

ï Uniprocessor

Å SIMD = Single Instruction, Multiple Data

ïaǳƭǘƛƳŜŘƛŀκ±ŜŎǘƻǊ LƴǎǘǊǳŎǘƛƻƴ 9ȄǘŜƴǎƛƻƴǎΣ DǊŀǇƘƛŎǎ tǊƻŎŜǎǎƻǊ ¦ƴƛǘǎ όDt¦Ωǎύ

Å MIMD = Multiple Instruction, Multiple Data

ï CMP, CMT, Parallel Programming

CU PE MU CU PE MU

PE

PE

MU

MU

CU PE
Shared

MU

PE

PE

CU

CU

Instruc. Stream Data Stream

SISD SIMD MIMD

3

SIMD Execution

ÅGiven 4 processing elements we
can use the same code to
perform only 10,000/4=2,500
iterations
ïAddressing is managed separately

for each processing element so
that it receives different data
elements to operate on

for(i=0; i < 10,000; i++)

A[i] = B[i] + C[i];

for(i=0; i < 2,500; i++)

for(j=0; j < 4; j++)

A[4*i+j] = B[4*i+j] + C[4*i+j];

#pragma vectorize v=[0..3]

for(i=0; i < 2,500; i=i++)

A[4*i+v] = B[4*i+v] + C[4*i+v];

Sequential Execution

(10,000 iterations)

Equivalent Execution ïStill 10,000 iterations

(j Processing Elements)

Vectorized Execution

(Each PE operates in parallel

requiring only 2,500 iterations)

4

SIMT Execution

ÅEach thread uses its unique ID
to execute the same code but
on different data
ïEach thread has its own register

set / addressing scheme

ÅPartial sums can be generated
independently

ÅWhen all threads are done
(synchronization!) we can
combine results
ïRequires communication between

units

for(i=0; i < 10,000; i++)

sum = sum + A[i];

for(t=0; t < 10; t++)

for(i=0; i < 1,000; i++)

sum = sum + A[1000*t + i];

#pragma parallel t=[0..9]

for(i=0; i < 1,000; i++)

sum[t] = sum[t] + A[1000*t + i];

// combine each threads results

// requires communication between threads

for(t=0; t < 10; t++)

sum += sum[t];

Sequential Execution

(10000 iterations)

Equivalent Execution

(10 * 1000 iterations)

Parallel Execution in 10 Threads

each with its own value of t

(1000 iterations per thread)

5

SIMT Example: NVIDIA Tesla GPU

H&P, CO&D 4th Ed. Chapter 7 ð Multicores, Multiprocessors, and Clusters ð 5

Streaming

multiprocessor

8 ĬStreaming

processors

8 processing
elements

execute the
same

instruction
stream but
operate on

separate data
partitions

Lock-Step Execution

6

MIMD

ÅAn MIMD machine consisting of several SISDs yields higher
performance when different tasks require execution

ÅIƻǿ Řƻ ǇŀǊŀƭƭŜƭ ǇǊƻŎŜǎǎƻǊǎΧ
ïShare data?

ïCoordinate and synchronize?
Å In MIMD, we no longer run in lock-step but execute different tasks at their own rate

requiring coordination through synchronization

ÅTwo communication paradigms
ïShared memory (can each access the same address space)

ïMessage passing (private address spaces per process/thread with
explicit messages passed between them)

7

Typical CMP Organization

L1

Main Memory

P

L2

Bank/

L2

Bank

L2

Bank/

L2

Bank

Interconnect (On-Chip Network)

L1

P

L1

P

L1

P
For EE 457 this is just a shared

bus

Chip Multi-

Processor

For EE457, just one bank.

Private L1's require
maintaining coherency via

________.

8

Definitions

ÅMultiprogramming
ïRunning multiple independent programs using time-sharing on the

same processor

ÅMultiprocessing
ïRunning multiple independent programs on a multiprocessor

ÅMultitasking
ïSplitting a single application into multiple tasks which can be run on a

time-shared uniprocessor or on a multiprocessor

ÅMultithreading
ï{ŀƳŜ ŀǎ ƳǳƭǘƛǘŀǎƪƛƴƎΤ ƘƻǿŜǾŜǊ ǘŀǎƪǎ ŀǊŜ ŜȄŜŎǳǘŜŘ ōȅ άƭƛƎƘǘǿŜƛƎƘǘέ

processes or άǘƘǊŜŀŘǎέ within a singleprocess

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

9

Programming Model

Å Applications are partitioned into a set of cooperating processes

Å tǊƻŎŜǎǎŜǎ Ŏŀƴ ōŜ ǎŜŜƴ ŀǎ άǾƛǊǘǳŀƭ ǇǊƻŎŜǎǎƻǊǎέ

ï Usually there are many more processes than processors and time-sharing is
required

Å Processes may communicate by passing messages

ï Usually done by shared mailboxes (shared memory variables) or shared
regions of memory in a shared memory system

ï Interprocessor interrupts or network I/O in a message passing system

Å For shared memory systems, synchronization protocols must be careful
followed to avoid read-modify-write race conditions

Å Scheduling: Binding processes to processors

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

10

Difficulties in Exploiting MIMD

ÅCorrectness
ïSynchronization, locks, race conditions, etc

Å In many cases, parallel programming requires a fair amount of
knowledge of the underlying MIMD hardware to achieve good
performance

Å[ƛƳƛǘŀǘƛƻƴ ƻŦ ǎǇŜŜŘǳǇ ŘǳŜ ǘƻ !ƳŘŀƘƭΩǎ [ŀǿ όƛΦŜΦ ǘƘŜ ǇƻǊǘƛƻƴ ƻŦ
code that is NOT parallelized)
ïSequential job take 100 Time Units

ï80 Time units are parallelized to 10 processors

ïNew Exec. Time = 20 (seq.) + 8 (parallelized)

ïSpeedup = 100 / 28 = 3.57

ÅCompared to linear speedup expectation of 10 proc. => 10x speedup)

11

Synchronization

Å Example: Suppose we need to sum 10,000 numbers on
10 processors. Each processor sums 1,000 at its own
pace and then need to combine results

Å We need to wait until the 10 threads have completed
to combine results

Å This is an example of a barrier synchronization where
ŀƭƭ ǘƘǊŜŀŘǎ Ƴǳǎǘ ŎƘŜŎƪ ƛƴ ŀƴŘ ǊŜŀŎƘ ǘƘŜ άōŀǊǊƛŜǊέ ǎȅƴŎ
point beforeany thread may continue

ï No one shall execute beyond the barrier until all others
reach that point

Å To implement this we keep a count and increment it
atomically

barrier(N)

{

count = count+1;

if(count == N)

- resume all

processes

- count = 0

else

- block task and

place in

barrier queue

}

Read-Modify-Write must be
performed atomically.

12

Problem of Atomicity
ÅSum an array, A, of numbers {5,4,6,7,1,2,8,5}

ÅSequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

ÅParallel method (2 threads with ID=0 or 1)
for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

sum = sum + local_sum;

Å Problem
ï Updating a shared variable (e.g. sum)

ï Both threads read sum=0, perform sum=sum+local_sum, and
write their respective values back to sum

ï Sum ends up with only a partial sum

ï Any read/modify/write of a shared variable is susceptible

Å Solution
ï Atomicupdates accomplished via some form of locking

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

13

Atomic Operations

Å Read/modify/write sequences are usually done
with separate instructions

Å Possible Sequence:
ï P1 Reads sum (lw)

ï P1 Modifies sum (add)

ï P2 Reads sum (lw)

ï P1 Writes sum (sw)

ï tн ǳǎŜǎ ƻƭŘ ǾŀƭǳŜΧ

Å tŀǊǘƛŀƭ {ƻƭǳǘƛƻƴΥ IŀǾŜ ŀ ǎŜǇŀǊŀǘŜ ŦƭŀƎκάƭƻŎƪέ
variable (0=Lock is free/unlocked, 1 = Locked)

Å Lock variable is susceptible to same problem as
sum (read/modify/write)

Å Hardware has to support some kind of instruction
to implement atomic operations usually by not
releasing bus between read and write

P

$

P

$

M

Shared Bus

Thread 1:

Lock L

Update sum

Unlock L

Thread 2:

Lock L

Update sum

Unlock L

14

Locking/Atomic Instructions

ÅTSL (Test and Set Lock)
ï tsl reg, addr_of_lock_var

ï!ǘƻƳƛŎŀƭƭȅ ǎǘƻǊŜǎ ŎƻƴǎǘΦ ΨмΩ ƛƴ ƭƻŎƪψǾŀǊ
value & returns lock_var in reg

ÅAtomicity is ensured by HW not releasing
the bus during the RMW cycle

ÅLL and SC (MIPS & others)
ïLock-free atomic RMW

ïLL = Load Linked
ÅNormal lw operation but tells HW to track any

external accesses to addr.

ïSC = Store Conditional
ÅLike sw but only stores if no other writes since LL

& returns 0 in reg. if failed, 1 if successful

LOCK: TSL $4,lock_addr

BNE $4,$zero,LOCK

return;

UNLOCK: sw $zero,lock_addr

LA $t1,sum

UPDATE: LL $5,0($t1)

ADD $5,$5,local_sum

SC $5,0($t1)

BEQ $5,$zero,UPDATE

LA $8,lock_addr

LOCK: ADDI $9,$0,1

LL $4,0($8)

SC $9,0($8)

BEQ $9,$zero,LOCK

BNE $4,zero,LOCK

15

Solving Problem of Atomicity
ÅSum an array, A, of numbers {5,4,6,7,1,2,8,5}

ÅSequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

ÅParallel method (2 threads with ID=0 or 1)
lock L;

for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

getlock(L);

sum = sum + local_sum;

unlock(L);

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

16

Cache Coherency
ÅMost multi-core processors are shared memory systems where

each processor has its own cache

ÅProblem: Multiple cached copies of same memory block
ïEach processor can get their own copy, change it, and perform
ŎŀƭŎǳƭŀǘƛƻƴǎ ƻƴ ǘƘŜƛǊ ƻǿƴ ŘƛŦŦŜǊŜƴǘ ǾŀƭǳŜǎΧLb/hI9w9b¢Η

Å{ƻƭǳǘƛƻƴΥ {ƴƻƻǇȅ ŎŀŎƘŜǎΧ

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 Writes X

if P2 Reads X it

will be using a

ñstaleò value of X4b

if P2 Writes X we

now have two

versions. How do we

reconcile them?

Example of incoherence

17

Snoopy or Snoopy

18

Solving Cache Coherency
Å If no writes, multiple copies are fine

Å Two options: When a block is modified
ï Dƻ ƻǳǘ ŀƴŘ ǳǇŘŀǘŜ ŜǾŜǊȅƻƴŜ ŜƭǎŜΩǎ ŎƻǇȅ

ï Invalidate all other sharers and make them come back to you to get a fresh copy

Å ά{ƴƻƻǇƛƴƎέ ŎŀŎƘŜǎ ǳǎƛƴƎ ƛƴǾŀƭƛŘŀǘƛƻƴ ǇƻƭƛŎȅ ƛǎ Ƴƻǎǘ ŎƻƳƳƻƴ
ï Caches monitor activity on the bus looking for invalidation messages

ï If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X,

so it first sends

ñinvalidationò over

the bus for all sharers

Now P1 can safely

write X 4

if P2 attempts to

read/write x, it will

miss, & request the

block over the bus

Coherency using ñsnoopingò & invalidation

Invalidate

block X if

you have

it

Block X

5

P1

$

P2

$

M

P1 forwards data to

to P2 and memory

at same time

19

Coherence Definition

ÅA memory system is coherent if the value returned on a Load
instruction is always the value given by the latest Store
instruction with the same address

ÅThis simple definition allows to understand the basic
problems of private caches in MP systems

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

P

X

X

P

X

P

Xô

Xô

P

X

P

Xô

X

P

X

Original State Write-Through Cache Write-Back Cache

20

Write Through Caches

Å¢ƘŜ ōǳǎ ƛƴǘŜǊŦŀŎŜ ǳƴƛǘ ƻŦ ŜŀŎƘ ǇǊƻŎŜǎǎƻǊ άǿŀǘŎƘŜǎέ
the bus address lines and invalidates the cache when
the cache contains a copy of the block with modified
word

ÅThe state of a memory block b in cache i can be
described by the following state diagram

ïState INV: there is no copy of block b in cache i or if there
is, it is invalidated

ïState VAL: there is a valid copy of block b in cache i

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

21

Write Through Snoopy Protocol

ÅR(k): Read of block b by processor k

ÅW(k): Write into block b by processor k

ÅSolid lines: action taken by the local processor

ÅDotted lines: action taken by a remote processor
(incoming bus request)

INV VAL R(i)

W(i)

R(i), W(i)

W(j)

i = Local cache

j = Remote cache

22

Bus vs. Processor Actions

ÅCache block state (state and transitions maintained for each
cache block)
ïFormat of transitions: Input Action / Output Action

ïPr = Processor Initiated Action

ïBus = Consequent action on the bus

VAL INV BusWrite / --

BusReadX / --

BusWrite / --

BusReadX / --

PrRd / BusRd

PrWr / BusRdX

PrWr / BusWrite

PrRd / --

RdX = Since I do not have the block, I

need to read the block. But since my

intent is to write, I ask that others invalid

their copies

Bus = Action (initiated by another

processor) appearing on the bus and

noticed by our snoopy cache control unit

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

23

Action Definitions

Acronyms Description

PrRd ProcessorRead

PrWr Processor Write

BusRd Read request for a block

BusWrite Write a wordto memory and invalidate other copies

BusUpgr Invalid other copies

BusUpdate Update other copies

BusRdX Read block and invalidate other copies

Flush Supply a block to a requesting cache

S Shared line is activated

~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

24

Cache Block State Notes

ÅNote that these state diagrams
are high-level
ïA state transition may take multiple clock

cycles

ïThe state transition conditions may violate
all-inclusive or mutually-exclusive
requirements

ïThere may be several other intermediate
states

ïEvents such as replacements may not have
been covered

VAL

25

Coherence Implementation

L1

P

L2

Bank/

L2

Bank

L2

Bank/

L2

Bank

Shared Bus
Dual directory of

tags is maintained
to facilitate
snooping

L1 Data
L1

Tags

Snoop

Tag

Replica

L1

P

L1 Data
L1

Tags

Snoop

Tag

Replica

é

26

Write Back Caches

Å²ǊƛǘŜ ƛƴǾŀƭƛŘŀǘŜ ǇǊƻǘƻŎƻƭǎ όάhǿƴŜǊǎƘƛǇ tǊƻǘƻŎƻƭǎέύ

ÅBasic 3-state (MSI) Protocol
ï I = INVALID: Replaced (not in cache) or invalidated

ïRO(Read-Only) = Shared: Processors can read their copy. Multiple
ŎƻǇƛŜǎ Ŏŀƴ ŜȄƛǎǘΦ 9ŀŎƘ ǇǊƻŎŜǎǎƛƴƎ ƘŀǾƛƴƎ ŀ ŎƻǇȅ ƛǎ ŎŀƭƭŜŘ ŀ άYŜŜǇŜǊέ

ïRW(Read-Write) = Modified: Processors can read/write its copy. Only
ƻƴŜ ŎƻǇȅ ŜȄƛǎǘǎΦ tǊƻŎŜǎǎƻǊ ƛǎ ǘƘŜ άhǿƴŜǊέ

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

27

Write Invalidate Snoopy Protocol

ISCA ó90 Tutorial ñMemory System Architectures for Tightly-coupled Multiprocessorsò, Michel Dubois and Faye A. Briggs É 1990.

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

28

Remote Read

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

If you have the
only couple and

another processor
wants to read the

data

The other
processor goes
from invalid to

read-only

Local View

Remote View

29

Local Write

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

Upgrade your
access

LƴǾŀƭƛŘŀǘŜ ƻǘƘŜǊǎΩ
copy so no one

else has the block

Local View

Remote View

