
 EE 457 Final Review
Redekopp

1. Virtual Memory: Given a virtual memory system with 24-bit virtual addresses,

1 KB pages, and 20-bit physical addresses.

a. How many address bits will be used for the page offset field? _1KB => 10-

bits_

b. How many bits will each Physical Page Frame Number require? __20-10=10-

bits

c. Given an 8-way set associative TLB with 256 entries, perform the virtual

address breakdown (i.e. how many address bits will be used for the set field

and for the tag field of the address mapping. Show any work.

256 entries / 8-ways per set

= 32 sets => 5-bits

Number of set bits: __5 set bits____

Number of tag bits: __24-5-10 = 9 tag bits_

d. Given a single level page table, how much memory would be required to hold

the table assuming each entry in the table requires 4 bytes (this includes the

page frame, valid, dirty and other bits). [Hint: Size = # of entries * bytes per

entry]

Number of entries => 24-10 = 14-bits for VPN

 => 14-bits => 214 entries

Size = 214 entries * 4 bytes each = 64 KB

e. Given a two level page table where the 1st level has 32 entries and the 2nd level

contains the rest of the needed entries, find a sequence of 3 memory accesses

that would require accessing 2nd level page tables 0, 1, and 31 to be allocated.

24 VPN bits divided into:

 32 entries of 1st level => 5 bits

 14 – 5 = 9-bits for 2nd level

Access to 2nd level page table =>

0000 0000 0000 0000 0000 0000

0000 1000 0000 0000 0000 0000

1111 1000 0000 0000 0000 0000

Reference Layout of TLB Address Mapping:

Tag Set Page offset

2. Cache. Examine the following sequence of memory accesses.

1. Read 0x0a0
2. Write 0x0b4
3. Read 0x124
4. Write 0x170
5. Read 0x33c
6. Read 0x128
7. Write 0x4ac
8. Read 0x33c
9. Read 0x4b0

 Assumptions

• 12-bit byte addresses

• Word accesses only

• Cache Size and Block size =

8 blocks of 8 words each

• No-Load-Through

• Write-back

• 2 way Set-Associative Cache

a. Perform the address breakdown for the given cache configuration

Block Range Tag = 5 Set = 2 Word = 3 Unused = 2

0a0 – 0bc 00001 01 …

120 – 13c 00010 01 …

160-17c 00010 11 …

320 – 33c 00110 01 …

4a0-4bc 01001 01 …

b. Now list the block operations the 2-way set-associative cache will perform for each

access. Possible block operations are: Fetch Block XX-YY, Evict Block XX-YY w/o

writeback, Evict Block XX-YY w/ Writeback, Final Writeback of Block XX-YY, where XX-

YY is the block address range. Hits do not require any block operation. Hint 1: Each

access may required 0-2 block ops.

Hint 2: It will help to keep track of which blocks are in the cache.

1. Read 0x0a0
Fetch block 0x0a0-0x0bf => Set 1

6. Read 0x128
Hit

2. Write 0x0b4
Hit

7. Write 0x4ac
Evict block 0x320-0x33f w/o WB

Fetch block 0x4a0-4bf => Set 1

3. Read 0x124
Fetch block 0x120-0x13f => Set 1

8. Read 0x33c
Evict block 0x120-0x13f w/o WB

Fetch block 0x320-33f => Set 1

4. Write 0x170
Fetch block 0x160-0x17f => Set 3

9. Read 0x4b0

5. Read 0x33c
Evict 0x0a0-0x0bf w/ WB

Fetch block 0x320-0x33f = Set 1

Final Writebacks:
Final WB of 0x4a0-0x4bf

Final WB of 160-17f

3.) (12 pts.) Given the code below, perform explicit register renaming to solve all WAW,

WAR hazards present in the original code. When performing register renaming, use

register numbers $10, $11, $12… in that order so that everyone’s answer will

hopefully be more uniform.

 lw $5,0($2)

 add $6,$4,$5

 sub $7,$7,$6

 lw $4,0($3)

 sub $6,$4,$2

 add $3,$7,$2

 lw $5,0($2)

 add $6,$4,$5

 sub $7,$7,$6

 lw $10,0($3)

 sub $11,$10,$2

 add $12,$7,$2

4.) (5 pts.) Given the code below, (same as in Question 1, assume the first ‘lw’

instruction stalls due to a cache miss. Assuming an out-of-order, dynamically scheduled

processor (that performs automatic register renaming), which instructions would be

allowed to execute and which instructions would need to stall due to the ‘lw’.

Code Circle the correct answer

 lw $5,0($2)

 add $6,$4,$5

 sub $7,$7,$6

 lw $4,0($3)

 sub $6,$4,$2

 add $3,$7,$2

CACHE MISS

Stall / Execute

Stall / Execute

Stall / Execute

Stall / Execute

Stall / Execute

5.) (22 pts.) Given the code below, (same as in Question 1, assuming all functional units

are currently stalled (none of the instructions below can execute) show the state of the

register status table after each instruction issues. Then show what source operands will

be in each reservation station (operand value or RS name of producer) for each

instruction. Use reservation station names (A1, A2, S1, S2, and L1, L2) in both the

reservation stations and the register status table (‘-‘ in the table means blank) . Assume

the following initial values for each register: R[2] = 0x02, R[3] = 0x03, R[4] = 0x04,

R[5] = 0x05, R[6] = 0x06, R[7] = 0x07.

Code Register Status Table

(After Exec. Of Each Instruction)

 $2 $3 $4 $5 $6 $7

 lw $5,6($2) - - - L1 - -

 add $6,$4,$5 - - - L1 A1 -

 sub $7,$7,$6 - - - L1 A1 S1

 lw $4,5($3) - - L2 L1 A1 S1

 sub $6,$4,$2 L2 L1 S2 S1

 add $3,$7,$6 A2 L2 L1 S2 S1

Add Unit Sub Unit LD/ST Unit

A1: 0x04 / L1

A2: S1 / S2

S1: 0x07 / A1

S2: L2 / 0x02

L1: 0x06 / 0x02

L2: 0x05 / 0x03

Issue Unit

