
EE457: Computer Systems Organization

Practice Final Questions

Solutions

Page 2 / 6

1. (15 pts. Short Answer) [Fill in the blanks or select the correct answer]

1.1. A 4-way set associative cache with 8 sets will require ____ (1 / 4 / 8 / 32) TAG RAMs.

1.2. ____ (Temporal / Spatial) locality is why we choose Least Recently Used block

replacement.

1.3. Precise exceptions means exception handling should appear equivalent to ___

(single-cycle / multi-cycle / in-order pipelined) processors.

1.4. ____ True/False: WAR and WAW hazards are NOT true dependencies.

1.5. ___ (Static / Dynamic) scheduling refers to the compiler having responsibility to

reorder instructions to obtain parallelism.

1.6. Indicate which of the following items are supported by inclusion of the ROB: ____

(precise exceptions / memory disambiguation).

1.7. Direct mapped caches are equivalent to ___ (1 / n) way set-associative caches.

1.8. Which of the following is NOT a reason the ROB is required to support speculative

execution where branches are predicted and dispatch of instructions continues.

a. The need to buffer results but not write them back until confirmed that the

instruction should execute

b. The need to selectively flush speculatively executed instructions

c. The need to select the appropriate data or tag for source operands

1.9. ___ True/False: Simultaneous multithreading refers to the process of executing

instructions from different threads on separate processor cores at the same time.

Page 3 / 6

2. (15 pts.) Tomasulo's Algorithm. Given the code below, show their execution on an OoO

processor using Tomasulo's algorithm. Assume the first 'lw' instruction causes a cache miss

and will not produce $5 for several hundred clock cycles. The 'sw' will hit in cache.

2.1.Show the state of the RST (Register Status Table) after each instruction issues. We have

provided "tags" T1-T6 for each instruction; assume these are the tags assigned to each

instruction, should you need them. Assume no instruction finishes before they all issue.

(Place a '-' in any RST entry, if the latest value is actually in the Register File.)

2.2.In addition show the instructions as they wait in execution queues. For each waiting

instruction, show the tag, instruction name, and replace its source operands with either a

TAG or REGISTER VALUE.

2.3.Draw a line (like this cross out) through instructions that will be able to execute and leave

the queues before the ‘lw’ cache miss is completed.

2.4.Also show the contents of the RegFile just before the ‘lw’ restarts execution

Code Register Status Table

(After Issue. Of Each

Instruction)

 $2 $3 $4 $5 $6 $7

(T1) lw $5,8($2) - - - T1 - -

(T2) add $2,$4,$6 T2 - - T1 - -

(T3) sub $6,$2,$7 T2 - - T1 T3 -

(T4) sub $7,$7,$5 T2 - - T1 T3 T4

(T5) sw $6,0($3) T2 - - T1 T3 T4

(T6) add $3,$7,$6 T2 T6 - T1 T3 T4

Add Unit Sub Unit LD/ST Unit

(T2) add 0x40 / 0x60

(T6) add T4, T3 (

(T3) sub T2 / 0x70

(T4) sub 0x70 / T1

(T1) lw 0x20+0x08

 sw T3 / 0x30

Issue Unit

CDB

Initial RegFile

$2 0x20

$3 0x30

$4 0x40

$5 0x50

$6 0x60

$7 0x70

RegFile just

before 'lw'

restarts

execution

$2 0xa0

$3 0x30

$4 0x40

$5 0x50

$6 0x30

$7 0x70

Page 4 / 6

3. (5 pts. Out-of-Order Execution): In the following code, assume that the first lw instruction

stalls due to a cache miss and that the miss latency is longer than the execution time of the

trace. Assuming an out-of-order, dynamically-scheduled processor (with an ROB and

automatic register renaming), which instructions would be allowed to execute (i.e., are

independent) and which instructions would need to stall due to the cache miss?

 lw $2, 0($16) Cache Miss
(4.1) add $4,$4,$3 __ Stall __ Execute
(4.2) sub $4,$4,$2 __ Stall __ Execute
(4.3) add $5,$5,$4 __ Stall __ Execute
(4.4) sw $7,0($16) __ Stall __ Execute
(4.5) sw $5,0($17) __ Stall __ Execute

4. (15 pts. - MESI Cache Coherence Protocol : Examine the table below showing sequence

of memory accesses performed by three processors in a shared memory multiprocessor.

Assume all caches are empty initially. Assume cache blocks of a single word (so we only

show 1 data value). Show what bus requests and responses are initiated and the state of the

block after each operation as well as what data is in memory.

(Bus Requests/ACtions: BusRd=Read, BusRdX=Read w/ Intent to Write, BusUpgr =

Invalidate5others, Flush = Supply data on bus)

Memory Access Bus Request /

Response

P1 Cache

State

{M,E,S,I}

P2 Cache

State

{M,E,S,I}

P3 Cache

State

{M,E,S,I}

Mem. Data

@ address X

P1 Read X P1: BusRd E I I 2

P3 Write X=3 P3: BusRdX I I M

P1 Read X P1: BusRd

P3: Flush

S I S 3

P1 Write X=4 P1: BusUpgr M I I

P1 EVICTS

block X due to

another read

P1: Flush I I I 4

P2 Reads X P2: BusRd I E I

P2 Writes X=5 - I M I

Page 5 / 6

5. (15 pts.) Caching. Suppose you are given a system with 16-bit address and the following bits

are used to access a 2-way Set Associative cache.

Address Bits 15-8 7-6 5-2 1-0

Field Tag Set Word offset Byte enables

5.1. How many bytes total is the cache data memory? _2-way*4 sets*64 bytes=512 bytes___

bytes

5.2. How large is the tag RAM (rows x columns): __4_____ x __9___ (include V bit, but not

Dirty bit)

5.3. Examine the following address trace/sequence and indicate which set the address maps

to, whether the access will result in a hit or miss, and if a block will be evicted by an

access. Assume Least Recently Used eviction policy.

Hex

Address

Equivalent Binary

Address

Set # Hit/Miss

(Circle your

answer)

Causes

Eviction

(Circle if Yes)

0x1002 0001 0000 0000 0010 0 Hit / Miss Yes

0x108c 0001 0000 1000 1100 2 Hit / Miss Yes

0x311a 0011 0001 0001 1010 0 Hit / Miss Yes

0x102c 0001 0000 0010 1100 0 Hit / Miss Yes

0x10b0 0001 0000 1011 0000 2 Hit / Miss Yes

0x2530 0010 0101 0011 0000 0 Hit / Miss Yes

0x2518 0010 0101 0001 1000 0 Hit / Miss Yes

0x311a 0011 0001 0001 1010 0 Hit / Miss Yes

Page 6 / 6

6. (15 pts.) Memory Interleaving and Caching Implementation: A legacy processor has a

20-bit (1 MB) address space and 16-bit data bus (i.e. a "word" unit = 2-bytes). The cache for

this processor is 4 KB, uses a 2-way set associative mapping scheme, and uses blocks of size

4 bytes.

6.1.How many total cache blocks are there? __1K = 210___

6.2.Break the address bits into its tag, set, word, byte enable fields.

6.3.Complete the diagram below filling in all the blanks below, including: the

address bits and byte enables actually come out of the CPU core, the address bits

that should be connected to the main memory banks, transceiver enable, cache

data RAM's and cache tag RAM's

A[_19__:_11__] A[_10__:__2_] A[_1__:_1_] Byte Enables

Tag Set Word __________

Addr

DataOut

DataIn

=

A[10:2]

A[19:11]

+ Valid

Addr

DataOut

DataIn

=

Way 0 Tag

RAM

Way 1 Tag

RAM

256 KB

Addr

Data

Addr

Data

Addr

Data

Addr

Data

16-bit Transceiver 16-bit Transceiver

A[19:0], /BE1, /BE0

256 KB 256 KB 256 KB

D[15:8] D[7:0] D[15:8] D[7:0]

D[15:0]
CPU

Core

Show Byte Enables

A[_1_]

EN EN

$ Data

RAM

Addr

Data

Addr

Data

Addr

Data

Addr

Data

$ Data

RAM

$ Data

RAM

$ Data

RAM

D[15:8] D[7:0] D[15:8] D[7:0]

A[10:1]

D[15:0] D[15:0]

A[19:2]

Way 0 Way 1

Hit Hit

Main Memory

Processor

A[10:2]

A[19:11]

+ Valid

