
1

EE457: Computer Systems Organization

Summer 2021 - Midterm Exam

06/22/20, 1:30PM – 3:30PM (Submit by 3:45 p.m)

Name: ___

Student ID: __

Email: ___________________@usc.edu

Lecture section:

[0 points: Complete all the information in the box above.]

 Ques. Your score Max score Recommended
Time

 - 0 min.

 1 13 10 min.

 2 30 45 min.

 3 12 15 min.

 4 10 20 min.

 5 10 15 min.

 6 5 15 min.

 Total 80

Note: The last page is blank and can be used for scratch paper.

Please turn it in with your exam (for in person exams only)

Redekopp

1:30 p.m.

2

1. (13 pts.) Short Answer [Fill in the blank at the start of the question with the appropriate answer to
the question or the selection that makes the statement true.] ENTER YOUR ANSWER DIRECTLY
ON GRADESCOPE
1.1. When implementing forwarding logic in our pipelined CPU if both instructions in the MEM and

WB state are writing to the same destination register needed by the instruction in the EX stage,
the result should be forwarded from the ______ (MEM / WB) stage?

1.2. We can say that the conditions associated with the ______ (incoming / outgoing) transition
arrows of a state should be mutually exclusive.

1.3. The halfword 0x1234 is written to address 0x89e4. If the byte read from address ________
(0x89e4 / 0x89e5) is 0x12 then we can say that the system is big-endian.

1.4. Amdahl's law teaches use we should focus on improving the _____ (common / fastest /
slowest) case.

1.5. The ______ (j / jal / jr) instruction of a 32-bit MIPS processor allows us to jump anywhere in
main memory.

1.6. ___________ (True / False) To branch if $8 > $9 will be accomplished with the sequence:

SLT $1, $8, $9; BEQ $1, $0, LABEL;

1.7. ___________ (True / False) The program counter in the single-cycle CPU does NOT require a
write/load enable.

1.8. ___________ (True / False) The load enable signal of a register is produced by a state
machine in the control unit. Thus, it needs to be a Moore style output.

1.9. ___________.(True / False) The sum bits in a Carry-Lookahead adder all have the same

levels of logic (i.e. roughly the same delay).

Perform the indicated arithmetic operations, showing your work, for the specified representation
system. Answers are limited to 8-bits (not 9-bits). (Do not use the borrow method for subtraction, use
the 2’s complement method of subtraction.) For 1.10 and 1.12, just write your final 8 bit sum or
difference in Gradescope. Finally, state whether overflow has occurred and briefly explain why or
why not.

1.10.) 2’s comp. system 1.12.) Unsigned system

 100111002

 – 011100102

(Simply type your final 8-bit result

on Gradescope)

 010100112

 + 011111012

(Simply type your final 8-bit result on

Gradescope)

1.11) Overflow: Y / N 1.13) Overflow: Y / N

3

2.1 (22 pts.) Arithmetic, Datapath, and Control Unit Design. Submit PDF on Gradescope Q2
Given an array of x,y points on a Cartesian plane, find their bounding box (the rectangle that encloses
all the points). The bounding box can be represented using the x,y coordinates of the lower left (LL)
point and the upper-right (UR) point. Note: The LL and UR points are not necessarily actual points
from the array data, but fictitious points that represent the LL and UR vertex of the bounding box.
See the illustration below for four points.

The array will contain 20 x,y points.
The x and y values are unsigned 8-bit
numbers (each ranging from 0x00-
0xff). The x- and y-value pair will be
concatenated and stored as a 16-bit
number in one location of a 20x16
memory. The upper 8-bits (bits 15-8)
represent the x value and the lower 8-
bits (bits 7-0) represent the y value.

You will read one point at a time and

update the value of the LL-x,LL-y and

UR-x,UR-y values based on each

point. Note that one point may update

none, one, or both components of LL

and UR, or one component of

(potentially both) LL or UR points. For

example, P3 in the figure to the right. It's x value updates LL-y (the lowest y value encountered) and

UR-x (the right-most x value encountered).

You will complete the state machine (control unit) and datapath on the next pages. The datapath

contains ONLY 2 Comparators, along with registers to store the x,y components of LL and UR.

Due to this limitation of 2 comparators, we may need 2 clock cycles per point to perform all the

necessary comparisons and update the LL and UR components correctly. However, you should

implement your checks to take as few cycles as possible. Thus, if the results of the 2

comparisons in the first cycle of comparison make it unnecessary to perform more comparisons in

the second cycle, you should not waste time and simply move to the next point and begin

comparing it.

We will use a Mealy-style state machine. From an initial state (QI), an asserted START signal will

cause us to move to the LOAD (QL) state state where we initialize both LL and UR x,y components

with the 1st point. From there we proceed to process subsequent points taking 1 (QC1) or 2 cycles

(QC1 and QC2) each. Finally, we move to a DONE (QD) state.

Examine the incomplete datapath on the next page and the skeleton of the state machine on the

following page. Complete the state machine and then the data path by filling in the shaded regions,

taking care to read the instructions for what is expected. Finally, complete the NSL and OFL.

x

y

0xff

0xff

P2

(0x60,0x98)

P1

(0x55,0x70)

P0

(0x7f,0x7f)

P3

(0x90,0x60)

UR

(0x90,0x98)

LL

(0x55,0x60)

P0: (0x7f,0x7f)

P1: (0x55,0x70)

P2: (0x60,0x98)

P3: (0x90,0x60)

(0x7f,0x7f)

(0x55,0x70)

(0x55,0x70)

(0x55,0x60)

(0x7f,0x7f)

(0x7f,0x7f)

(0x7f,0x98)

(0x90,0x98)

LL

(Lower-Left)
UR

(Upper Right)

Bold and underlined

means the value was

updated due to

processing of the

corresponding point.

0x0

4

a.) [1 pt] How many bits should the i-counter be? ___________

b.) [1 pts] The datapath is nearly complete and shown below. Fill in the value that should be compared
to i to create MAX which will signal the control unit to move to the DONE state. The signals in the
dotted circles will be generated by the OFL of the state machine or other signals from the datapath
below. Those will be dealt with on the next page.

START

/RST

CLK

CNTR

CLR

EN Q

CLK

IEN
i

20x16

MEM

Addr

Data

=

LLXEN

/RST

8-bit

Reg

/CLR

QD

EN

LLX

CLK

LLYEN

/RST

8-bit

Reg

/CLR

QD

EN

LLY

CLK

URXEN

/RST

8-bit

Reg

/CLR

QD

EN

URX

CLK

URYEN

/RST

8-bit

Reg

/CLR

QD

EN

URY

CLK

A

B
A<B

LT

0

1
S

M
u

x

XYSEL1

MAX

ICLR

0

1
S

M
u

x

LLSEL

A

B
A>B

GT

0

1
S

M
u

x

XYSEL2

0

1
S

M
u

x

URSEL

URX

URY
LLY

LLX

MIX

MIY

MIX

MIY

MIX

MIY

MI[15:0]
MI[7:0]

MI[15:8]

Fill in the shaded/dashed boxes with appropriate signals or constants

MIX
MIX

MIY
MIY

c.) [10 pts] Complete the missing transitions & operations for CMP1 (QC1) and CMP2 (QC2) states.
Remember to perform comparisons in CMP1 that may avoid the need to go to CMP2 for a given point.

LOAD (QL)

i* i+1

URX* MiX

URY* MiY

LLX* MiX

LLY* MiY

CMP1 (QC1)

START

CMP2 (QC2)

DONE (QD)

DONE

true

INIT (QI)

i*

(start here)

/RST

~START

true

5

(5 pts.)

e.) Now suppose we implemented the state machine from the previous part and gave you the one-hot
state outputs: QI, QL, QC1, QC2 and QD. Use these signals plus others that are defined in the
datapath to write appropriate logic equations for the control signals indicated below.

LLXEN = ___

IEN = ___

XYSEL1 = ___

XYSEL2 = ___

LLSEL = ___

(6 pts.)

f.) Below is a subset of the state flip-flops. Assuming a 1-hot state assignment, complete the NEXT
STATE LOGIC equations. You need not draw the gates but just write the equations for the specified D
inputs.

DI = ___

DC1 = ___

DC2 = ___

(2 pts.)

g.) Using /RST, constants and other signals, show how to connect the /SET and /CLR inputs of the
following state flip-flops (not all state flip-flops are shown, but those not shown can be ignored).

D Q

CLR

SET

CLK

D Q

CLR

SET QC1

CLK

DC1 QC2DC2
D Q

CLR

SET

CLK

DI QI
D Q

CLR

SET

CLK

QLDL

CLK

/RST

(Active low)

6

(5 pts.)

Answer the following questions regarding the datapath and control unit you implemented on the
previous pages. ENTER YOUR ANSWERS DIRECTLY ON GRADESCOPE (choosing T/F).

2.2.) True/False: ____ Suppose each comparator output both A<B and A>B (rather than just one or the

other) without any other datapath changes. This would allow processing to take fewer clock cycles.

2.3.) True/False: ____ The 4 data registers do not actually need a /CLR input (i.e. do not need to be

reset)

2.4) True/False: ____ The XYSEL1 and XYSEL2 muxes are duplicates and can be merged to a single

mux since they mux the same inputs.

2.5) True/False: ____ Having 4 comparators of your choice (rather than only 2) would allow for

removal of the 4 muxes and allow processing to take fewer clock cycles.

2.6) True/False: ____ Keeping the rest of the datapath the same, but having two separate 20x8

memories (separate memory for the X coordinates and another separate memory for the Y coordinates)

would allow processing to take fewer clock cycles.

7

3. (12 pts.) ISA and Single-Cycle CPU Datapath: Submit PDF on Gradescope Q3
We want to add support for a new instruction ‘LWPC` (Load Word Using PC address), while not
affecting any other instructions. This new instruction has the format shown below and will load data
from memory using the address given by PC + the shifted sign-extended immediate (i.e. $rt = M[PC +
{imm,00}] if Rs==0), otherwise it continues executing sequentially (the next instruction).

Implement any changes to the datapath and control signals to support this new LWPC instruction on
the single-cycle CPU. Assume when this instruction executes a new LWPC control signal will be
generated and set to ‘1’.
LWPC $rs, $rt, imm Operation: if($rs == 0)

 $rt = M[PC+4+{imm,00}]

This instruction will use the machine code I-format:

BMNE: opcode

6

rs

5

rt

5

16-bit signed immediate

a. What operation should the ALU perform? ____________________________________
b. Sketch the additions/changes to the datapath and control above that would be needed to support this

new instruction and its operations (provide a brief description in the space below if the sketch is unclear).
Try not to use more logic/components than necessary (within reason). We've added 2 OR gates that you
must complete their second input with additional logic

c. Show the values of the following control signals to implement this new instruction.

 LWPC MemToReg Branch ALUSrc RegWrite MemRead RegDst

Value (0,1,X) 1

8

4. (10 pts.) Performance - Submit PDF on Gradescope Q4
Assume a program consisting of 10E6 written instructions executes 50E6 instructions when the
program is executed on a pipelined processor that uses a 200 MHz clock period.

a.) Assuming an ideal pipelined CPI of 1, what is the execution time of this program (in seconds)?

Time: ________ s (show work)

b.) Now assume, that branches are determined in the MEM stage (LATE determination) as discussed

in class. What is the branch penalty (# of flushed instructions for taken branches)?

Branch Penalty: ________

c.) Assume NO penalty for data dependencies and the normal "Not Taken" prediction for branches
where we continue to fetch sequential instructions after a branch. Starting from the ideal
pipelined CPI of 1, assume BRANCH instructions account for 20% of instructions and 60% of
BRANCHES are TAKEN. Given this information, calculate the average CPI.

Average CPI: ________

d.) Now suppose the architects implement 2 BRANCH DELAY SLOTS. Analysis shows the compiler
can fill the delays slots according to the info below. Assuming the instruction is a branch, complete
the table below for each case (bulleted list below) indicating the branch penalty (# of wasted cycles
/ inserted bubbles) then use the table for scratch work to compute the Overall Average CPI of the
program running on this processor with 2 delay slots. We recommend using the blank space in
each table cell to compute the contribution of that case to the overall average CPI.

• Both delay slots filled for 50% of branches,

• Only 1 delay slot filled for 30% of branches (and use a NOP for the other),

• No delay slots filled for 20% (use NOPs for both slots).

 Taken (60%) Not Taken (40%)

Both delay
slots filled
(50%)

Branch Penalty (wasted cycles): ___

Branch Penalty (wasted cycles): _0__

1 delay slot
filled (30%)

Branch Penalty (wasted cycles): ___

Branch Penalty (wasted cycles): ___

No delay slots
filled (20%)

Branch Penalty (wasted cycles): ___

Branch Penalty (wasted cycles): ___

Overall Average CPI: ________

 (continued on next page)

9

e.) Suppose we do NOT use branch delay slots but simply find a way to reduce the branch penalty
for taken branches to only 2 clock cycles while making the clock period 5% LONGER. Would
this approach yield faster execution time than the 2 BRANCH DELAY SLOT APPROACH
analyzed previously in part d? Show your work

True/False: ____-_ This new approach will yield faster execution than the 2 BRANCH
DELAY SLOT approach.

Show work:

10

5. (10 pts) Instruction Sets - Submit PDF on Gradescope Q5
Given the following code snippets in C and its corresponding MIPS assembly, fill in the missing
blanks. The following variables are allocated contiguously in memory starting at address 0x5555a180

(recall int's are 4-bytes, shorts are 2-bytes, chars are 1-byte). Then reorder the instructions of snippet
2 to avoid as many stalls due to data hazards as possible.

int v; // variables allocated contiguously starting at 0x5555a180
unsigned short x,y;
char z;

Assuming the following code is executed before each code snipped:

lui 0x5555, $4
ori $4, $4, 0xa180

Snippet 1
C Code

Snippet 2
C Code

Reorder the
instructions (3-6)
of just Snippet 2
to the left to avoid

as many stalls
due to data
hazards as
possible.

v = v >> ____;
 // v right shifted by some amount.
 // Fill in the correct variable

v -= ____;
x++;

Corresponding MIPS assembly Corresponding MIPS assembly

lw $5, 0($4)

_______ $6, 6($4)

_______ $5, $5, $6 <==Choose the

(srav / srlv) correct opcode

sw $5, ____($4)

lw $5, 0($4)

l__ $6, 8($4)

sub $5, ____, ____

sw $5, ___($4)

lhu $7, 4($4)

_____ $7, $7, 1

sh ___, 4($4)

1

2

7

11

6. (5 pts.) Pipelining – Submit PDF on Gradescope Q6

Consider an array/memory of 1024, 8-bit (byte) values, D[i]. Each byte can be 0x00-0xff.

We want to convert each byte to a simple true / false value by taking the logical not (!D[i])

and save them to a new array/memory. So if the byte is 0x01-0xff we convert it to 0x00,

but if the byte 0x00 we convert it to 0x01. Billy Bruin creates an initial working design but

then tries to pipeline it to make it faster by adding pipeline registers (the shaded and dotted

rectangles) in the diagram below.

a. First, to produce the correct value, what type of gate is necessary in the blank box at

the end of the pipeline (NAND / NOR / AND / OR / XOR) (choose 1): __________

CNTR

CLR

EN Q

CLK

IEN
ri

1024x8

MEM

Addr

Data

RICLR

D[7:0]

1024x8

MEM

Addr

Data

7'b0000000

D[0]

D[1]

D[7] 8

RD

1

WR

1

1010

8

CNTR

CLR

EN

Q
CLK

wi

WICLR

What gate

goes here

b. Tina Trojan looked at the design and saw some flaws in Billy's pipeline attempt.

Without rearranging the OR gates, show where additional pipelining registers are

needed by drawing additional shaded rectangles where pipeline registers would be

needed.

12

Intentionally blank for scratch work. Please turn it in with your exam:

Name: __ Section time: _____________

