
SOLUTIONS 

1 
 

EE457: Computer Systems Organization 

Summer 2020 - Midterm Exam 

06/23/20, 1:30PM – 3:30PM (Submit by 4:30 p.m) 

 

Name:  ___Solutions________________ 

Student ID:  ________________________________________ 

Email:  ___________________@usc.edu 

Lecture section:  

 

 

 
[5 points:  Complete all the information in the box above.] 

Page Ques. Your score Max score Recommended 
Time 

1 -   0 min. 

2 1  14 15 min. 

3-5 2  36 45 min. 

6 3  15 15 min. 

5 4  8 15 min. 

6 5  6 15 min. 

7 6  9 15 min. 

 Total  88+2=90  

Note:  The last page is blank and can be used for scratch paper.   

Please turn it in with your exam (for in person exams only)  

Redekopp   

1:30 p.m.   
 



SOLUTIONS 

2 
 

1. (15 pts.) Short Answer [Fill in the blank at the start of the question with the appropriate answer to 
the question or the selection that makes the statement true.] 
a. _LATER____ Even with full forwarding in a pipelined processor, a stall may be required if the 

stage that produces the result is (later / earlier) in the pipeline than the stage where the 
dependent instruction consumes the result. 
 

b. _ 3 ___ A state in a state diagram has 2 outgoing transitions and 3 incoming transitions.  If 
using a 1-hot implementation, the flip-flop for that state in the NSL will be produced by an OR 
gate with how many inputs?  
 

c. __ STATIC ___ (Dynamic / Static) instruction count will determine how much memory the 
program occupies when executing. 
 

d. __FALSE___ (True / False) Suppose half of the instructions executed by a program are ADD 
instructions which take 2 cycles.  Reducing the ADD instructions by half will cut the overall 
execution time in half.  
 

e. __FALSE___ (True / False) In the single-cycle CPU, reducing the latency of the datapath 
required to execute an JUMP instruction is likely to decrease the clock period. 

 
f. __TRUE__ (True / False) In the single-cycle CPU, reducing the latency of the datapath required 

to execute an LW instruction is likely to decrease the clock period. 
 

g. ___3________ What is the minimum number of gate delays required to implement a 6-input OR 
function using only 2-input OR gates? 
 

h. __Moore____ Signals that must be valid during the clock are best produced using  (Mealy / 
Moore) style. 
 

i. __False__ (True / False) For signed numbers, the comparison of A < B can be performed by 
subtracting and then simply checking if the MSB of the result is a 1. 
 

j. Perform the indicated arithmetic operations, showing your work, for the specified representation 
system.  Answers are limited to 8-bits (not 9-bits).  (Do not use the borrow method for 
subtraction, use the 2’s complement method of subtraction.)  Finally, state whether overflow has 
occurred and briefly explain why or why not. 

 

a.) 2’s comp. system  b.) Unsigned system 

  110101012 

 – 010111102 

  110101012 

  101000012 

+  12 

  011101112 
 

   011001012 

 + 010101002 

101110012 

Overflow:  Y / N    Overflow:  Y / N   



SOLUTIONS 

3 
 

2. (36 pts.) Arithmetic, Datapath, and Control Unit Design.  Recall that sign-truncation refers to 
removing copies of the sign bit without altering the number’s value. For example, 11111010 binary 
can be truncated by 4 bits and reduced to 1010 without affecting the value.   
 
Given an array of 32 (8-bit) signed (2’s complement) binary numbers stored in a memory, scan 
through the array, and record the MAX number of bits that can be truncated from any number in the 
array (i.e. find the number with the most copies of the sign-bit and record how many copies that 
number had.)  In addition, by the end of the scan, set a FLAG bit if ANY number in the array had  
4 or more leading sign bits that could be truncated.  
 
Below is a sample of 4 (though you will examine 32) numbers and how the MAX and FLAG 

variables would update based on the computation of each number. The final result would be MAX = 

6 and FLAG = 1. 

Memory Contents 
Addr. (i) 0 1 2 3 

M[i] 11011101 00000010 11111110 10110111 

S   = (Sign-bits that can be 

Truncated from M[i] 
1 

(remember you must 

retain the original sign bit) 

5 6 0 

MAX , FLAG 1 , 0 5 , 1 6 , 1 6 , 1 

 

While there are many ways to accomplish this computation, we want you to scan through each 

number and examine the bits of the current number 1 clock cycle at a time (see the datapath below).  

While we could go through all 8-bits, since we only care about how many leading sign bits the number 

has we should not require 8 cycles per number if there are fewer leading sign bits.  For example, 

given the number 11100101, we should be able to stop counting the sign bits after 2 clock cycles 

since there are only 2 leading copies of the sign bit.  This is a performance requirement. So if a 

number has n leading copies of the sign bit, you may only use n cycles to count the sign bits. 

 

To produce the answers, we will keep two counters: the i-counter to track which array element we 

are examining and the B-counter to select (via a mux) one of the bits of the number per cycle.   For 

this B-counter you will need to complete its connections with the ADDER/SUBTRACTOR and mux to 

ensure the appropriate select bit sequence is generated.  We will use a third counter (S-counter) to 

count how many leading copies of the sign bit there are.  Finally, we will use a register to store the 

MAX number of leading sign bits from ANY number and a separate 1-bit register for the FLAG to 

indicate if ANY number had 4 or more copies of the sign bit.   

 

We will use a Mealy-style state machine. After an initial state (INIT) we will move to the BCNT (bit 

counting) state where we will count the number of leading sign bits in the current array element.  

Once we determine that value, we will enter a SCMP (S compare) state to update the MAX and FLAG 

outputs appropriately.  We can then return to the BCNT state to process the next number and repeat 

this process until we are done.   

 

Examine the incomplete datapath on the next page and the skeleton of the state machine on the 

following page.  Complete the state machine and then the data path by filling in the shaded regions, 

taking care to read the instructions for what is expected.  Finally, complete the NSL and OFL. 

 



SOLUTIONS 

4 
 

a.) [1 pt] How many bits should the i-counter be? ___5________ 

 

b.) [7 pts] Complete the datapath connections below by using constants, drawing wires, or simply using 
signal name labels to the inputs in the shaded boxes.  The signals in the dotted circles will be 
generated by the OFL of the state machine or other signals from the datapath below.  Those will be 
dealt with on the next page. 

 
Complete the connections to the  

adder inputs below use constants, 

wires, or signal names.

START

/RST

CLK

CNTR

CLR

EN Q

CLK

IEN

ICLR

i

32x8 

MEM

Addr

Data
Mi

Mi,bit 0

Mi,bit 7

0
1
2

6

S

CLK

SEN

SCLR

CLK

MEN

MCLR

M
u

x

3-bit 

Up 

Counter

CLR

Q
EN

3-bit 

Reg

CLR

QD

EN

110

A

B
A>B

Comparator

= 31

IMAX

3-bit 

Adder/

Subtractor

A

B
SUB/~ADD

S

= MATCH

MAX

CLK

BEN

BDONE

3-bit 

Reg

CLR

QD

EN

SUB

001

0

1

S

M
u

x

=

000

BSEL
BCLR

B

GT1
3

S

A

B
A>B

Comparator

3=0112

CLK

FEN

3-bit 

Reg

CLR

QD

EN

FCLR

FLAGGT2

Complete the connections to 

the comparator and D-input of 

the MAX register using wires, 

signal names, and/or constants.

 

c.) [12 pts] Complete both transitions & operations that should happen in the BCNT and SCMP states. 

 

INIT (QI)

i*    

S*    

MAX*    

FLAG*    

B*    

(start here)

/RST

~START

BCNT (QB)

B*   B-1

if (MATCH)

    S*   S+1

    

START SCMP (QS)

i*   i+1

S*    

B*    

if (S > MAX)

    MAX*   S

If (S > 3)

    FLAG*    

DONE (QD)

 

MATCH && B != 0

!MATCH || 
B == 0

I == 31

true

i != 31 

Note: 
GT2  S > 3

IMAX  i==31
BDONE  B==0

 
  



SOLUTIONS 

5 
 

(7 pts.) 

e.) Now suppose we implemented the state machine from the previous part and gave you the one-hot 
state outputs:  QI, QB, QS, and QD.  Use these signals plus others that are defined in the datapath 
to define the control signals indicated below:  Just write logic equations using logic operations 

 

MEN   = __QS * GT1_______________________________________________________ 

 

SEN  = ___QB * MATCH______________________________________________________ 

 

BSEL  = ___QI + QS ______________________________________________ 

 

BEN  = ____ QI + QS + QB  // or 1__________________________________________________ 

 

IEN  = _____QS  ( +QI is not needed but ok)________________________________________ 

 

SCLR  = ____QI+QS_____________________________________________________ 

 

In the datapath, the 1-bit comparator producing MATCH can be implemented with a single 

logic gate.  What type of gate would be correct: __XNOR_ (AND / XOR / XNOR / NOR) 

(6 pts.) 

f.) Below is a subset of the state flip-flops.  Assuming a 1-hot state assignment, complete the NEXT 
STATE LOGIC equations and SET/CLR inputs of the state memory.  You need not draw the gates but 
just write the equations for the specified D inputs.  Then in the shaded boxes show what to connect to 
the SET/CLR inputs (Vdd and GND are always available) 

 

DI  = _QI*~START + QD__________________________________________ 

 

DB  = ___QI*START + QB*MATCH*B!=0 + QS*(I != 31) ____ 

Note: IMAXi==31, GT2  S>3______ 

 

DS = ___QB*(!MATCH + B==0)____________Note: BDONE  B==0_________ 

 

 

(3 pts.) 

g.) Using /RST, constants and other signals, show how to connect the /SET and /CLR inputs of the 
following state flip-flops. 

 

D Q

CLR

SET

CLK

D Q

CLR

SET QB

CLK

DB QSDS
D Q

CLR

SET

CLK

DI QI

VDD

/RST VDD

/RST

VDD

/RST

D Q

CLR

SET QDDD

VDD

/RST

CLK

/RST

(Active low)
 

  



SOLUTIONS 

6 
 

3. (15 pts.) ISA and Single-Cycle CPU Datapath: We want to add support for a new instruction 
‘BMNE’ (Branch Memory Address if Not Equal), while not affecting any other instructions. This new 
instruction has the format shown below and will branch to the value loaded from memory given by the 
address in $rt if the value in $rs is not equal to a sign-extended immediate (i.e. $rs != imm), 

otherwise it continues executing sequentially (the next instruction).  Implement any changes to the 
datapath and control signals to support this new BMNE instruction on the single-cycle CPU. Assume 
when this instruction executes a new BMNE control signal will be generated and set to ‘ ’. 

BMNE $rs,($rt),imm  instruction description:  

if($rs != imm) 

   PC = M[$rt] 

This instruction will use the machine code I-format: 

BMNE:   opcode 

6 

rs 

5 

rt 

5 

16-bit signed immediate 

(immediate to be compared to $rs) 

 

 

a. What operation should the ALU perform? _______SUBTRACT__________________ 
b. Sketch the additions/changes to the datapath above that would be needed to support this new 

instruction and its operations (provide a brief description in the space below if the sketch is unclear).  Use 
as little additional logic as possible.   

 

See diagram above 

 

 
c. Show the values of the following control signals to implement this new instruction. 

 BMNE MemToReg Branch ALUSrc RegWrite MemRead MemWrite 

Value (0,1,X) 1 X X 1 0 1 0 

 
  



SOLUTIONS 

7 
 

4. (8 pts.) Performance 
Assume a program requires the execution of the following number of instructions with the given CPI. 
The processor uses a 2 GHz clock period. 
 

Instruction Type Instruction Count CPI 

ADD 100*106 instructions 1 

Branch 50*106 instructions 2 

Load 50*106 instructions 3 

Store 25*106 instructions 3 

MUL 25*106 instructions 5 

 
 
a.) What is the execution time of this program (in milliseconds)? 

 
Time: __275______ ms (show work) 
 
(100*1 + 50*2 + 50*3 + 25*3 + 25*5) * 106  = 550*106 total clks / 2*109 Clks/sec =275 ms 
 

b.) Is it possible to achieve a 1.1x speedup by improving the CPI of only the BRANCH instructions? 
 
Yes / No: (show work) 
 
Orig. clocks = 550E6 clocks 
New clocks (Branch CPI reduced to 1 (ideal) will lead to 50E6 less clocks) = 500 E6 clocks 
Speedup = 550E6 / 500E6 = 1.1x 
 
 

c.) If we want the program to run 1.2x faster by simply reducing the number of Load instructions, by 
what factor would we need to reduce the instruction count of Loads? 

 
Factor of reduction (i.e. old # of LOADS / new # of LOADS): __18/7 = 2.57______ (show 
work) 

 
Loads account for 3*5 E  of the 55 E  clocks (time) of the original program so we can use Amdahl’s 
law:  
Speedup = 1.2 = 1 / (400/550   + 150/550/x).     
 x = 18/7 = 2.57  
 

d.) Assume each MUL instruction is converted to 4 ADD instructions.  Assuming we execute that 
updated program on the pipelined processor discussed in class with full-forwarding, 1 cycle stall 
for Loads followed by dependent instructions and 1 cycle branch penalty (i.e. early-branch 
determination), what would the runtime of the program be in the worst case? 
 
Time: __212.5______ ms (show work) 
 
WE will now have 100E6 more ADD instructions replacing the 25E6 MUL instructions.  So 
with the pipelining the ideal CPI is 1 (1 cycle per instruction). However the 50E6 LW will 
incur an extra 50E6 cycles in the worst case (assuming they are all followed by dependent 
instructions) and the 50E6 branches will incur a 1 cycle branch penalty.  Thus the time will 
be:  (200E6*1 + 50E6*2 + 50E6*2 + 25E6*1) / 2E9 = 212.5 ms 

  



SOLUTIONS 

8 
 

5. (5 pts) Pipelining Performance 
Consider the final pipelined CPU implementation we arrived at in class with full forwarding where 
possible, stalling logic for a LW followed by a dependent instruction, and branch determination in the 
DECODE stage (i.e. early branch determination).  Look at the code segment below which 
implements a loop that starts at L  and will exit when the ‘bne’ instruction is true but continue looping 
when ‘bne’ is false and thus the ‘beq’ will jump back to the top of the loop.  I 
 
a.) Suppose the bne is false twice and then is true on the 3rd iteration of the loop.  How many total 

bubbles (stall cycles + flushed instructions) would occur during execution of those 3 iterations? 
 
Total _6_ = _2_(1 for LW 1 for taken BEQ)  + _2_ + _2 (for LW and now BNE is taken)_ 

b.)                                      (1st iteration)             (2nd iteration)             (3rd iteration) 
 

 

Original Code Segment 1 

L1: add  $4, $8, $9 
    lw   $3, 20($4) 
    sub  $6, $3, $5 
    addi $4, $4, 8 
    bne  $4, $9, L2 
    sw   $8, 0($4) 
    beq  $0, $0, L1     
L2: or   $7, $6, $9 
 
 

 
Now assume the hardware designer REMOVES the hazard detection unit and flushing logic (forwarding 
logic is still present) and instead declares 1 delay slot after a LW followed by a dependent instruction 
and 1 delay slot after a branch.   Answer the questions below about how to reorder the code as 
necessary to ensure correctness while also achieving the BEST POSSIBLE performance (i.e. CPI).  
Recall that ‘nop’ instructions are always available for use to ensure correctness. 

 
c.) What instruction could be moved into the delay slot for the bne (answer ‘nop’ if no other 

instruction can be moved)? 
 

___sub__(all others are dependent)__________________ 
 
 

d.) What instruction could be moved into the delay slot for the beq (answer ‘nop’ if no other 
instruction can be moved)? 
 

_____sw__(all others are dependent)________________ 
  



SOLUTIONS 

9 
 

6. (9 pts.) Pipelining and Arithmetic   

Consider the problem of calculating an approximation of ex using the following formula: 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
 

Given the datapath below assume the following delays: 

Addition unit 200 ps 

Multiplication unit 500 ps 

Division unit 800 ps 

 

a. What is the total delay of the circuit as shown below? _2000ps = (500+500+800+200).  

*
X[31:0]

32

32

*

+X[31:0]

1
+ +

÷ ÷ 

X[31:0]

2 6

RES[31:0]

 

b. Now suppose we have an array of many values for X (e.g. X[1000]) and we want to 

compute eX[i] for each value of X[i].  Go back to the circuit above and consider how we 

can pipeline the design.  We want to achieve a clock period of at most 800 ps (i.e. the 

divider delay) with a latency of 4 clock cycles and a throughput of 1 result every 

clock cycle in the steady state.  Show where to add pipeline stage registers by 

drawing a THICK HORIZONTAL LINE (See the example diagram below for how to 

draw your pipeline registers ) through the wires were a pipeline register should be 

inserted. 

 

Sample for how to draw a pipeline register on the design above: 

  +

A pipeline register at 

the output of the 

adder



SOLUTIONS 

10 
 

Intentionally blank for scratch work.  Please turn it in with your exam: 

Name: ________________________________________ Section time: _____________ 

 


